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In this work we extend the Caspar-Klug construction to the archaeal viruses, which in recent years have
captured the attention of many researchers for their ability to thrive in extreme environments. We assume that the
shells of archaeal viruses are composed of hexamers and pentamers—as is true for icosahedral viruses—together
with heptamers, necessary to introduce negative Gauss curvature. Following the original work of Caspar and
Klug, we first construct models capable of reproducing the shape observed in electron microscopy images of
archaeal viruses. Next, using the technique of kirigami, we present a systematic way to formulate archaeal virus
templates from regular hexagonal lattices. Finally, we utilize the presented techniques to build finite element
models of archaeal virus geometries and investigate their shapes as a function of material properties. In particular,
using thin-shell elasticity theory, we describe a buckling transition as a function of a modified Foppl-von Kdrman
number y* and we show how changes in y* may initiate the tail formation in the Acidianus two-tailed archaeal

virus.
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I. INTRODUCTION

In 1962, Caspar and Klug (CK) [1] proposed a classifica-
tion method for viral capsids, the protein shells that surround
the genomes of viruses. Capsids have typical sizes in the range
of 10-100 nm and are composed of hundreds of proteins,
known either as capsid proteins or subunits. In the simplest
case, the subunits are all identical. The CK construction is
shown in Fig. 1. It consists of the cutting and pasting together
of a template, which transforms a hexagonal sheet into a
closed icosahedral shell. The reason that the construction has
to start from a hexagonal lattice is that capsid proteins tend to
crystallize into hexagonal sheets when they self-assemble on
a flat surface.

The CK template is composed of twenty adjacent equi-
lateral triangles of a hexagonal sheet (Fig. 1). The base of
each triangle is a lattice vector A(h, k) = ha; + ka, of the
hexagonal lattice, with {&, k} a pair of positive integers and
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{a;, ay} a pair of basis vectors of the hexagonal lattice. The
icosahedron is obtained by pasting together adjacent exposed
edges of the template and hexamers at the border of a triangle
neatly match with the hexamers of the triangle to which they
will be attached. Examination of the shells of Fig. 1 shows that
there are twelve pentamers at the vertices of the icosahedron.
The construction can be repeated for every pair of integers
h and k. Figure 1 shows the construction of an achiral shell
(T = 4 with {h, k} = {2, 0}) and of a chiral shell (T = 7 with
{h, k} = {2, 1}). The size of an icosahedron is determined by
the length of the base vector A(h, k). It follows from sim-
ple geometry that |A(h, k)|* equals T (h, k) = h?> + k> + hk,
where T represents the capsid 7 number and characterizes the
Caspar-Klug icosahedron.

By varying the size and shape of the template, the CK con-
struction has been generalized to spherocylindrical and coni-
cal capsid shapes [4], encountered with retroviruses. However,
there are viruses whose capsids appear to be beyond the reach
of the CK construction. For example, the tiling of polyoma
virus [5], simian virus 40 [6], and L-A virus [7] capsids
require a different tiling approach as presented by Twarock
[8,9]. A different family of examples belong to the archaeal
viruses, a group of viruses that prey on the Archaea [10],
prokaryotes that resemble more familiar bacteria in size and
shape. However, their metabolism resembles that of plant and
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FIG. 1. Caspar-Klug construction of icosahedral viruses. The
basis vectors a; and a, of a two-dimensional hexagonal lattice are
used to construct a template made of twenty equilateral triangles.
Icosahedral shells can be constructed by folding the templates along
the edges of the equilateral triangles and gluing them together.
Depending on the steps /# and & in the a; and a, directions, achiral
[e.g., T =4 with h =2, k =0 (top)] or chiral [e.g., T =7 with
h =2, k =1 (bottom)] shells can be formed. Figure reprinted from
[2] (copyright © 2015) with permission from Elsevier and composed
using figures obtained from VIPERAD [3].

animal cells. Other properties, such as the structure of their
membranes, appear to be unique to the Archaea. Archaeal
viruses are an equally unusual family of double (ds) or single-
stranded (ss) DNA viruses that infect the Archaea. We will
focus here on a group of Archaeal viruses that are typified
by the Acidianus two-tailed virus (ATV), a spindle-shaped
archaeal virus (Fig. 2) that functions in acidic and hot envi-
ronments [11,12]. The reason that ATVs have morphologies
that cannot be classified according to the standard CK method
is that, exceptionally, their capsids have regions of negative
Gauss curvature.

When the ATV virus assembles—under in vitro
conditions—at lower temperatures the tails are absent.
The tails grow spontaneously if the temperature is increased
above 75°C (Fig. 2) [11]. These extensions, or tails, are
believed to play a role in establishing contact with potential

FIG. 2. ATV conformational change: from the tail-less lemon-
shaped virion (top) to the tailed particle (bottom). Scale bars are
50 nm long. Adapted by permission from Springer Nature [13],
copyright © 2006. Originally adapted from [11].

FIG. 3. Paper models. (a) Basic units: pentamers (orange), hex-
amers (blue), heptamers (green). (b) Tail attached to a partial 7 =
4 CK capsid by a ring of heptamers. Several other paper model
examples are included as Supplemental Material [15].

host cells and it appears that tails are covered by the same
layer of capsid proteins that constitutes the main body of the
capsid.

The fundamental new feature of the ATV capsid in terms
of crystallography is the presence of the sections of negative
Gauss curvature where the two tails are connected to the main
body of the virus. Shells constructed by the CK method have
strictly positive Gauss curvature. For the CK method to apply
to ATV and other archaeal viruses, it has to be generalized.
Developing such a generalization is the first aim of this paper.
A second aim is to examine whether tail assembly can be
understood within the CK approach. To that purpose, we will
build finite-element models of archaeal viruses to study their
buckling instabilities.

II. LATTICE KIRIGAMI FOR CLOSED SHELLS

Our approach is motivated by the three-dimensional struc-
tures that can be generated by cutting templates from
two-dimensional lattices, an art form known as lattice
kirigami[14]. Structures with negative Gauss curvature can
indeed be generated by lattice kirigami but not within the
confines of the CK rules. We specialize our form of lattice
kirigami to hexagonal lattices. The basic construction units
are then hexamers, pentamers, and heptamers [Fig. 3(a)].
Starting from the hexamer units with zero Gauss curvature, the
removal or addition of one triangular subunit produces units
with positive (pentamers) and negative (heptamers) Gauss
curvature, respectively.

Hexamers and pentamers are the standard units of the CK
construction. Inclusion of the saddle-shaped heptamers allows
the construction of shells with negative Gauss curvature.
Figure 3(b) show a paper model example of a T =4 CK
capsid with a tail starting from a fivefold symmetry site where
a pentamer was originally located. Heptamers link the tail
to the body of the shell while pentamers close the end of
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FIG. 4. Construction of an ATV-like geometry starting from a
CK icosahedral shell. In this example we use a 7 = 7 central body
(a), remove a pentamer and its nearest ring of hexamers (b), and
replace them with a fivefold symmetric tail (c). Five heptamers
are inserted at the base of the tail to introduce the negative Gauss
curvature in the transition region from the central icosahedral body.

the tail. In its most simple form (see Fig. 4), one removes
a pentamer plus a ring of five attached hexamers from the
icosahedral shell. Then one inserts a ring of five heptamers to
replace the hexamers and form the neck region. Subsequently,
several fivefold symmetric rings of hexamers can be attached
to the heptamers’ ring to elongate the tail. Finally, a cap of six
pentamers is used to close the end of the tail. Adopting the
convention of assigning a +1 topological charge to pentamers
and a —1 charge to heptamers, the net charge of the tail is
+1, which is the same as that of the original pentamer. More
generally, application of Euler’s formula to a closed surface
of pentamers, hexamers, and heptamers leads to the result
that the net topological charge of the surface must equal 12.
It follows that every additional heptamer must be balanced
by adding an extra pentamer. In the simple case illustrated
in Fig. 4 and discussed above, the five heptamers introduced
in the neck regions are balanced by five additional pentamers
added to the tail cap.

This construction can be repeated for any 7' number of the
central body (e.g., see Fig. 5).

We can extend the same construction principle to noni-
cosahedral bodies (e.g., Fig. 6). For example, starting from
an icosahedral shell, we can rotate one half of the capsid with
respect to an axis passing through a threefold symmetry site
(i.e., the center of one face of the icosahedron) and introduce
a mirror symmetry plane disrupting the icosahedral symmetry
of the central body [Fig. 6(a)]. Further variations containing
twofold symmetric tails are possible [e.g., Figs. 6(b)-6(c)].
In the latter examples, four heptamers are necessary in each
neck region and six pentamers are present in the tails’ caps.
Although differently distributed in the capsid central body
and tails, the total topological charge is still equal to 412 as
expected by Euler’s formula.

FIG. 5. ATV-like geometries with 7' =4 (a) and T = 7 (b) cen-
tral icosahedral bodies. Several additional fivefold hexamer rings can
be added to elongate the tethers’ central sections.

Can one reproduce the shape of the ATV shell by this
method? Increasing the 7 number of the central body in
Fig. 5 without modifying the tails results in a sharper tran-
sition between the central body and the tails, which does not
reproduce the ATV capsid (e.g., see Fig. 2). Instead additional
pentamer-heptamer pairs need to be introduced stepwise in
order to gradually decrease the radius of the tails (Fig. 7).
As more pairs are introduced, they begin to connect and
develop into pentamer-heptamer “scars” along the capsid.
We observed similar pentamer-heptamer scar-like structures
on the surface of an unduloid representing the ATV capsid
[16]. By using five pentamer-heptamer pairs for each step in
the radius change, it is possible for each section to preserve
fivefold symmetry. This leads to a key observation: the capsid
can be approximated by stacking locally icosahedral sec-
tions separated by additional tail material. In the construction
shown in Fig. 7(a), the capsid progresses from a T = 9 body
to a T = 4 intermediate section and finally toa 7' = 1 cap.

It is important to notice that the long pentamer-heptamer
scars in Fig. 7 are a result of how close the 7 numbers of
different sections are. As the size of the capsid grows, larger T’

(a) (b) (c)

FIG. 6. ATV-like geometries with nonicosahedral bodies.
(a) Mirror symmetric capsid with fivefold symmetric tail. (b,c)
Twofold symmetric tethers connected with a single (b) and multiple
(c) rings of hexamers in the central bodies.
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FIG. 7. Gradually changing tail radius with icosahedral (a) or
nonicosahedral (b) central bodies. By using heptamer/pentamer pairs
we can gradually change the radius of the constructed AT V-like
shells. As a result of the change in radius, pentamer/heptamer scars
may develop in the tethers.

numbers are recruited. In these larger 7 numbers, the fivefold
sites are separated by a greater distance. As a result, the
inserted pentamer-heptamer pairs are no longer adjacent to
form a continuous “scar” and additional material is expected
to appear in between each pentamer-heptamer pair.

III. EXTENSION OF THE CASPAR-KLUG
CONSTRUCTION TO ARCHAEAL VIRUSES

Using several examples, in Sec. II we have illustrated
how ATV-like shapes can be constructed using pentamers,
hexamers, and heptamers. In the following we want to for-
mally extend the CK construction to form ATV-like shapes
with icosahedral bodies from a planar hexagonal lattice. We
begin by considering a single connection from the central
icosahedral body to a tail of a certain size (e.g., Fig. 5).
Subsequently we consider tails of varying radius such as the
one presented previously in Fig. 7(a).

We construct the partial icosahedral central body using
the classic CK construction briefly reviewed in Sec. I and
illustrated in Fig. 1. Accordingly, pentamers are placed at
the vertices of the icosahedron identified by the (&, k) pair
on the hexagonal lattice. In order to include the necessary
negative Gauss curvature in the connection region between the
tails and the central icosahedral body, we introduce heptamer
units. Since the capsid is a closed surface, for each heptamer
introduced in the connection region there is a corresponding
additional pentamer so that the net topological charge is pre-
served and equal to +12 as prescribed by Euler formula. (See
also [14] for general kirigami rules on a honeycomb lattice.)

In order to codify our construction and the location of the
heptamer units, we start from the work presented in [4] for
spherocylindrical viruses and define the following vectors (see
Figs. 8, 9, and 10):

A = ma; + nay, (1a)
b; = —a; + 2a,, (1b)
b, = —2a; + a, (1¢)
B = p(mb, + nby). (1d)
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FIG. 8. Templates to construct AT V-like geometries with 7 = 7
icosahedral body and r =1, p=1.5 (top), t =3, p = % (center),
and t =4, p =1 (bottom) tails. The 3D capsid corresponding to
each template is shown on the right. We report the lattice vectors a;
and a, together with the vectors by, b,, A, and B used to determine
the tail # number and length.

The integers m and n represent the steps on the hexago-
nal lattice in the neck region between two close heptamers.
Accordingly the vector A connects two heptamers. As before
(see Sec. I and Fig. 1) a; and a, are the basis vectors of the
hexagonal lattice. The tail grows in the direction identified by
the vector B to a length depending on p, with p > 0 (the tail
cannot have zero length). Accordingly the vector B connects
a heptamer in the transition region to the terminal pentamer at
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FIG. 9. Templates to construct AT V-like geometries with 7 = 4
icosahedral bodies and ¢ = 1 tails. The two templates correspond to
different tail lengths and possible orientations of the tails’ cap with
respect to the icosahedral body (p = 1.5 top, p = 2 bottom). The
lattice vectors a; and a, are shown together with the vectors by, b,,
A, and B used to determine the tail # number and length.

the center of the cap. The vector B is defined based on b; and
b, which are orthogonal to a; and a,, respectively.

Based on the definition of vectors A and B, we list a few
principles governing our extension of the CK construction to
archaeal viruses:

(I) Each tail is fivefold symmetric and can be classified by
(1) an additional 7 number ¢ determined by the steps m and
n necessary to join the sevenfold sites at its base, and (2) a
number p determining the length of the tail.

(II) Given an icosahedral body characterized by & and k
lattice constants, we can build tails with ¢ numbers ¢t = m? +
mn + n? for any combination m < h and n < k, with at least
either m or n strictly less than their respective & or k.

(IIT) Chiral and achiral tails can be generated from either
chiral or achiral bodies. Chiral central bodies lead to a more
complex planar templates, e.g., compare Figs. 8 (chiral) and 9
or 10 (achiral).

In the classic CK construction, a shell is composed of
10(T — 1) 4 12 capsomers. According to our construction the
total number of capsomers composing the AT V-like shell with

FIG. 10. Templates to construct ATV-like geometries with 7 =
9 icosahedral body and t =1 (top) and ¢ = 4 (bottom) tails. For
both f-number tails, we show the template corresponding to two
possible orientations of the cap with respect to the icosahedral
body: (T9-t1-a) p =2, (T9-t1-b) p = 1.5, (T9-t4-a) p =1, and
(T9-t4-b) p = 1. Notice that both capsids (79-t4-a) and (T9-t4-b)
correspond to the same p number and have the same number of
capsomers, although the cap orientation with respect to the central
icosahedral body is different.

tail of fixed radius is
Nepas = 10(T — 1) + 12 +2(10p — 5)1. 2)
Therefore the number of pentamers, hexamers, and

heptamers is

Noent = 22, (3a)
Niex = 10(T —3) +2(10p — 5)t, (3b)
Noept = 10. (e)

Our construction can be seamlessly extended to tails of
varying radius. Each section i of fixed radius will be described
by a set of constants (m;, n;, p;): (m;, n;) will join adjacent
heptamers at the base of the section i and p; will describe the
length of the tail section, from the heptamers at the base of
the section to the position of the terminal pentamer if the tail
would terminate with the current section (see Fig. 11).

If we allow for tails of varying radius, Eq. (2) can be
generalized to

N;

Nepas = 10(T = )+ 1242 (10p; = 5)t;,  (4)

i=1

where N, is the number of tail segments with different radius,
each with 7 number #; and length determined by the vector B;.

In the current algorithm, we have considered shells with the
same tail size and length, but our construction can be easily
extended to shells with tails of different size and length or
shells with one tail only. These extensions can be achieved by
introducing constants m, n, and p that are different for each
tail, and accordingly modifying Egs. (2), (3), and (4).
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FIG. 11. Templates to construct ATV-like geometries with tails
of varying radius. Starting from a 7 = 7 icosahedral body, two tails
of varying radius are shown: (1, =3, p; = %) and (b, =1, pp =2)
tail (left) and (t; = 4, p; = 1) and (r, = 1, p, = 2.5) tail (right). The
vectors A; and A, determine the subsequent tail # numbers while the
vectors B; and B, characterize the tails length.

IV. ELASTICITY THEORY APPLIED TO
ARCHAEAL VIRAL CAPSIDS

We noted in the Introduction that tailed archaea viral
capsids can change their shape by extending one or two tail
groups (see Fig. 2). The extension appears to be driven by the
growth of a central fiber. Can such an extension be understood
within the generalized CK construction? Shape changes of
elastic shells are possible. A spherical shell can transform
into a polyhedral shell under a change of the ratio of the
two-dimensional Young modulus Y and the bending modulus
k., which is known as the buckling transition as described by
Lidmar et al. [17] for spherical capsids. Could a buckling-
type transition be responsible for the tail growth? In order to
answer this question, we applied thin shell elasticity theory to
the models built according to the construction of Sec. III.

Following the work of Lidmar et al. [17] and our previous
work [2], we divide the shell elastic energy IT into bending
I1, and in-plane IT; energies:

=11, + I, (5a)
1'1,,:/ %(2H)2+K0de, (5b)
Q
Ks w (t(C)
m=[ S+ 22 _H\ia.
‘ /92(1 )+ 2( 7 ) (5¢)

where €2 is the shell surface, k. and kg are the bending
and Gauss curvature moduli, H and K are the mean and
Gauss curvatures, k; and u are the two-dimensional (2D)
in-plane stretching and shear moduli, J is the ratio between
deformed and reference area, and C is the right Cauchy-Green
deformation tensor. The split in area-stretching and shearing
deformation in Il was proposed by [18].

The reference configuration for our calculations is the
flat hexagonal lattice and therefore we do not introduce any
intrinsic curvature in the expression of the bending energy.
According to the Gauss-Bonnet theorem, the integral of the
Gauss curvature over a closed surface is constant. Therefore,
in our simulations the term fQ ke K dw in Eq. (5b) integrates

0.7
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FIG. 12. Mean curvature asphericity (M) as a function

of FvK number y* (Y A/k¢) for ATV-like capsids built using 7 = 4,
T =7,and T =9 central bodies.

to a constant value equal to 47k and it does not affect the
final shape attained by the capsid.

We model the capsid deformation according to Kirchhoff-
Love thin shell theory. We minimize the shell energy IT by
discretizing the capsid with nonlocal C' continuous Loop
shell finite elements [19,20] to minimize the bending energy
I, and with linear triangular elements to minimize the in-
plane energy IT.

We initialize our simulations by (1) projecting radially all
the vertices of the shell triangular mesh onto a unit sphere, (2)
computing the average edge length £ of the mesh projected
on the unit sphere, and (3) setting the triangular elements
reference edge length equal to £. This initialization enforces
that all triangular elements forming the elastic shell have the
same flat equilateral triangle as reference configuration from
which the in-plane energy I, is computed.

The energy of the finite element model is minimized using
a quasi-Newton limited memory BFGS solver [21]. A detailed
description of the finite elasticity model and numerical meth-
ods used herein can be found in [2].

We analyze the shell shape as a function of a modified
Foppl-von Kérmén (FvK) number and shell asphericity. The
FvK number characterizes the ratio between shell stretching
and bending stiffness. The shell asphericity instead charac-
terizes the shell shape with respect to a perfect sphere. For
spherical—or almost spherical—shells the Foppl-von Kar-
mén (FvK) number y is defined as Y R?/k., where R is the
average shell radius and Y = 2«,(1 — v) is the 2D Young
modulus, with v being the Poisson ratio. In our calculation
we set v = 0.3. For nonspherical shells for which R is not
well defined, we extend the definition of the FvK number to
y* =Y A/k., where A is the shell current area (A = [, dw).
Analogously, the definition of asphericity where R is well

defined is <<AR'§§> [17], where AR = R — (R) and (-) denotes
the average over the shell surface. In our case, we adopt two
alternative definitions of asphericity based on the mean H and

Jo (H—(H))*do Jo (K—(K))?dw
o and -2 - .

Gauss K curvatures as
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FIG. 13. Gauss curvature asphericity (M) as a function

of FvK number y* (Y A/k¢) for ATV-like capsids built using 7 = 4,
T =7,and T = 9 central bodies.

Starting from the spherical reference configuration, in all
simulations presented here we increase Y from 0.5 to 300 in
300 logarithmic increments while k. was held constant and
equal to 1. Changes in Y corresponded to changes in y* from
~4 to ~3930. We emphasize that the capsid shape changes
presented in the following are only due to changes in y* and
no other parameters were modified in computing subsequent
equilibrium configurations.

We simulated six representative shells that differ in 7
number of the central icosahedral body, # number of the
tails, and tails’ length. In Figures 12—-17 we denote with the
following abbreviations the analyzed shells: 79-r4-¢1 has an
icosahedral T =9 central body and gradually varying tail
with ¢t number 4 and 1 [Fig. 7(a)]; T7-t4, T7-t3, T7-t1 are

151
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- - T4t1/

-
o

Gauss Curvature Asphericity
[6)]
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1000 1500 2000 2500 3000 3500 4000
FvK

_ 2
FIG. 14. Gauss curvature asphericity (M) as a function

of FvK number y* (Y A/k¢) for AT V-like capsids built usinga 7' = 4
central body. Insets illustrate capsid configurations at representative
FvK numbers equal to 230, 2300, and ~3000.
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FIG. 15. Gauss curvature asphericity (M) as a function

of FvK number y* (Y A/k¢) for AT V-like capsids built using 7 = 7
central body. Insets illustrate capsid configuration at representative
FvK numbers equal to ~50, ~500, and ~3500.

built with an icosahedral T = 7 central body and constant
radius tails with # numbers 4, 3, and 1, respectively (Fig. 8);
T4-t1 and T4-t1¢ have an icosahedral 7 = 4 central body
and constant radius ¢ = 1 tails with different lengths: p = 1.5
in T4-t1 and p =2 in T4-t1 ¢ (Fig. 9).

Shortly after y* begins to increase from the initial config-
uration, the shells’ asphericity undergoes a sharp transition
(Figs. 12 and 13). This sharp increase in both Gauss and mean
curvature based asphericities correspond to the tail growth
from the central body (Figs. 14, 15, and 16). As y* increases,
the tails continue to extend and the shell shapes encoded
in the flat regular hexagonal templates are expressed. These
findings are consistent in all the simulations carried out with
the representative shells listed above. Figure 17 shows the

—_
o
T

Gauss Curvature Asphericity
[6)]

0 500

1000 1500 2000 2500 3000 3500 4000
FvK

’ _ 2
FIG. 16. Gauss curvature asphericity ( M) as a function

of FvK number y* (Y A/k¢) for AT V-like capsids built using 7 = 9
central body. Insets illustrate capsid configuration at representative
FvK numbers equal to 250, 2500, and ~3500.
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FIG. 17. Shape evolution of ATV-like capsids built with 7T =
4 (left), T =7 (center), and T =9 (right) central bodies. These
front views correspond to the lateral views reported in the insets
of Figs. 14, 15, and 16, respectively, and illustrate the capsid con-
figurations at representative FvK numbers equal to ~50 (=30 for
T4-11¢),~500 (~300 for T4-¢1 £), and ~3500 (~3000 for T4-¢1 £).
The shells are colored by Gauss curvature.

shell transformation along the tail axis. At low y* (top row),
the template pattern from which the shells are built, and that
encodes the shells’ final shapes, is apparent. As y* increases,
the Gauss curvature becomes negative in the neck regions and
increases at the tail ends. See the Supplemental Material [15]
for videos of tails’ growth as a function of increase in FvK
number y* for the cases presented in Figs. 14 to 17.

We notice that the results presented here have been ob-
tained without enforcing a constant area constraint. However,
the same calculations carried out imposing an area constraint
lead to similar results.

V. CONCLUSION

In this work we have proposed an algorithm to construct
closed shells with positive and negative Gauss curvature as
the ATV capsid. Our construction algorithm is an extension
of the classic Caspar-Klug construction and is based only
on three basic units: pentamers, hexamers (as in the Caspar-
Klug construction with only positive Gauss curvature), and
heptamers (necessary to introduce negative Gauss curvature).

As in the Caspar-Klug construction, the topology of the ATV-
like shell is completely defined by the number of steps along
predefined directions over a regular hexagonal lattice that lead
to the location of the five- and sevenfold type defects [e.g., see
Eq. (1)]. Therefore the topology of the shell is easily codified
by a list of steps and directions, and different prototypes can
be easily classified and created.

Motivated by the buckling transition observed in spherical
viruses, we explored whether such a transition existed for the
ATV-like shells and whether it could explain tail formation.
We showed that the buckling transition indeed can promote
tail growth provided the negative Gauss curvature sections are
“programmed in” by a suitable distribution of heptamers (see
Fig. 14-16). The tail growth during the buckling transition is
driven by a change in material properties, i.e., the modified
Foppl-von Karman (FvK) number y*. In other words, it
requires that the virus regulates somehow the elastic moduli
of the capsid. Is this possible? In fact, there are examples of
viruses that modulate their own material properties leading
to a buckling transition. A well known example is the HK97
virus [22] where a change in the bending modulus following a
bond scission reaction produces buckling [23]. Whether this
happens as well for ATV would have to be demonstrated.
A separate way of testing the theory could be based on a
micromechanical study that measured the resistance of the
capsid against nano-indentation by an atomic-force micro-
scope (AFM) [24], since the elastic response of a shell is quite
different depending on whether the shell is in a liquid or a
solid state. If tail growth is not due to a form of buckling, then
the capsid would have to allow for a form of flow of capsid
proteins during tail growth. This would require the capsid
proteins to be in a fluid or smectic liquid-crystalline state [25]
(one would need to understand how a fluid or liquid crystalline
shell can withstand the large osmotic pressure that is known to
be present inside ds DNA phage viruses in this explanation).

In summary, a shell with positive and negative Gauss
curvature may be encoded in a regular hexagonal lattice by
placing five- and sevenfold type defects according to a precise
construction. Subsequently, by increasing uniformly the ratio
between in-plane Young modulus and bending modulus, the
shape initially encoded in the flat template can be expressed
and, as part of the morphing process, tethers can extend from
the central body.
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