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Signatures of motor susceptibility to forces in the dynamics of a tracer particle in an active gel
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We study a model for the motion of a tracer particle inside an active gel, exposing the properties of the van
Hove distribution of the particle displacements. Active events of a typical force magnitude can give rise to
non-Gaussian distributions having exponential tails or side peaks. The side peaks are predicted to appear when
the local bulk elasticity of the gel is large enough and few active sources are dominant. We explain the regimes
of the different distributions and study the structure of the side peaks for active sources that are susceptible to the
elastic stress that they cause inside the gel. We show how the van Hove distribution is altered by both the duty
cycle of the active sources and their susceptibility, and suggest it as a sensitive probe to analyze microrheology
data in active systems with restoring elastic forces.
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I. INTRODUCTION

Active gels, composed of a cross-linked network of
biopolymers that contains molecular motors which produce
active forces, are in vitro model systems for exploring
nonequilibrium physics as well as studying the dynamics
inside living cells [1–14]. The dynamics of an active gel can
be probed experimentally by following the displacements of a
passive tracer particle [6–9]. The time-dependent distribution
of the displacements, the van Hove distribution (VHD), was
observed to be an indicator of activity inside the gel, exhibit-
ing distinct non-Gaussian form in the presence of activity
[6–8]. The active gels in these in vitro experiments [6–9]
consist of cross-linked actin filaments and bundles, which
are furthermore perfused by myosin-II molecular motors.
When chemical energy is supplied (in the form of Adenosine
triphosphate (ATP)), the motors become active and give rise
to contractile forces that are applied locally to the actin
filaments. Note that in many experiments [6–8] these forces
induce strong evolution of the network, until it collapses. In
Ref. [9] smaller motor bundles were used in order to achieve
a more stable steady-state system. It was further predicted
theoretically that when the motion is dominated by a few
sources of active forces, and the elastic stiffness of the gel is
high, there should appear side peaks in the VHD [14]. This
peak structure arises from the discrete displacement of the
tracer particle due to the force balance between the active
force and the elastic restoring force, but this has not yet been
observed in experiments.

In this paper, we study how the VHD changes with the
properties of the active forces. We show that the model
introduced in Ref. [14] has parameter regimes where the VHD
has exponential tails, similar to those commonly measured for
tracers in active gels [6–8]. We then introduce and explore
the effects of susceptibility of the active sources to the elastic
stress in the active gel, which is itself produced by the activity.
This is motivated by the known susceptibility of molecular
motors, such as myosin-II, to applied forces, which modify

their kinetics [15–20], and it is therefore an essential feature
to include in a realistic model of active gels. We reveal how
the susceptibility of the motors affects the peak structure in the
VHD, thereby demonstrating that it is a sensitive probe for the
properties of the active sources inside active gels and living
cells. Our results may be relevant to many active systems with
restoring elastic forces, such as artificial active membranes
[21–23], cellular membranes [24], active polymers [25–27],
particles within optical traps [28], dense active fluids [29–31],
and active fluctuations observed in the chromatin in the nu-
cleus of living cells [32–36].

II. MODEL DEFINITION

We start by studying a one-dimensional model for the mo-
tion of a tracer particle in the active gel, which was introduced
in Ref. [14]. The particle is trapped in a harmonic potential
U (x) = 1

2 kx2, representing the bulk elasticity of the gel. This
description is valid at short times, in which the particle is
trapped, since at long times the actin network reorganizes
and the particle performs free diffusion [6,9]. In addition, the
particle moves due to the force applied by N “motors,” each
representing a source of active events which applies a force
with typical magnitude F0 for an exponentially distributed
time duration with average k−1

off . At first we assume that the
motors are independent and identically distributed: each of
them can be either on or off. When a motor is off, it does
not apply any force to the particle. The motor turns on after
an exponentially distributed duration, with rate kon. Once the
motor is on, a direction (left or right) is randomly chosen and
the motor applies a force of magnitude F0 in that direction to
the particle.

The Langevin equation of motion for the particle position
x is thus

mẍ = −γ ẋ − kx −
N∑

i=1

Mi(t )F0 + ξ (t ), (1)
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where m is the particle mass, γ is a friction coefficient, and
Mi is a variable representing the state of the ith motor which
is equal to 0 when the motor is off and ±1 when the motor is
on in the right/left direction. ξ (t ) is white noise that can be of
thermal or other origin (such as activity from many sources
that are far from the particle). We neglect ξ , since small
white noise does not significantly affect the properties of the
VHD peak structure in which we are interested. Moreover, in
cellular systems active temperatures are usually much larger
than thermal ones. The motion of tracer particles in cellular
systems and artificial active gels is typically overdamped.
Accordingly, our model focuses on this regime, where the
friction timescale m/γ is smaller than the other timescales,
k−1

off , k−1
on , and γ /k. Yet we keep the general form of the

Langevin equation in all of our simulations for accuracy and
consistency, since as the susceptibility of the motors to the
external force increases, the rates of motor state change can
become greater than the friction timescale m/γ , crossing into
the underdamped regime.

In the following, we focus on the properties of a commonly
measured characteristic of the motion of tracer particles in
experimental systems—the van Hove correlation function
P[�x(�t )]. It is defined as the distribution of particle dis-
placements �x ≡ x(t + �t ) − x(t ) over a lag time �t .

III. QUALITATIVE BEHAVIOR
OF THE VAN HOVE DISTRIBUTION

Two qualitative behaviors of the VHD of tracer particle
displacements have been observed in active gels: Gaussian [9]
and exponential tails [6–8]. Both behaviors can be explained
within the model defined above, in different regimes of the
bulk elasticity, the number of motors, and the lag time �t .

If a tracer particle is far enough from all active motors, its
motion is caused by thermal noise combined with the small ef-
fect of each of the distant motion of many motors. In this case,
its VHD will be Gaussian, irrespective of the value of k [14].

Exponential tails, as were observed in active gels [6–8]
and living cells [37–40], can result from forces applied by
a few nearby motors (as suggested in Ref. [6]) if the local
bulk elasticity is small. In Appendix A, we show that within
our model, in the limit of small bulk elasticity and small
duty cycle (ratio of time in which a motor is on) pon ≡

kon
kon+koff

, the exponential statistics of the motor active burst
duration results in exponential tails of the VHD. For vanishing
bulk elasticity k = 0, we prove that for a large enough �x,
P(�x) ∝ e−β|�x|/s, where 1/2 < β < 1 and s = F0γ

−1k−1
off . In

numerical simulations of the model in the weak confinement
regime k/γ � koff, kon, with a small but nonzero k, the VHD
indeed displays exponential tails (Fig. 1). At short enough
timescales, for small motor number N the VHD has peaks
resulting from sampling of motion at nearly constant velocity
during the entire sample time. Then, as �t grows, exponen-
tial tails become evident until finally, at long enough times,
the distribution is Gaussian nearly throughout the sampled
domain of �x values. Thus the model is consistent with
observations of exponential tails in active gels.

A third behavior was predicted theoretically in Ref. [14]
to occur within an experimentally relevant regime: if a tracer
particle is in an environment with large bulk elasticity and
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FIG. 1. Exponential tails in the weak confinement k/γ �
koff, kon and small pon limits. The van Hove distribution is plotted
for varying lag times �t , for k = 10, γ = 50, kon = 1, koff = 10:
(a) N = 1 and (b) N = 10.

in the vicinity of only a few motors, then side peaks appear
in the long-time VHD [Figs. 2(a) and 2(b)], while at shorter
times these peaks become shoulders [Figs. 2(c) and 2(d)].
Note that these side peaks which result from the balance
between the active force and the restoring elastic force of the
gel have so far not been observed in active-gel experiments. In
Appendix B we estimate the values of the model parameters
that appear in the experiments with respect to the regime
where such side peaks should appear. In the next section
we investigate the dependence of this peak structure on the
properties of the active sources.

IV. VAN HOVE DISTRIBUTION PEAK RATIO

In the strong confinement limit koff, kon � k/γ , the steady-
state particle position distribution P(x) has sharp peaks
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FIG. 2. (a) Sketch of the steady-state position distribution of
the particle for N = 1 motor with the peak notations marked.
(b) Sketch of the matching long-time VHD of particle displace-
ments (P[�x(�t → ∞)]). Notation for the distribution peaks and
consecutive peak differences is marked. (c) The steady-state particle
position distribution for N = 1 adamant motor (kon = 0.43, koff = 1,
k = 1000, F0 = 1, γ = 50). (d) The VHD for the same system as in
(c). Different colors represent different lag times �t . Detected peaks
are marked by black x’s and shoulders by black circles.
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located at positions where the motor force is balanced by
the harmonic potential force [14]. This is because the par-
ticle spends most of the time at the peaks of P(x). Since
the peaks are located at positions where the elastic force is
balanced by the motor force, the distance between adjacent
peaks is x0 ≡ F0/k. Therefore in order to observe peaks in
experiments, in addition to the lower bound on k given by the
strong confinement requirement above, there is also an upper
bound on k requiring that x0 = F0/k is larger than the spatial
resolution of the measurement of the tracer position.

The overdamped Langevin equation governing the motion
of the particle in the limit where the friction coefficient γ is
larger than all other rates in the system is

γ ẋ = −kx −
N∑

i=1

MiF0. (2)

The solution of this equation for a given constant
∑N

i=1 Mi =
N+1 − N−1 ≡ �N is x(t ) = [x(0) − �NF0/k] exp(−k/γ t ) +
�NF0/k. Thus the typical timescale it takes the particle to
reach the position corresponding to zero total force on it at a
certain motor state is γ /k. When k−1

off , k−1
on � γ /k the particle

moves between the peaks of P(x) much faster than the motor
state changes, and therefore it spends much more time in the
zero force positions of the motor states than moving between
them. We will hence also refer to this limit as the fast particle
limit.

P(x) then has one central peak at x = 0 and 2N side peaks
N on each side of x = 0 [Fig. 2(a)]. The long-time VHD
is simply a self-convolution of P(x): P[�x(�t → ∞)] =
P(x) ∗ P(x). Thus it has one central peak and 4N side peaks.
Denote the value of P(�x) in each of the peaks P̃i, where
i = −2N,−2N + 1, . . . , 2N . In order to quantify the peak
structure of the VHD, we measure the ratio of consecutive
peak height differences in log scale [Fig. 2(b)]. The sys-
tem is reflection symmetric and therefore P̃−i = P̃i. Thus for
convenience we can focus without loss of generality on the
peaks with non-negative indexes, which are at non-negative
x values. We define the consecutive peak height differences
in log scale: �i = log(P̃i/P̃i+1). We study the dependence
of the ratio of two consecutive log peak height differences,
ri(�t ) = �i/�i+1, on our model parameters and show that its
value can be a signature of motor susceptibility to external
force.

We begin by analyzing adamant motors, where the dynam-
ics of the active sources do not depend on the stress in the
gel and the rates kon, koff are constant. In Appendix C, we
show that when pon → 0, the long-time VHD has ri → 1.
Furthermore, ri < 1 and quite close to 1 for all pon < pc

on for
pc

on ≈ 0.6 [Figs. 3(a) and 9]. Thus pon needs to be larger than
pc

on in order to obtain ri > 1. Moreover, numerical simulations
(see details in Appendix D) show that this remains true for
small �t values (Figs. 3 and 4) in a sense that is clarified
below. As �t becomes smaller, the VHD becomes narrower,
as the displacements are smaller over shorter times. Eventu-
ally, peaks [maximum points of P(�x)] become shoulders
[Fig. 2(d)]. A shoulder is a region of decreased slope between
two regions with a larger slope. We define the location of
the shoulder to be the minimum point of |P′|. As �t de-
creases, P(�x) continuously deforms until there is no longer a
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FIG. 3. r0 in simulations with N = 1 adamant motor, koff = 1,
and varying kon (k = 1000, F0 = 1, γ = 50): (a) r0 vs pon. Different
colors represent different lag times �t . The black line is the approx-
imate theoretical result for the fast particle limit at long lag times.
(b) r0 vs �t . Colors represent different pon values. For pon � 0.6,
r0 < 1 at all lag times.

maximum point where P′ = 0 and instead |P′| > 0 throughout
the region. This happens since the tracer does not have time to
reach the force balance position, and remain there, within time
�t . When a peak P̃i becomes a shoulder as �t decreases, we
continue to use the notation P̃i for the shoulder point height.

V. SUSCEPTIBLE MOTORS

Next, we study the model when the active sources are
susceptible to external force. While the susceptibility of
molecular motors, which are the source of activity in active
gels, is a known phenomenon [15–20], it is not obvious how
to take it into account in our model due to several reasons.
First, because the precise nature of the active events that
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FIG. 4. (a)–(d) Long-time VHD for several simulations used to
make Fig. 3, for varying kon values at constant koff. As pon increases,
the i = 2 peaks increase until passing the i = 1 peaks.
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affect the tracer particle position in the active gel is unknown
[6,9]. Second, because molecular motors respond to the force
which acts on them locally, and it is unclear what this force
is within our model, which does not assign a spatial position
to the motors. We make the simple assumption that each of
the motors is susceptible to the elastic force acting on the
tracer particle, since this force is an indicator of the local
stress in the gel. This means that the stochastic dynamics of
the motor state variables Mi are now coupled to the particle
position x, i.e., the motor state transition rates are functions of
x. We therefore define k±

on(x) to be the rate of transition from
the off-state to the on-state in the ± direction, and k±

off(x) to
be the rate of transition from the on-state in the ± direction to
the off-state.

In general, solving the coupled dynamics of the particle
position and motor states to find P(x) is difficult. We can solve
it approximately in the fast particle limit γ koff,on/k � 1. Let
us first consider the case of a single motor, N = 1. In this
case, the steady-state particle density has three peaks at 0 and
±x0, for x0 = F0/k. In this limit the particle spends a small
amount of time at positions that are not x = 0,±x0. Thus
we neglect all other states and treat the system as if it has
three possible states, defined by the motor states M = 0,±1,
which correspond to a unique particle position x = 0,±x0. We
generally assume that the rate of transition between two states
can depend on the current x and the nonzero M state involved
(which could be the M value associated with the state from
or into which the transition occurs) and denote the rates of
transitions between these states as follows:

M = −1 M = 0 M = 1

k−
off(x0)

k−
on(0) k+

off(−x0)

k+
on(0)

Assume that the rates depend only on MFelastic = −Mkx.
Thus the system is symmetric to reflection of x → −x M →
−M. Therefore k−

on(0) = k+
on(0) ≡ kon(0)/2, and k+

off(x0) =
k−

off(−x0) ≡ koff(±x0). The master equations for the system
are as follows:

∂t P(−x0) = kon(0)

2
P(0) − koff(−x0)P(−x0)

∂t P(x0) = kon(0)

2
P(0) − koff(x0)P(x0) (3)

∂t P(0) =−kon(0)P(0) + koff(−x0)P(−x0) + koff(x0)P(x0).

The steady-state solution of the Eq. (3) is thus P(x0) =
P(−x0) = kon(0)

2koff (x0 ) P(0).
The dimensionless ratio kon(0)/koff(x0) controls the steady-

state distribution. Thus the particle position distribution and
therefore the long-time VHD are approximately affected only
by tuning the susceptibility (x dependence) of koff and are
indifferent to the dependence of kon on the external force
(since at x = 0 the external force is zero), as is evident in
Figs. 5(b) and 5(d). At shorter times [Figs. 5(a) and 5(c)],
this is not true since events where the motor turns on before
reaching x = 0, with kon that is dependent on the location
x, can become dominant. For example, for a �t close to
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FIG. 5. Comparison of systems of N = 1 susceptible motor with
susceptibility in the on or off rate. The VHD for various F1 values
is plotted for (a), (b) k±

on = e∓kx/F1 , koff = 10, for lag times of �t =
0.1 (a) and �t = 10 (b). For �t = 0.1, increasing the susceptibility
(decreasing F1) increases the height of the shoulder P̃2 and therefore
increases r0. (c), (d) kon = 1, koff = 10e−Mkx/F1, for lag times of �t =
0.1 (c) and �t = 10 (d). Increasing the susceptibility causes peaks to
become shoulders and move to smaller |x|. It does not increase P̃2 or
r0. (k = 1000, F0 = 1, γ = 50.)

the time it takes the particle to move from x0 to −x0 with
M1 = −1, P(�x = 2x0) is a result of events where the motor
state changed from +1 to 0 and nearly immediately to −1.
The probability of such events depends on k±

on(x).
The simplest possibilities are that either the active event

rate k±
on is susceptible to external force and the average event

duration 1/k±
off is constant, or vice versa. We considered both

of these options, with the assumption that the dependence of
the rates on the elastic force is exponential and such that the
motor force tends to align with the elastic force. We define the
two models we study as follows:

(1) koff = const, k±
on = k0

one∓kx/F1 , where k0
on is the basal on

rate in the absence of forces and F1 is a force scale that de-
termines the sensitivity of the motors to external force. When
F1 → ∞, the motors are adamant: k+

on = k−
on = k0

on, and each
motor is equally likely to push to the left or to the right, regard-
less of the elastic force on the particle. In the infinite suscepti-
bility limit F1 → 0, for x > 0: k+

on → 0, k−
on → ∞ and the mo-

tor turns on in the direction of the elastic force infinitely fast.
(2) kon = const, koff = k0

offe
−Mkx/F1. In the adamant motor

limit F1 → ∞: k+
off = k−

off = k0
off, and the motor is equally

likely to turn off whether it is pushing with or against the
elastic force. In the infinite susceptibility limit F1 → 0, for
x > 0: k−

off → 0, k+
off → ∞, and the motor immediately turns

off if it is pushing against the elastic force, and never turns off
if it is pushing with the elastic force.

Since in experiments using actomyosin active gels the duty
cycle of the active sources is likely small [2,6,9,14], we would
like to explore the peak structure obtained in this regime.
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FIG. 6. The effect of susceptibility on r0. For k±
on = e∓kx/F1 ,

koff = 10, N = 1: (a) r0 as a function of F1 for various lag times �t .
Inset: The average duty cycle 〈pon〉 as a function of F1. (b) r0 as a
function of the average duty cycle 〈pon〉(F1) for various lag times
�t . For a small enough �t , r0 > 1 for much smaller pon than in
the adamant motor system. (c), (d) Same as (a) and (b) for kon = 1,
koff = 10e−Mkx/F1 (k = 1000, F0 = 1, γ = 50).

Specifically, since in the small pon regime we find r0 < 1 for
adamant motors, we would like to find if susceptibility of the
active sources can result in r0 > 1 even at a small average duty
cycle (note that for susceptible motors the average duty cycle
is a result of the system dynamics).

From numerical simulations, we find that a susceptible koff

does not increase r0 above 1 [for N = 1 see Figs. 5(c), 5(d),
6(c), and 6(d); for N = 2 see Figs. 7(c), 7(d), 8(c), and 8(d)].
On the other hand, a susceptible kon causes r0 to be greater
than 1 at smaller pon values than that for adamant motors
[for N = 1 see Figs. 5(a), 5(b), 6(a), and 6(b); for N = 2 see
Figs. 7(a), 7(b), 8(a), and 8(b)].

VI. DISCUSSION

We considered a model for the motion of a tracer particle
in an elastic gel due to active force sources of a typical force
magnitude. We find that the two experimentally observed
behaviors of the VHD of the tracer position displacements in
actomyosin gels, Gaussian [9] and exponential tails [6–8], can
be obtained in our model for different parameter values. Addi-
tionally, we explored the structure of side peaks in the VHD,
which are predicted to occur in the limit of strong confinement
(“fast particle”) koff, kon � k/γ . We characterized the peak
structure using the difference between adjacent peaks. We
showed that for adamant motors, the ratio of the first two
differences r0 is larger than 1 only for large pon values. When
the active event rate is susceptible to the elastic stresses in the
gel (which are quantified by the force on the tracer) such that
the motor and elastic force tend to align, we find that r0 > 1
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FIG. 7. Comparison of systems of N = 2 susceptible motor with
susceptibility in the on or off rate. The van Hove distribution for
various F1 values is plotted for (a), (b) k±

on = k0
one∓kx/F1 , koff = 10,

for lag times of �t = 0.1 (a) and �t = 10 (b). Visibly, for the
short lag time �t = 0.1, increasing the susceptibility (decreasing F1)
increases the height of the shoulder P̃2 and therefore increases r0.
(c), (d) kon = 1, koff = 10e−Mkx/F1, for lag times of �t = 0.1 (c) and
�t = 10 (d). Increasing the susceptibility causes peaks to become
shoulders and move to smaller |x|. It does not increase P̃2 or r0.
(k = 1000, F0 = 1, γ = 50.)

is obtained even when the average duty cycle is small. When
the active event duration is susceptible to the elastic stress, r0

is not increased by the susceptibility.
The dynamics of a tracer particle inside active gels has not

been explored yet in the regime in which we expect the side-
peak structure of the VHD to appear: low density of active
motors, and high elastic confinement. Our analysis of the
side-peak structure of the VHD demonstrates that the details
of this structure may serve as a sensitive probe to extract
the correlations between the activity of neighboring motors.
Note that the analysis we present is of a highly simplified
“toy model,” in one dimension, which does not have the
full complexity of a cross-linked biopolymer network. More
detailed simulations of such networks (such as [12]) could in
the future incorporate motor-motor elastic interactions, as we
introduced here. Our model may be potentially more generally
useful, as it can be realized wherever a particle is driven by
active forces within a confining potential. Such a situation
can arise for cells within tissues, bacteria swarms, or artificial
(nonbiological) systems.
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FIG. 8. The effect of susceptibility of the active event occurrence
rate kon. For the model with k±

on = e∓kx/F1 , koff = 10, N = 2: (a) r0 as
a function of F1 for various lag times �t . Inset: The average time
ratio in which the motor was on 〈pon〉 as a function of F1. (b) r0 as a
function of the average duty cycle 〈pon〉(F1) for various lag times �t .
Note that for a small enough �t , r0 > 1 for much smaller pon than in
the adamant motor system. (c), (d) Same as (a) and (b) for kon = 1,
koff = 10e−Mkx/F1. (k = 1000, F0 = 1, γ = 50.)
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APPENDIX A: EXPONENTIAL TAIL OF THE VAN HOVE
DISTRIBUTION IN THE WEAK CONFINEMENT LIMIT

We prove below that in the limit of negligible bulk elas-
ticity k = 0, the van Hove distribution for a particle pushed
by adamant motors has exponential tails. We neglect thermal
fluctuations and other white noise forces, and thus assume
that the particle moves freely due to the motor forces only.
Since k = 0, the particle displacement is a sum of independent
contributions due to each of the motors. We assume in the
calculation of the van Hove distribution below that there is
one motor (N = 1), and the result for a general N can be
obtained from the distribution for N = 1 by P[�x(�t ); N] =
P[�x(N�t ); N = 1].

We will call the displacement due to a single motor on
duration a single step and denote the displacement due to the
ith step xi. The total displacement of the particle within a time
�t can thus be written as

�x = x0 +
n∑

i=1

xi + xn+1, (A1)

where xi for i = 1, . . . , n are all steps as defined above, and x0

and xn+1 are the displacement caused by possible incomplete
steps that begin at the beginning of �t or end when it ends
and are not due to a motor state change. We shall assume

that �t is large enough with respect to the average on time
k−1

off so that the contribution to �x from incomplete steps is
negligible:

∑n
i=1 xi � x0, xn+1. [Note that this assumption is

consistent with the fact that we are interested in the tail of
P[�x(�t )].]

Using the law of total probability, the van Hove distribution
can be written as

P[�x(�t )] =
∞∑

n=0

P[�x(�t )|n(�t )]Pn[n(�t )], (A2)

where Pn[n(�t )] is the distribution of the number of
steps n that occurred within �t . We will now calculate
P[�x(�t )|n(�t )], the distribution of the displacement �x ≈∑n

i=1 xi given the number of steps that occurred within
�t , n.

The magnitude of the steps |xi| is distributed exponentially
with mean vk−1

off , where v = F0/γ is the particle velocity due
to one motor force. Since the sign of xi is ±1 with proba-
bility 1/2, xi are i.i.d Laplace distributed with the probability
density function (PDF) f (xi ) = 1

2s e−|xi|/s for s = vk−1
off . Thus

the PDF of the sum of n such independent random variables
�x = ∑n

i=1 xi is [41]

P(�x|n) = e−|�x|/s

s(n − 1)!2n

n−1∑
j=0

(n − 1 + j)!

(n − 1 − j)! j!

(|�x|/s)n−1− j

2 j
.

(A3)
This is an exponential multiplied by a polynomial as a

function of �x; therefore it has an exponentially decaying
tail. It is now left to show that Pn(n) decays fast enough that
P[�x(�t )] also has an exponentially decaying tail: it satisfies
lim�x→∞

log P(�x)
�x = c for a constant c < 0.

By substituting Eq. (A3) into Eq. (A2), rearranging the
summations, and shifting indices, we obtain

P(�x) = e−|�x|/s

s

1

2

∞∑
m=0

1

m!

1

2m
f (m)

( |�x|
s

)m

, (A4)

where

f (m) =
∞∑
j=0

Pn( j + m + 1)
(2 j + m)!

j!( j + m)!

1

22 j
. (A5)

Since P(�x) is equal to e−|�x|/s times a series in |�x|/s
with positive coefficients, which hence diverges as |�x| →
∞, then P(�x) > e−|�x|/s for a large enough n. If a constant
C exists such that ∀m f (m) < C, then from Eq. (A4) we
conclude that P(�x) < C

2s exp(−|�x|/2s). Hence overall, for
a large enough �x, P(�x) ∝ e−β|�x|/s, where 1/2 < β < 1.

We will show that this is true in the limit of pon � 1, where
the number of steps n taken within �t is Poisson distributed
with mean λ ≡ kon�t : Pn(n) = e−λλn/n!. In this case

f (m) = e−λ

∞∑
j=0

(2 j + m)!

j!( j + m)!( j + m + 1)!

λ j+m+1

22 j
. (A6)

This series converges for every m.
Define

g(m) = (2 j + m)!λm

j!( j + m)!( j + m + 1)!
(A7)
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then

g(m)

g(m + 1)
= j + m + 2

λ

(
1 − j

2N + m + 1

)
>

j + m + 2

2λ
,

(A8)

and therefore for m > 2λ − 2, regardless of j, g(m) is a
decreasing function. Therefore for such m, f (m) is also a de-
creasing function. Thus f (m) has a maximal value for some M
such that 0 � M � 2λ − 2, and hence ∀m f (m) < f (M ) ≡ C.

APPENDIX B: ESTIMATION OF THE VALUES OF THE
MODEL PARAMETERS IN THE EXPERIMENTS

We give here estimates of the values of the model parame-
ters, as obtained from experiments, to assess the experiments
with respect to the regime where side peaks should occur.
Some of these numbers are not precisely known, and we give
a rough estimate.

The Young modulus of the actomyosin gels [9,10] is in
the range Y ∼ 0.1–1 Pa, while the effective viscosity felt by a
micron-sized bead is η ∼ 1 − 10 × ηwater ∼ 10−3–10−2 Pa s.
Using these numbers we obtain that the effective spring
constant is [38] k ∼ 6πaY (where a ∼ 1 μm is the bead
radius), while the effective friction coefficient is γ ∼ 6πaη.
We therefore estimate the following rate: k/γ ∼ 10–1000 s−1.

This should be compared to the timescale of the ac-
tive “bursts,” the events where the accumulated motor-
driven stress is released as a “kick” that actively moves the
bead. From [2] we estimate this timescale to be of order
∼10–100 ms, such that koff ∼ 10–100 s−1. Since the duty
ratio of myosin-II motors is low but depends on the number
of motor heads in the minifilaments, we expect kon to be of
the same order of magnitude as koff. Overall, these active
gels do not seem to be clearly in the strong confinement
limit (koff, kon � k/γ ) where side peaks should be distinctly
observed.

We can also estimate the displacement x0 ≡ F0/k at which
there is a force balance between the motor and the elastic
restoring force. The myosin-II force is F ∼ 1–10 pN, so we
estimate x0 ∼ 0.1–1 μm. We can compare this number to the
maximal mean squared displacement (MSD) observed for the
beads in the experiments, of order

√
MSD ∼ 0.1 − 0.3 μm.

The conclusion is, again, that the conditions of the experi-
ments are marginal with respect to allowing observation of
the side peaks in the VHD.

APPENDIX C: P(x) AND THE LONG-TIME VAN HOVE
DISTRIBUTION IN THE FAST PARTICLE LIMIT

In this section we work in the fast particle limit
γ koff,on/k � 1, where the particle moves quickly between the
peaks of the steady-state distribution P(x), which occur at
positions where the motor force is balanced by the harmonic
potential force. We use an approximation where we com-
pletely neglect the transition time between the peaks and thus

identify each motor state with a unique position of the particle
in space.

Each N motor state M = (M1, M2, . . . , MN ) ∈ {0,±1}N

corresponds to a position x = x0

N
i=1Mi, with x0 = F0/k,

which the particle will reach in that motor state given enough
time. We assume (as is approximately correct in the fast
particle limit) that once the motor state changes, the particle
immediately moves to its corresponding force balance po-
sition. Under this assumption each of the 2N + 1 peaks of
the steady-state particle position distribution are δ functions.
Denote the probability of finding the particle in mx0 by
Pm. Denote by N0,±1 the number of Mi variables equal to
0,± = 1 (the total number of motors is N−1 + N0 + N+1 =
N). Denote the steady-state ratio of time in which a single
motor is on pon = kon/(kon + koff ). Each time a motor turns
on it randomly chooses a direction of ±1, so the probability
to find a motor in the ±1 state is 1

2 pon. The probability
to find a single motor in the off-state is poff = 1 − pon.
Thus the steady-state distribution of (N+1, N−1) is a trinomial
distribution:

P(N+1, N−1) = N!

N+1!N−1!(N − N−1 − N+1)!

×
(

1

2
pon

)N−1+N+1

pN−N−1−N+1

off . (C1)

Therefore the peaks of P(x) are given by

Pj = P

(
N∑

i=1

Mi = | j|
)

=
N∑

k=| j|
P(N+1 = k, N−1 = k − | j|).

(C2)

In the long-time limit, the van Hove distribution is equal
to the convolution of the steady-state position distribution
with itself: P[�x(�t → ∞)] = P(x) ∗ P(x). It has 4N + 1
peaks, which we will denote P̃i for integer −2N � i � 2N ,
corresponding to particle positions x = ix0. They are given by
the discrete convolution

P̃i =
N∑

j=−N

PjPi− j, (C3)

where the Pj are given by Eq. (C2) for −N � j � N and
zero otherwise. We will now show that the long-time van
Hove distribution for a system with N motors is equal to the
steady-state position distribution for a system with 2N motors,
i.e., P̃i(N ) = Pi(2N ).

Proof.

Pi(2N ) = P

(
2N∑

k=1

Mk = i

)

(∗)=
N∑

j=−N

P

(
N∑

k=1

Mk = j

)
P

(
2N∑

k=N+1

Mk = i − j

)

=
N∑

j=−N

PjPi− j = P̃i(N ), (C4)
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FIG. 9. (a)–(d) The results of the theoretical calculation of the
long-time VHD peak ratio ri for i = 0–3 in the fast particle limit
[given by Eq. (C5) used in the definition of ri]. Plots are for motor
number N = 1–10, where the line color denotes the motor number
and varies between dark blue (N = 1) and red (N = 10). Note ri → 1
as pon → 0, and ri < 1 for pon � 0.6 for all shown parameters.

where the equality (*) is due to the independence of the motor
state variables Mi. Therefore

P̃j (N ) = Pj (2N )

=
2N∑

k=| j|

(2N )!

k!(k − | j|)!(2N − 2k + | j|)!

×
(

1

2
pon

)2k−| j|
p2N−2k+| j|

off

= (2N )!

| j|!(2N − | j|)!
(

1

2
pon

)| j|
p2N−| j|

off + O
(
p| j|+2

on

)
.

(C5)

Thus to leading order in small pon, the distance between
consecutive peaks of P[�x(�t → ∞)] in log scale is

� j ≡ log

(
P̃j

P̃j+1

)

≈ log

(
poff

pon

)
+ log

(
j + 1

2N − j

)
. (C6)

For pon → 0, � j ≈ − log(pon). Therefore in this limit the
ratio of consecutive peak height differences r j ≡ � j

� j+1 → 1.
A plot of r j , calculated using Eq. (C5) (Fig. 9), reveals a
stronger result: r j < 1 for all pon < pc

on for a rather large
pc

on. Thus pon needs to be larger than pc
on in order to obtain

r j > 1.
It may be noted that in Fig. 9 that at large pon the ri behave

differently for odd and even i. While not directly relevant for
our main point above, this behavior can be explained by the
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FIG. 10. (a)–(d) The results of the theoretical calculation of the
long-time VHD peak difference �i for i = 0–3 in the fast particle
limit. Plots are for motor number N = 1–10 where the line color
denotes the motor number and varies between dark blue (N = 1)
and red (N = 10). Note that all the �i are continuous and for even i
positive, while for odd i cross zero.

definitions of ri and �i, and Eq. (C5) for the value of P̃j (N ).
Figure 9 shows that for a large enough pon the ri become
negative for all i. For even i, the ri diverge when becoming
negative, while for odd i the ri do not diverge. This happens
because the even �i do not change sign and the odd ones
do, as shown in Fig. 10. Since ri = �i/�i+1, for odd i the
denominator crosses zero while for even i the nominator does.
When the motor duty cycle pon increases, the outer side peaks
height increases since the particle spends more time in the
positions corresponding to more motors being on. If an outer
side peak in the VHD becomes higher than the nearby inner
one, the corresponding �i becomes negative.

APPENDIX D: SIMULATION DETAILS

We performed simulations in which the Langevin equation
of motion Eq. (1) was integrated using the Euler method. The
particle steady-state position distribution and the van Hove
displacement distribution for various lag times were estimated
from the results by calculating a normalized histogram. Peaks
and shoulders were automatically detected using algorithms
that rely on the mathematical definition of peaks and shoul-
ders but also using known features of the distributions our
model produces in order to avoid false positives due to noise.
Example results of the detection algorithm are plotted in
Fig. 1(d).

Additional details about the simulation results are pre-
sented in figures. The results presented for each parameter set
are from simulations with the following properties:

Figures 1(c), 1(d) and 2—Time difference between sam-
ples of the particle position: 0.05, total simulation run time:
106.
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Figures 3, 4(a), and 4(b)—Time difference between sam-
ples of the particle position: 0.1, total simulation run time:
2 × 105.

Figures 4(c) and 4(d)–Time difference between samples
of the particle position: 0.1, total simulation run time:
3 × 106.

Figure 5—Time difference between samples of the particle
position: 0.1, total simulation run time: 105.

Figures 7 and 8—Time difference between samples of the
particle position: 0.1, total simulation run time: (a), (b) 2 ×
106 and (c), (d) 5 × 106.

The simulation step size was 10−4 in all of the simulations.
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