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Alternation of phases of regular and irregular dynamics in protein folding
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The regularity of the dynamics in different phases of protein folding is investigated for a set of proteins which
undergo a cooperative, two-state folding transition. To determine the degree of regularity of the dynamics, the
fractal dimension of probability fluxes is calculated on the basis of simulated folding trajectories. It has been
found that the phases of regular and irregular dynamics alternate as follows. In the initial (collapse) phase of
folding, the dynamics are essentially regular. Then, as the protein comes to the basin of semicompact states that
precedes the transition state, the dynamics become irregular. At the transition state, the dynamics are regularized
again but become less regular when the nativelike states are explored. Depending on the specific conditions
at which the protein folding was considered, some phases of the dynamics could not be well resolved, but no
significant deviation from this general picture has been observed. The regularization of the dynamics at the
transition state is discussed in relation to the recent studies of the Hamiltonian dynamics of small clusters, where
both regular and chaotic dynamics were observed depending on the flatness of the energy surface at the transition
state.
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I. INTRODUCTION

Dynamics of protein folding are inherently very complex.
In the course of folding, a protein generally follows many
different routes and has to overcome free energy barriers
of different heights. The overall sequence of folding events
is well known [1–6]. In the simplest case of a cooperative,
two-state folding transition, the protein first collapses to one
of semicompact states, which form a basin on the free energy
surface (FES), dwells in this basin and, then, finds a way
to the native state by overcoming a free energy barrier that
separates the semicompact states from the nativelike ones.
At the same time, little is known about how the character of
folding dynamics changes during the protein passage through
these phases of folding. For folding of an α-helical hairpin
[7], it has been found that the folding flow streamlines are
regular in the initial phase of folding, fluctuate in the basin of
semicompact states, and become regular again as the native
state is approached. On the other hand, recent studies of
folding of SH3 domain [8], beta3s miniprotein [9], and Trp-
cage miniprotein [10] suggested that on the global scale, i.e.,
in the overall transition from the unfolded to the native state,
the folding flows become less regular as the protein folds. The
dynamics at the transition state are of particular interest in this
respect because in a series of related studies of Hamiltonian
dynamics of small atomic and molecular clusters [11–21] it
has also been found that depending on the steepness of the
saddle, the dynamics of transitions through the saddle can
either be more regular (flat saddles) [11–20] or more chaotic
(sharper saddles) [12,13,20,21].

*chekmarev@itp.nsc.ru

A key element in the dynamics of any reacting system is
overcoming the transition state barrier, which determines the
rate of the reaction. In clusters, at least, in small ones, the
transition state is represented by a saddle on the potential en-
ergy surface that separates one conformation (reactant) from
another (product). In this case, the use of the Hamiltonian
dynamics is appropriate, with a number of methods available
to quantify the degree of the regularity of the dynamics, such
as the Lyapunov exponents, local Kolmogorov entropy, and
invariants of motion [11–23]. In protein folding, the protein
states are conventionally projected onto a reduced space of
collective variables [1–6] to form the FES, which, in contrast
to the potential energy surface governing the cluster dynamics,
has a statistical nature. In particular, the transition state is then
represented by a free energy barrier which results from the
interplay between the potential energy, directing the system
toward the native state, and entropy, leading it in the opposite
direction, i.e., toward a variety of less compact conformations.
According to the statistical nature of the FES, it seems ap-
propriate to use a statistical description of the protein folding
dynamics as well. In particular, the probability fluxes of
transitions in a reduced conformational space of the protein
can be employed for this purpose [7,24–27]. Given a flux
distribution, the regularity of fluxes can be evaluated by calcu-
lating the fractal dimension of the fluxes [8–10]. Specifically,
if the fluxes are mostly regular, the fractal dimension should
be close to the Euclidean dimension of the flow field cross sec-
tion, and if the fluxes are sufficiently irregular, the fractal di-
mension should be much less than that Euclidean dimension.

In order to determine where the protein folding dynamics
are regular and where they are irregular, we study system-
atically how the probability fluxes change in the course of
protein folding and calculate their fractal dimension. Overall,
five different proteins which undergo a cooperative, two-state
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folding transition have been considered, ranging in represen-
tation from coarse-grained to all-atom models with implicit
and explicit solvents (a model α-helical protein, β hairpin, and
a mutant of villin headpiece subdomain in the main text,
and Trp-cage miniprotein and ubiquitin in the Supplemental
Material [28]). It has been found that, in an ideal case, the
phases of regular and irregular dynamics alternate as follows.
In the initial (collapse) phase of folding, the probability fluxes,
and thus the dynamics, are essentially regular. Then, as the
protein comes to the basin of semicompact states that precedes
the transition state, the fluxes become irregular, but at the
transition state they are regularized again. After the transition
state, when the basin of nativelike states is explored, the
fluxes become less regular and, finally, as the native state
is approached, the fluxes are regularized. Depending on the
specific conditions at which the protein folding was consid-
ered, some phases of the dynamics could not be well resolved,
but no significant deviation from this ideal picture has been
observed.

The paper is organized as follows. Section II describes the
study of a model protein: the system and simulation method
(Sec. II A), collective variables and free energy surface
(Sec. II B), the calculation of probability fluxes (Sec. II C),
and the picture of folding and fractal dimension of probability
fluxes (Sec. II D). Section III presents the results for all-atom
protein models: β hairpin (Sec. III A) and a mutant of the
35-residue villin headpiece subdomain (Sec. III B). Section IV
discusses the relation between protein and cluster dynamics
and contains some concluding remarks.

II. MODEL PROTEIN

A. System and simulation method

To perform a detailed study of the evolution of proba-
bility fluxes, a model protein was constructed, with which
all folding phases of interest were well expressed and sepa-
rated. Specifically, a 35-residue villin headpiece subdomain
(1wy4.pdb [29]), whose native state consists of three α he-
lices, was used for this purpose. To have converged results at a
reasonable computation cost, a coarse-grained representation
of the protein in the framework of a Cα model was employed.
Two Cα beads were considered to be in native contact if
they were not nearest neighbors along the protein chain and
had the interbead distance not longer than dcut = 7.8 Å. This
value of dcut was sufficient for the correct formation of the
native structure of the protein, i.e., the α helices and their
mutual disposition. To govern the protein dynamics, a Gō-like
potential [30] was used, which accounted for the rigidity of
the backbone and the contributions of native and non-native
contacts in the form of the Lennard-Jones potential [31]. The
parametrization was the same as in that work [31] except
for the above mentioned value of dcut. The simulations were
performed with a constant-temperature molecular dynamics
(MD) based on the coupled set of Langevin equations [32].
The time step �t = 0.0125τ and the friction constant γ =
3m/τ were employed, where τ is the characteristic time.
At the length scale l = 7.8 Å and the attractive energy ε =
2.2 kcal/mol, τ = (Ml2/ε)1/2 ≈ 2.7 ps, where M = 110 Da
is the average mass of the residue.

Folding trajectories were initiated in an unfolded state of
the protein and terminated upon reaching the native state,
i.e., we considered the case of “the first-passage folding,”
which is expected to mimic physiological conditions in that
the native state is stable [9]. More specifically, the initial states
were such that the α helices were partially formed but the
contacts between the helices were absent. The native state
was considered to be reached when the root-mean-square-
deviation (RMSD) from the native structure (σnat) was 2.5 Å
or less. To have the FES with the transition state that clearly
separates catchment basins for semicompact and nativelike
conformations, the simulations were performed at a temper-
ature as low as T = 0.05 in units of the attractive energy
(with the Boltzmann constant set to unity). In total, 50 000
folding trajectories have been run. At the given temperature,
the folding kinetics were close to two-state kinetics [28].

B. Collective variables and free energy surface

In contrast to the previous works [8–10], where the fractal
dimension of probability fluxes was calculated in a three-
dimensional space of collective variables, we consider the
fluxes in a two-dimensional space of variables. In this case,
the flow streamlines can be determined and superimposed on
the FES, which makes the process of folding more representa-
tive. The choice of two collective variables is not straightfor-
ward because the reduction of a multidimensional conforma-
tional space with, e.g., a principal component analysis (PCA)
method [33] generally does not offer two modes that would be
well separated from the others and covered a dominant frac-
tion of the data variance. This is characteristic of folding of
this and other proteins we study [28]. Therefore, it was found
reasonable to characterize the initial conformational space
by two traditional collective variables. Since the subsequent
analysis required the probability fluxes to be determined in
orthogonal space, the initial valuables needed to be converted
to orthogonal ones. Accordingly, the initial variables should
have to be of the same dimension. Among possible pairs
of such variables, the most representative are two pairs: the
number of the total and the native contacts, and the radius
of gyration and the RMSD from the native state. These pairs
are similar in that the first variable in each pair determines
how the protein compacts and the second one shows how the
protein approaches the native state. Although the number of
native contacts could possibly be more informative than the
RMSD from the native state [34] (see the discussion of this
issue in Sec. III B), the second pair of variables was chosen
to represent the initial conformation space of the protein, i.e.,
the radius of gyration (Rg) and the RMSD from the native state
(σnat), mostly because these variables are not discrete, which
allowed us to use a fine, adjusted grid for accurate calculation
of probability flows.

Figure 1 shows the FES as a function of σnat and
Rg. The free energy was calculated as F (σnat, Rg) =
−T ln P(σnat, Rg), where P(σnat, Rg) is the probability to find
the system at the point (σnat, Rg). We note that this ther-
modynamic relation is of limited application in the case of
first-passage simulations [35] because detailed balance does
not hold [36] (see also Refs. [37,38] for a discussion of related
questions). The FES thus determined is not the true FES
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FIG. 1. Free energy surface for the model protein as a function
of the RMSD from the native states (σnat) and the radius of gyration
(Rg), both measured in angstroms. Labels U and N indicate, respec-
tively, the unfolded states, where folding trajectories were initiated,
and the native state, where they were terminated.

but rather is a means to represent the probability distribution
P(σnat, Rg) in a way typical of protein folding studies. It is
seen that the FES contains two basins separated by a well
expressed free energy barrier; one basin is related to partially
folded (semicompact) states of the protein (larger values of
σnat), and the other to nativelike states (smaller values of σnat).
To proceed further, i.e., to calculate the probability fluxes
and analyze them, the space of the variables σnat and Rg,
which are not independent, was transformed into the space
of orthogonal variables g = (g1, g2) with the PCA method.
The corresponding F (g1, g2) surface is shown in Fig. 2(a). It
retains all characteristic features of the F (σnat, Rg) surface.
Since the PCA is a linear transformation, the variables g1

and g2 are measured in the same units as the initial variables,
specifically, in angstroms.

C. Probability fluxes

To determine the probability fluxes in the g space, the hy-
drodynamic description of the folding reaction was used [7].
The g1 component of the flux at a point g was determined as

jg1 (g) =
⎡
⎣ g1

′′−g1
′>0∑

g′,g′′(g⊂g∗ )

n(g′′, g′)

−
g1

′′−g1
′<0∑

g′,g′′(g⊂g∗ )

n(g′′, g′)

⎤
⎦/

(Nt̄f�g2), (1)

where N is the number of folding trajectories, t̄f is the
mean first-passage time (MFPT), n(g′′, g′) is the number of
transitions from state g′ to g′′, and g ⊂ g∗ is a symbolic
designation of the condition that the transitions included in
the sum have the straight line connecting points g′ to g′′ that
crosses the line g1 = const within the segment of the length
of �g2 centered at the point g. The g2 component of j(g)
was determined in a similar way, except that the transitions
crossing the line g2 = const within the segment of the length
of �g1 were selected. To avoid nonphysical conformations
at interpolation between two neighboring structures (points

FIG. 2. (a) Free energy surface for the model protein as a func-
tion of the PCA variables g1 and g2. The black lines depict the
streamlines of the folding flow corresponding to 0.001, 0.1, 0.3,
0.5, 0.7, 0.9, and 0.999 fractions of the total flow (from the lower
to the upper line). The calculations are based on 5 × 103 folding
trajectories. (b) Variation of the fractal dimension D with g1. The
triangles present the simulation results after averaging over five
neighboring points along g1, and the corresponding solid lines are
to guide the eye. The labels and lines of different color correspond to
the number folding trajectories indicated in the inset. The blue bars at
the g1 axis mark approximate boundaries of the characteristic phases
of folding, which are indexed from 1 to 5: an almost uniform flow
(1), a basin of semicompact states (2), the transition state (3), a basin
of nativelike states (4), and the native state (5).

g′ and g′′), the discretization of the (g1, g2) space should
match the difference between the structures. In the present
case, the average RMSD between neighboring structures
(σnbr) was equal to 0.035 Å, and the calculations were per-
formed on a grid with �g1 = �g2 = 0.035 Å. The knowledge
of the j(g) makes it possible to determine the streamlines
of folding flows, which are tangent to the local directions of
j(g). Each streamline corresponds to a constant value of the
stream function 	(g1, g2) = ∫ y=g2

y=0 jg1 (g1, y)dy. Two stream-
lines with 	(g1, g2) = C1 and 	(g1, g2) = C2, where C1 and
C2 are constant such that C2 > C1, create a stream tube which
contains a fraction (C2 − C1)/G of the total flow G.

D. Picture of folding and fractal dimension of probability fluxes

The calculated folding flow streamlines are shown in
Fig. 2(a) as the lines superimposed on the FES. The stream-

022412-3



SERGEI F. CHEKMAREV PHYSICAL REVIEW E 99, 022412 (2019)

lines are in agreement with those for the previously studied
α-helical hairpin [7] in that they are regular in the initial
and termination phases of folding. A new essential feature
of Fig. 2(a) is that the streamlines are regularized when
the system crosses the transition state, similar to what was
previously observed for the Hamiltonian dynamics of clusters
of a few atoms [11–20] (see Sec. IV for a discussion of this). It
should be noted that the regularity of the fluxes determined by
Eq. (1) depends on the number of folding trajectories on the
basis of which the fluxes are calculated, i.e., as the number
of folding trajectories N increases, random fluctuations of the
fluxes coming from different trajectories cancel each other
to make flux distributions more regular. The same is for
the flow streamlines. However, such a dependence of fluxes
and streamlines on the number of trajectories affects only
the fluctuations they are subject to but not their behavior in
average [28].

To gain a closer insight into the folding dynamics, we con-
sider the spatial distribution of probability fluxes. Since the
total flow is generally directed along the g1 axis, which plays
a role of the overall reaction coordinate, the g1 component
of the fluxes, jg1 (g), is of most relevance here. To characterize
the change of the probability fluxes along g1, we introduce the
function G(g1, L), which represents the average ratio of
the probability flow through a segment of the g2 axis of
the length L to the average value of probability fluxes within
this segment. Specifically, G(g1, L) was defined as G(g1, L) =
{∑i=M

i=1 [Jg1,i(g1, L)/ j̄g1 (g1, L)]2/M}1/2, where Jg1,i(g1, L) is
the flow through the ith segment of length L, M is the number
of the segments covering the cross section of the flow field
at the given g1, and j̄g1 (g1, L) = [

∑k=L
k=1 j2

g1,k
(g1)/L]1/2 is the

average value of the flux within the current segment of length
L (the summation index k denotes the current point of the grid
along the g2 axis). The length of the segments L is measured in
the units of the number of the elementary segments. Although
the results do not depend significantly on the maximum value
of L, it was chosen to be not larger than 5 segments, as
a compromise between the length of the segments and the
convergence of the results (a larger value of L would lead to a
smaller number of segments M, and thus to poorer statistics).
Figure 3 shows the calculated values of G(g1, L) for the
characteristic regions of the FES. The best fit of the data to
the equation G(g1, L) ∼ LD(g1 ) reveals that in all cases the
flow distributions are self-similar with respect to the length of
coarse-graining L. Since the exponent D(g1) is mostly smaller
than unity, which is characteristic of a uniform flow, it follows
that the distributions of the probability fluxes have a fractal
nature [39].

Figure 2(b) presents a detailed variation of the fractal
dimension D with g1. There are shown the results of
calculation of D on the basis of several sets of folding
trajectories increasing in number (N) from 5 × 103 to
5 × 104. The variations of D with g1 for different N are
similar, except that the convergence of the results is not
uniform, i.e., the smaller the fractal dimension, the larger
the number of trajectories required to reach convergence.
Figure 4 shows the standard deviation of the g1 component of
the fluxes along the g1 axis that is reduced by N and by N1/2,
panels (a) and (b), respectively. The standard deviation was

FIG. 3. G(g1, L) function for the model protein in the character-
istic regions of the FES: the collapse phase (g1 = 6.0), semicompact
states (g1 = 11.0), the transition state (g1 = 13.0), nativelike states
(g1 = 15.3), and the approach to the native state (g1 = 18.0). Labels
correspond to the calculated values of G(g1, L), and the lines show
the best fit of the data to the equation G(g1, L) ∼ LD(g1 ). The calcu-
lations are based on 5 × 103 folding trajectories; cf. Fig. 2(b).

calculated as σ (g1) = {∫ [ jg1 (g1, g2) − ¯jg1 (g1)]2dg2/A(g1)}1/2,
where ¯jg1 (g1) = ∫

jg1 (g1, g2)dg2/A(g1) is the current average
value of jg1 and A(g1) is the current cross section of the
flow field. Please note that, in the protein collapse region
(phase 1), σ changes along g1 axis not because the fluxes
are irregular in this region but because the streamlines are
not parallel to the g1 axis due to a ballistic shift in the g2

direction [see Fig. 2(a)]. Figure 4 reveals that the standard
deviation of the fluxes, and thus the fluxes themselves, scales
linearly with N in the protein collapse region, which indicates
that the motion is regular here. In contrast, in the basin of
nativelike state (centered at g1 ≈ 16) it scales approximately
as ∼N1/2, which indicates that the motion is mostly random
(diffusivelike). The present character of convergence of the
results with the number of folding trajectories reinforces
the conclusion that can be drawn from the comparison of
the regularity of folding flow streamlines and the variation
of the fractal dimension (Fig. 2), i.e., that the degree of
fractality of probability fluxes is coordinated with the degree
of regularity of the fluxes so that the higher the regularity
of the fluxes, the higher the fractal dimension. Figure 2(b)
thus suggests that, in the initial phase of folding (phase 1),
where the fractal dimension is close to unity, the probability
fluxes are essentially uniform and hence the dynamics of
protein collapse are regular. As the protein comes to the basin
of semicompact states (2), the fractal dimension decreases,
indicating that the dynamics become irregular. However,
as the transition state is approached (3), the dynamics are
regularized again. Further, in the basin of nativelike states (4),
irregularity of the flows increases until the protein finds a way
to the native state (5) and proceeds in a more regular manner.

III. ALL-ATOM PROTEIN MODELS

More realistic, all-atom simulations for a 12-residue β-
hairpin protein [40] and the Nle/Nle double mutant of the
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FIG. 4. Standard deviation of the g1 component of the fluxes
along the g1 axis: (a) reduced by N and (b) reduced by N1/2, where
N is the number of folding trajectories. The blue bars at the g1 axis
mark approximate boundaries of the characteristic phases of folding:
an almost uniform flow (1), a basin of semicompact states (2), the
transition state (3), a basin of nativelike states (4), and the native
state (5).

35-residue villin headpiece subdomain (HP-35 NleNle) [41]
show a similar alternation of phases of regular and irregular
dynamics (Figs. 5 and 6, respectively), although some phases
of the dynamics are poorly resolved. The reason is twofold:
(i) a restricted convergence of the simulation results due to a
limited number of folding trajectories and (ii) a delocalization
of the sources of folding flows due to a diversity of the initial
(unfolded) states of the protein [28]. In both the proteins,
the PCA reduction of the conformational space in the form
of native bond distances did not yield two well-separated
largest modes [28]. Therefore, similar to the model protein,
the (σnat, Rg) space was used to introduce the (g1, g2) space
of PCA variables (here and below, σnat and Rg are calculated
for Cα atoms) [28].

A. β hairpin

Folding of the β hairpin (KTWNPATGKWTG; 2evq.pdb)
[40] was simulated with the CHARMM program [42]. All heavy
atoms and the hydrogen atoms bound to nitrogen or oxygen
atoms were considered explicitly; PARAM19 force field [43]

FIG. 5. (a) Free energy surface for β hairpin as a function of the
PCA variables g1 and g2. The black lines depict the folding flow
streamlines corresponding to the 0.001, 0.1, 0.3, 0.5, 0.7, 0.9, and
0.999 fractions of the total flow (from the lower to the upper line).
(b) Variation of the fractal dimension D with g1. The triangles present
the simulation results after running averaging over three points, and
the corresponding solid lines are to guide the eye. The solid triangles
are for the region where the flow is larger by 70% of the total flow
(Supplemental Material Fig. S10 [28]). The blue bars at the g1 axis
mark approximate boundaries of the characteristic phases of folding,
which are indexed from 1 to 4: a collapse phase (1), a basin of
semicompact states (2), the transition state (3), and the native state
basin (4).

and a default cutoff of 7.5 Å for the nonbonding interactions
were used. To account for the effects of aqueous solvent, a
solvent-accessible surface-area (SASA) approximation [44]
was employed, which has proved to be successful for β-sheet
proteins. The temperature was controlled using the Berendsen
thermostat with a coupling constant of 5 ps. The SHAKE
algorithm [45] was applied to fix the length of the covalent
bonds involving hydrogen atoms, which allowed the integra-
tion time step of 2 fs. The MD trajectories were initiated in
unfolded states of the protein and terminated upon reaching
the native state. The unfolded states were prepared using the
standard CHARMM protocol [42]; i.e., an extended confor-
mation of the protein was first minimized and then heated and
equilibrated at the temperature of interest (for 5 × 103 time
steps). The native state was considered to be reached as the
Cα-RMSD from the native state σnat was <1 Å. One hundred
folding trajectories were generated at T = 330 K. Aiming at
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FIG. 6. (a) Free energy surface for HP-35 NleNle as a function
of the PCA variables g1 and g2. The black lines show the folding flow
streamlines with the 0.001, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.999 fractions
of the total flow (from the lower to the upper line). (b) Variation of
the fractal dimension D with g1. The triangles show the simulation
results (averaged as in Fig. 5), and the corresponding solid lines are
to guide the eye. The solid triangles are for the region where the flow
is larger by 70% of the total flow (Supplemental Material Fig. S17
[28]). The blue bars at the g1 axis mark approximate boundaries of
the characteristic phases of folding, which are indexed from 1 to 6:
a collapse phase (1), a part of the basin of semicompact states that
includes the sub-basin A (2), the transition state between sub-basins
A and B (3), the sub-basin B (4), the transition to the native state (5),
and the native state (6).

a better resolution of fluxes in the transition state region, the
atomic coordinates (“frames”) were saved every 1 ps. Since
the average values of the Cα-RMSD between the neighboring
structures (σnbr) was relatively large (≈0.86 Å), a rather rough
discretization of the (g1, g2) space was chosen (�g1 ≈ 0.2 Å
and �g2 ≈ 0.1 Å).

Figure 5 presents the results. The general picture of folding
[Fig. 5(a)] is similar to those for the equilibrium folding of
short β hairpins [46–48], except that the basin of nativelike
states is too small due to termination of folding trajectories
in the native state. The variation of the fractal dimension
with the reaction coordinate g1 [Fig. 5(b)] shows that the
dynamics becomes less regular as the system comes to
the basin of semicompact states (phase 2) but is regularized
at the transition state (phase 3).

B. HP-35 NleNle

The calculations were performed on the basis of the MD
trajectories for folding of the HP-35 NleNle in explicit solvent
[41]. The 395 μs equilibrium trajectory at 370 K was used
to extract 74 first-passage trajectories. The points that are
most distant from the native state, with σnat > 13 Å, were
taken to represent the unfolded states, and the native state
was determined as the first point in the current segment of
the equilibrium trajectory where the condition σnat < 1 Å was
satisfied. With the frames saved every 200 ps, σnbr was ≈
2.36 Å, so that a rougher (g1, g2) grid, with �g1 ≈ 0.3 Å and
�g2 ≈ 0.15 Å, was employed. It may be noted that due to
subdiffusivity of folding dynamics [49], σnbr increases with
the time interval between the frames much slower than the
interval itself [28].

Figure 6 shows that, similar to the two previous proteins,
the dynamics are irregular in the basin of semicompact states
(phase 2) but becomes more regular at the transition to the
native state (5). It is noteworthy that the transition state be-
tween sub-basins A and B (phase 3) also reveals an enhanced
regularity of the dynamics.

As has been indicated, a poorer resolution of some pro-
tein states and phases of folding in the present all-atom
simulations, as compared to the coarse-grained simulations
for the model protein, can be a consequence of the limited
number of folding trajectories. However, it cannot be ruled
out that an inappropriate choice of initial collective variables
to characterize the conformational space of the protein, i.e.,
the RMSD from the native state and radius of gyration we
used, is the reason. It is thus of interest to see what is obtained
with the other possible pair of initial collective variables
(Sec. II B), which are the numbers of native and total contacts,
or, what is the same, the numbers of native and nonnative
contacts, with the latter determined as the difference between
the total number of contacts and that of native contacts [28].
After transition to the orthogonal (PCA) variables, the results
have been found very similar to those in the present case.
In particular, in agreement with Fig. 6(a), two sub-basins
separated by relatively low transition state are observed in
the FES [28]. Also, in agreement with Fig. 6(b), the fractal
index in the transition state region and in the vicinity of the
native state is found to be larger than in the sub-basins, i.e.,
the dynamics is regularized at the transition state and when
the protein approaches the native state [28].

IV. CONCLUDING DISCUSSION

In order to determine the degree of regularity of dynam-
ics in different phases of protein folding, the dimension of
probability fluxes was calculated. The fluxes were found self-
similar and had a fractal dimension that varied along the
reaction coordinate. Several proteins which undergo a coop-
erative, two-state folding transition have been studied, i.e., a
model helical protein, β hairpin, and HP-35 NleNle (the main
text), and Trp-cage miniprotein and ubiquitin [28]. It has been
found that, in an ideal case, the phases of regular and irregular
dynamics alternate as follows. In the initial (collapse) phase
of folding, the probability fluxes, and thus the dynamics, are
essentially regular. Then, as the protein comes to the basin
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of semicompact states that precedes the transition state, the
fluxes become irregular, but at the transition state they are
regularized again. After the transition state, in the basin for na-
tivelike states, irregularity of the fluxes increases, and finally,
as the native-state is approached, the fluxes become regular.
Depending on the specific conditions at which the protein
folding was considered, some phases of the folding dynamics
could not be well resolved, but no significant deviation from
this ideal picture has been observed.

As indicated in the Introduction, the regularization of
system dynamics at the transition state has previously been
observed in the studies of Lennard-Jones and Morse clusters
of a few atoms [11–21] (the microcanonical ensembles of
the trajectories on the potential energy surfaces were inves-
tigated). At the same time, the subsequent studies of small
water clusters, described by a specific H2O potential [50],
have shown that the dynamics at the transition state can be
less regular than in the preceding basin [20,21]. This has
confirmed the anticipation that the regularity of dynamics
depends on the transition state flatness [12,13], i.e., at flat
transition states, as for the atomic clusters, the dynamics
are mostly regular, and at sharp transition states, as for the
water clusters, they are irregular, because the system has no
sufficient time to regularize the dynamics [13,20]. To measure
the degree of irregularity of the dynamics, the local Lyapunov
exponents and Kolmogorov entropy were employed. Accord-
ingly, the irregular motion was interpreted as chaotic dynam-
ics in the conventional definition [39], i.e., as a motion highly
sensitive to the initial conditions. For the present statistical
characterization of dynamics, the existence of such a direct
connection between the fractality of the probability fluxes
and the chaoticity of the dynamics remains an open question,
although it cannot be ruled out that such a connection exists.
One encouraging example is the Kaplan-Yorke conjecture, in
which the fractal dimension of the attractor of a dynamical
system is determined in terms of the Lyapunov exponents
[51], particularly, a heuristic derivation of such a relation [52].
However, for the time being, in order to consider the observed
fractality of the probability fluxes to be a consequence of
chaotic dynamics, we can only rely on arguments of general
character, such that the protein folding dynamics are inher-
ently chaotic [8,23,53–57], i.e., due to the sensitivity to initial
conditions, the protein motion becomes unpredictable on large
time scales [53,54,56], and it is accompanied by the formation
of fractal [8] and chaotic [57] attractors. A more specific,
though limited, argument is that the fractal dimension is well
correlated with the character of convergence of the probability
fluxes, i.e., the closer the process of convergence to a random
process, the lower the fractal dimension (Sec. II D), which
indicates that the fractal nature of the probability fluxes is not
a result of complex but regular motion.

In order to see whether a similar connection between the
dynamics and the flatness of the transition states, which was
observed in the cluster studies [11–21], is characteristic of
protein folding, the free energy profiles along the g1 axis
were calculated (Fig. 7). Comparison with the corresponding
Figs. 2, 5, and 6 shows that the intermediate transition states
occurring in the model protein and HP-35 NleNle, where the
dynamics are more regular than in the preceding basins, are
relatively flat. At the same time, at approaching the transition

FIG. 7. Free energy profiles along g1. The blue line is for the
model protein, black line is for β hairpin, and red line is for HP-35
NleNle. The segments of the profiles shown in the thick lines indicate
the regions of the FESs that correspond to either the transition states,
as the inner segments of the curves for the model protein and HP-
35 NleNle, or to the approach to the native states, as the terminal
segments of the curves (cf. Figs. 2, 5, and 6).

state preceding the native state, where the dynamics are more
regular as well, the free energy rises steeply in each case
(although the transition state itself is not properly resolved
because, due to the termination of folding trajectories in the
native state, the native state basin is too small and shallow).
Thus, in contrast to the clusters, the present results suggest
that the protein folding dynamics are always regularized as
the protein approaches the transition state, irrespective of
the degree of flatness of the underlying energy surface. The
reasons why the protein dynamics we observed here differ
from the cluster dynamics may range from the difference in
the approaches (the Langevin versus Hamiltonian dynamics,
the statistical folding fluxes versus phase-space cluster tra-
jectories, etc.) to a simple possibility that a protein which
is characterized by irregular dynamics at the transition state
has not occurred (this, however, seems unlikely, taking into
account how the considered proteins varied in structure and
mechanism of folding). To resolve this issue, a systematic
study of the dynamics, preferably of the same system, at the
surfaces of varying steepness is probably required. In this
context, it may be noted that because both the folding dynam-
ics and underlying (free) energy surfaces were characterized
statistically, the present, statistical approach is self-consistent
and seems to be practical for application to the systems of
large size such as proteins.
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