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Role of geometrical cues in neuronal growth
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Geometrical cues play an essential role in neuronal growth. Here, we quantify axonal growth on surfaces
with controlled geometries and report a general stochastic approach that quantitatively describes the motion of
growth cones. We show that axons display a strong directional alignment on micropatterned surfaces when the
periodicity of the patterns matches the dimension of the growth cone. The growth cone dynamics on surfaces
with uniform geometry is described by a linear Langevin equation with both deterministic and stochastic
contributions. In contrast, axonal growth on surfaces with periodic patterns is characterized by a system of
two generalized Langevin equations with both linear and quadratic velocity dependence and stochastic noise.
We combine experimental data with theoretical analysis to measure the key parameters of the growth cone
motion: angular distributions, correlation functions, diffusion coefficients, characteristics speeds, and damping
coefficients. We demonstrate that axonal dynamics displays a crossover from an Ornstein-Uhlenbeck process to
a nonlinear stochastic regime when the geometrical periodicity of the pattern approaches the linear dimension
of the growth cone. Growth alignment is determined by surface geometry, which is fully quantified by the
deterministic part of the Langevin equation. These results provide insight into the role of curvature sensing
proteins and their interactions with geometrical cues.
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I. INTRODUCTION

Neuronal cells are the primary working units of the nervous
system. A single neuron is an extremely specialized cell
that develops two types of processes: axons and dendrites
[Fig. 1(a)]. These processes grow and make connections with
other neurons, thus wiring up the nervous system. Once the
neural circuits are formed, electrical signals are transmitted
among neurons through functional connections (synapses)
made between axons and dendrites. During the development
of the brain axons actively navigate over distances of the order
of 10–100 cell diameters in length to find target dendrites from
other neurons and to form neural circuits [1,2]. Axonal motion
is guided by the growth cone, a dynamic sensing unit located
at the leading edge of the axon. The growth cones consistently
follow specific pathways through a complex and changing
environment by responding to multiple guidance cues [1–4].

In recent years many intercellular signaling processes that
control growth cone migration have been investigated in great
detail [2,5–7], and there is now a considerable amount of
information about the molecular machinery that regulates
these processes. For example, there are several comprehensive
models that describe receptor-ligand interactions, as well as
changes in the cellular cytoskeleton in response to biochemi-
cal cues from the environment or from other neurons [1–6,8].
However, much less is known about how growth cones sense,
react, and move in response to mechanical or geometrical
cues.
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Axonal alignment and directional growth have been
demonstrated in many in vitro studies of neuronal growth on
micropatterned substrates [3,5,9–13]. An important research
direction in this area is to precisely measure and characterize
axonal dynamics on surfaces with periodic micropatterns. Pre-
vious experiments have demonstrated that neurons cultured on
surfaces with periodic geometrical patterns display a signifi-
cant increase in the total length of axons, as well as axonal
alignment along preferred growth directions [10,12–14]. De-
spite these advances there remain many important questions
about the actual mechanisms that determine axonal alignment
in response to surface geometry, such as (i) how the growth
cones sense geometrical features; (ii) how adhesion forces are
generated as growth cones advance, retract, or turn; and (iii)
what biophysical processes lead to the symmetry-breaking
events that determine axonal directionality and alignment.
Furthermore, many of the previous studies provide mainly
qualitative or semiquantitative descriptions of axonal migra-
tion and alignment. A fully quantitative picture of neuronal
growth on surfaces with controlled geometries is still missing.

Several types of stochastic processes are involved in the
growth cone dynamics, including neuron-neuron signaling,
fluctuating weak environmental biochemical cues, biochem-
ical reactions taking place in the growth cone, and polymer-
ization and depolymerization processes involved in actin and
microtubule dynamics [1,2,6,15]. Therefore, the motion of
each individual growth cone cannot be predicted. However,
the behavior of ensembles of growth cones belonging to
axons from many neurons can be described quantitatively
by Langevin-type stochastic differential equations [12,16,17].
Quite generally the dynamics of the growth cone on
micropatterned surfaces is controlled both by a deterministic
component (tendency to grow in certain preferred directions
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FIG. 1. Examples of cultured cortical neurons on PDL coated glass (a) (flat surface without micropatterns), and PDL coated PDMS surfaces
(b)–(d) with periodic micropatterns shown in Fig. 2. The main structural components of a neuronal cell are labeled in (a). The angular
coordinate θ used in this paper is defined in the inset of (b). All angles are measured with respect to the x axis, defined as the axis perpendicular
to the direction of the PDMS patterns (see Fig. 2). The pattern spatial period is d = 5 μm (b); d = 3 μm (c); d = 1.5 μm (d). Images (a)–(d)
are captured 48 h after neuron plating.

imparted by surface geometry), and a random deviation from
these growth directions due to stochastic processes.

Langevin and Fokker-Planck equations provide a powerful
framework for modeling the interplay between the determin-
istic and stochastic components of biased random motion.
When applied to axonal growth, these equations enable ac-
curate prediction of growth cone dynamics, and provide a
systematic approach for analyzing the respective roles played
by external biochemical, mechanical, and geometrical cues. In
our previous work we have used a theoretical model based on
the Fokker-Planck (FP) equation to quantify axonal growth
on glass [17] and on surfaces with engineered, ratchetlike
topography (asymmetric tilted nanorod, nano poly(chloro-p-
xylylene) or nano-ppx surfaces) [12]. We have demonstrated
axonal alignment towards a single dominant direction on
nano-ppx surfaces and have measured the diffusion coefficient
on these surfaces. We have shown that the angular distribu-
tions originate from the axon-surface interaction forces that
ultimately produce a “deterministic torque,” which aligns the
growth cones along certain preferred directions of growth
[12].

A general characteristic of the stochastic models is that
they can be used to obtain key dynamical parameters that
characterize the cellular motion, such as diffusion (cell motil-
ity) coefficients, mean square displacements, and velocity
and angular correlation functions [16–22]. Moreover, these
phenomenological models can serve as a basis for quantify-
ing cell-cell and cell-surface interactions, which can then be
explained in terms of biophysical and biochemical processes

taking place inside the cell. Ultimately, this approach could
lead to a detailed understanding of the basic principles that
govern the formation of neural circuits, which is one of the
long-term goals in neuroscience.

In this paper we present a systematic experimental and
theoretical investigation of axonal growth for cortical neurons
cultured on poly-D-lysine (PDL) coated glass, and several
types of PDL coated polydimethylsiloxane (PDMS) surfaces
with periodic micropatterns (Fig. 1). We create PDMS sur-
faces with periodic features (parallel ridges separated by
troughs), each surface being characterized by a different value
of the geometrical parameter d (Fig. 2) defined as the distance
between two neighboring ridges (and referred to as the pattern
spatial period throughout the text). We demonstrate that axons
tend to grow parallel to the surface micropatterns, and that the
highest degree of axonal alignment occurs when the pattern
spatial period approaches the linear dimension of the growth
cone (Figs. 1 and 2).

We show that experimental data for neurons grown on PDL
coated glass is well described by a linear Langevin equation
with white noise, i.e., an Ornstein-Uhlenbeck (OU) process.
Furthermore, growth on micropatterned PDMS surfaces is
also described by an OU process only for the cases in which
the pattern spatial period d is much larger (or much smaller)
than the dimension of the growth cone. On the other hand,
neuronal growth on PDMS surfaces where the pattern spatial
period matches the dimension of the growth cone cannot
be described by an OU process. We demonstrate that the
growth dynamics on these surfaces is described by nonlinear
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FIG. 2. Topographic atomic force microscope (AFM) images of PDL coated PDMS patterns corresponding to the neuron growth surfaces
shown in Figs. 1(b)–1(d). (a) defines the angular coordinate θ used in this paper. The x axis is defined as the axis perpendicular to the direction
of the PDMS patterns. The directions corresponding to θ = 0, π/2, π , and 3π/2 are also shown in (a). The pattern spatial period d defined
as the distance between two neighboring ridges is shown for each pattern. Examples of AFM line scans obtained across each surface are
shown at the bottom of each figure. The line scans demonstrate that the patterns are periodic in the x direction, and have a constant depth of
approximately 0.5 μm. The values for d are d = 5 μm (a); d = 3 μm (b); d = 1.5 μm (c).

Langevin equations containing linear and quadratic velocity
terms, angular orientation terms, and stochastic terms with
Gaussian white noise. This model fully accounts for the ex-
perimental data, including growth speeds, axonal alignment,
velocity correlation functions, and angular distributions. Us-
ing this model, we extract from the experimental data the main
parameters that characterize the motion of the growth cone
on PDMS patterned surfaces: velocity damping coefficients,
deterministic accelerations, and terminal velocities. We show
that these parameters are controlled solely by the surface
geometry (pattern spatial period) and represent a measure
of the cell-cell and cell-surface interactions. We therefore
demonstrate that the deterministic part of the Langevin equa-
tion quantifies the effects of surface geometry, which is ulti-
mately responsible for directional growth (alignment with the
pattern). These results are important for the fundamental un-
derstanding of how geometrical cues influence axonal growth
and dynamics, as well as for bioengineering unique substrates
to control neuronal growth.

This paper is structured as follows. In Secs. II and III we
present, respectively, details of the experimental procedure
and data analysis. Axonal dynamics on glass is treated in
Sec. IV. In Sec. V we present the experimental data and the
theoretical model for growth on patterned PDMS surfaces.
Section VI contains a detailed discussion of the experimental
results, predictions of the theoretical model, and comparisons
with previous results of cell motility reported for neurons and
other types of cells. We present the conclusions in Sec. VII.

II. EXPERIMENTAL DETAILS

All cells used in this work are cortical neurons obtained
from embryonic day 18 rats. For cell dissociation and cul-
ture we used established protocols detailed in our previous
work [9,12,17,23–25]. Cortical neurons were cultured either

on poly-D-lysine (PDL) coated glass or on micropatterned
polydimethylsiloxane (PDMS) substrates coated with PDL.

The micropatterns on PDMS surfaces consist of periodic
features (parallel ridges separated by troughs). Each surface is
characterized by a different value of the pattern spatial period
d , defined as the distance between two neighboring ridges
(Fig. 2). To obtain these periodic patterns we used a simple
fabrication method based on imprinting diffraction grids with
different grating constants onto PDMS substrates [25]. The
direction of the patterns is shown in Fig. 2 by the parallel
white stripes (ridges), as well as by the parallel black stripes
(troughs).

The surfaces were then spin coated with PDL (Sigma-
Aldrich, St. Louis, MO) solution of concentration 0.1 mg/ml.
Neuronal cells were imaged using an MFP3D atomic force
microscope (AFM) equipped with a BioHeater closed fluid
cell, and an inverted Nikon Eclipse Ti optical microscope (Mi-
cro Video Instruments, Avon, MA). Fluorescence images were
acquired using a standard fluorescein isothiocyanate –(FITC)
filter: excitation: 495 nm; emission: 521 nm. To acquire the
fluorescence images the neurons were incubated for 30 min at
37 °C with 50 nM Tubulin Tracker Green (Oregon Green 488
Taxol, bisacetate, Life Technologies, Grand Island, NY) in
PBS. The samples were then rinsed with PBS and reimmersed
in PBS solution for imaging [12,23–25].

III. DATA ANALYSIS

Growth cone position, axonal length, and angular distribu-
tions have been measured and quantified using IMAGEJ (Na-
tional Institutes of Health). The displacement of the growth
cone was obtained by measuring the change in the center
of the growth cone position. To measure the growth cone
velocities the samples were imaged every �t = 5 min for
a total period between 30 min and 2 h. The 5-min time
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FIG. 3. (a) Schematic of the coordinate system. (b) Example of normalized speed distribution for growth cones measured on PDMS
substrates with spatial period d = 3 μm. The histogram was obtained by plotting the speed measured for N = 117 different growth cones.

interval between measurements was chosen such that the
typical displacement ��L of the growth cone in this interval
satisfies two requirements: (a) is larger than the experimental
precision of our measurement (∼0.1 μm) [17]; (b) the ratio
��L/�t accurately approximates the instantaneous velocity �V
of the growth cone.

The instantaneous velocity �V (t ) for each growth cone at
time t is determined by using the formula

�V (t ) = ��L

�t
= �r(t + �t ) −�r(t )

�t
, (1)

where �r(t ) is the position vector of the growth cone at time
t , and ��L is the net displacement of the same growth cone
during the time interval �t = 5 min between the measure-
ments. The speed is defined as the magnitude of the velocity
vector: V (t ) = |�V (t )|, and the growth angle θ (t) is measured
with respect to the x axis [growth angle and the x axis are
defined in Fig. 2(a)].

The acceleration for each growth cone is calculated at each
point of its trajectory by finite differences of the cell veloci-
ties, and measured in a moving coordinate frame attached to
the growth cone [Fig. 3(a)]. The two unit vectors ê||(t ) and
ê⊥(t ) of the moving frame are oriented parallel (and, respec-
tively, perpendicular) to the instantaneous velocity �V (t ) of
the growth cone [Fig. 3(a)]. To measure the deterministic and
stochastic parts of the acceleration we have used the method
of conditional averaging of experimental data as described in
Refs. [18,26]. For each image the range of growth cone speeds
was divided into 15 intervals of equal size |��V0| [Fig. 3(b)].
Experimental data (Fig. 1) show that over a distance of
∼20 μm the axons can be approximated by straight line seg-
ments, with a high degree of accuracy. Therefore, to obtain the
angular distributions (Fig. 4 and Fig. S1 in the Supplemental
Material [25]) we have tracked all axons using IMAGEJ and
then partitioned them into segments of 20 μm in length. Next,
we have recorded the angle that each segment makes with the
x axis (Fig. 2). The total range [0, 2π ] of growth angles was
divided into 18 intervals of equal size, �θ0 = π/9 (Fig. 4).

To obtain the deterministic parts of the growth cone ac-
celeration we have averaged the parallel and perpendicular
components of the acceleration [i.e., the components along
the ê||(t ) and ê⊥(t ) directions in Fig. 3(a)] within each speed

|��V0| (or angle �θ0) interval, according to the following
equations [18,26]:

ad,||(�V , t ) =
〈(

��V

�t

)
· ê||(t )

〉
C

, (2)

ad,⊥(�V , t ) =
〈(

��V

�t

)
· ê⊥(t )

〉
C

. (3)

Here ad,|| and ad,⊥ are, respectively, the parallel and per-
pendicular components of the deterministic acceleration ad .
The subscript C stands for the conditional average:

C:

{
|⇀V i(t ) − ⇀

V (t )| � |�⇀

V 0|
|θi(t ) − θ (t )| � �θ0

, (4)

where �Vi and θi are, respectively, the velocity and the angle of
the ith growth cone.

The stochastic terms in the parallel and perpendicular
directions are obtained by calculating the variance of the
distribution for each component of the acceleration within
each speed and angle interval, according to the following
formulas [18,26]:

�2|| = 〈[a||(�V , t ) − 〈a||(�V , t )〉]2〉C

= 〈[a||(�V , t ) − ad,||(�V , t )]
2〉C, (5)

�2⊥ = 〈[a⊥(�V , t ) − 〈a⊥(�V , t )〉]2〉C

= 〈[a⊥(�V , t ) − ad,⊥(�V , t )]
2〉C . (6)

We found that the cross-correlation terms for each compo-
nent of the acceleration are much smaller (by at least one order
of magnitude) than the stochastic terms given by Eqs. (5)
and (6) (see the Supplemental Material [25]). We therefore
neglect the mixed stochastic terms in our analysis and include
only the stochastic contributions given by Eqs. (5) and (6).
Experimental data also show that the stochastic contribu-
tions for both the parallel and perpendicular components of
the acceleration fluctuate around their average values with
zero correlations (see Fig. S4 in the Supplemental Material
[25]). Consequently we model the stochastic terms as being
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FIG. 4. Experimental angular distributions for axonal growth on different types of surfaces (shown in Figs. 1 and 2). The vertical axis
(labeled Frequency) represents the number of axonal segments, each one of 20 μm in length (see the Data Analysis section). (a) Data for PDL
coated glass (N = 2856 axon segments); (b) data for PDL coated PDMS substrates with spatial period d = 5 μm (N = 2940 axon segments);
(c) data for PDL coated PDMS substrates with spatial period d = 3 μm (N = 2242 axon segments); (d) data for PDL coated PDMS substrates
with spatial period d = 1.5 μm (N = 2545 axon segments). The axons of neurons cultured on PDMS surfaces with spatial period d = 5 μm
(b) and d = 3 μm (c) display strong directional alignment with the surface patterns (peaks at θ = π/2 and θ = 3π/2; see Figs. 1 and 2). The
axons of neurons cultured on PDMS surfaces with spatial period d = 1.5 μm show a lower degree of alignment (d), while the axons of neurons
cultured on glass show no directionality (a).

represented by uncorrelated Gaussian white noise sources
with zero mean [12,16,17,19,20].

Experimentally, the velocity autocorrelation function is
obtained according to the formula [19,20]

CV (t ) = 1

N
·

N∑
i=1

[�Vi(t ) · �Vi(0)], (7)

where N is the total number of growth cones and �Vi(t ) repre-
sents the velocity of the ith growth cone at time t .

IV. NEURONAL GROWTH ON GLASS SURFACES

In previous work [17] we have analyzed axonal dynam-
ics on PDL coated glass substrates using the Fokker-Planck
equation. Here we show that the growth on these substrates
is described by an Ornstein-Uhlenbeck (OU) process, and
measure the dynamical parameters that describe this process.
Figure 1(a) shows an example of axonal growth on PDL
coated glass, obtained 48 h after neuronal plating. The angular
distribution for growth on glass is shown in Fig. 4(a).

The OU process is described by the following linear
Langevin equation for the velocity �V [19,20,27]:

d�V

dt
= −γg · �V + ��(t ). (8)

The first term in Eq. (8) represents the deterministic term,
and γg is a constant damping coefficient. The second term
��(t ) represents the stochastic change in velocity, which is de-
scribed by Gaussian white noise [17,19,20,27]. In the absence
of the stochastic term the velocity would decay exponentially
with a characteristic time: τg = 1/γg (throughout this paper
we will use the subscript “g” to denote the parameters for
glass). Since the axonal motion takes place in two spatial
dimensions, Eq. (8) implies the following expressions for
the axonal mean square length 〈�L2(t )〉, and the growth cone
velocity autocorrelation function CV (t ) as functions of time
[19,20,22]:

〈�L2(t )〉 = 4D · t − 4D

γg
· (1 − e−γgt ), (9)

CV (t ) ≡ 〈�V (t ) · �V (0)〉 = 2D · γg · e−γgt , (10)

022408-5



VENSI BASSO, YURCHENKO, SIMON, RIZZO, AND STAII PHYSICAL REVIEW E 99, 022408 (2019)

FIG. 5. (a) Data points: experimentally measured average axonal length square vs time. The continuous curve represents the fit of the
data points with the prediction of the theoretical model based on the Ornstein-Uhlenbeck process [Eq. (9)]. (b) Experimentally measured
velocity correlation function (data points) as a function of time. The continuous curve represents the fit to the data with Eq. (10) (prediction
of the theoretical model based on the Ornstein-Uhlenbeck process). Each data point in (a,b) was obtained by measuring between N = 120 and
N = 170 different axons (corresponding to —five to ten different fluorescent images per time data point). Error bars in both figures indicate
the standard error of the mean. The fit of the data with Eqs. (9) and (10) gives the diffusion coefficient D and the constant damping coefficient
γg for the Ornstein-Uhlenbeck process (see text).

where D is the cell random motility coefficient
[1,16,17,20–22]. At the level of cell populations the random
motility coefficient is analogous to the diffusion coefficient
of the OU process [20,22]. In this paper we will refer to D
as the diffusion coefficient, as is customary in the literature
[1,16,17,20–22].

To find the two parameters D and γg, which characterize
the OU process, we performed a time series measurement of
axonal lengths and velocities (for t = 2, 4, 6, 8, 16, 24, 32,
48 h) for neurons cultured on glass. From these data we have
experimentally measured the average axonal length square
〈�L2(t )〉 and velocity autocorrelation function CV (t ) [Eq. (7)]
at each time t (see the Data Analysis section). Figure 5(a)
shows the experimental data for the mean square displacement
vs time, together with the fit of the data (continuous curve)
with Eq. (9), which represents the theoretical prediction based
on the OU process. Figure 5(b) shows the experimental data
for the velocity autocorrelation function vs time, together
with the fit of the data (continuous curve) obtained by using
Eq. (10) (theoretical prediction based on the OU process).
From the fit of the data in Figs. 5(a) and 5(b) we obtain
the following values for the diffusion coefficient D and for
the constant damping coefficient γg: D = (16 ± 2) μm2/h
and γg = (0.1 ± 0.05) h−1. The value for the diffusion coef-
ficient agrees with our previous results for neurons on glass
[17]. From the value of the damping coefficient we find a
characteristic time for the exponential decay of the velocity
autocorrelation function: τg = 1/γg ≈ 10 h.

Since the axonal growth on glass is described by an OU
process [Eqs. (8)–(10)], we can relate D and γg with the mean
square velocity for neuronal growth on glass via [19,20,22]

D =
〈
Vc

2
〉
τg

2
=

〈
Vc

2
〉

2γg
. (11)

Using the experimentally measured values for D and γg,
Eq. (11) predicts the following value for the characteristic

speed of neuronal growth on glass:

Vg ≡
√〈

Vc
2
〉 = √

2Dγg ≈ 1.8 μm/h. (12)

In conclusion, we found that neuronal growth on PDL
coated glass is well described by an Ornstein-Uhlenbeck
process (linear Langevin equation with Gaussian white noise).
There is no preferred directionality for the axonal growth
[Figs. 1(a) and 4(a)]. By fitting the experimental data with the
theoretical OU model (Fig. 5) we measure the fundamental
dynamical parameters for neuronal growth on glass: diffusion
coefficient D, constant damping coefficient γg, and character-
istic time τg, and use these values to calculate a characteristic
speed of axonal growth Vg. These values are in agreement
with our previous results obtained by using the Fokker-
Planck equation for describing neuronal growth on glass
surfaces [17].

V. NEURONAL GROWTH ON MICROPATTERNED
PDMS SURFACES

We cultured neurons on PDL coated PDMS surfaces with
controlled geometrical patterns (i.e., periodic parallel ridges
separated by troughs). The surfaces differ by the value of the
pattern spatial period d (distance between two neighboring
ridges, Fig. 2). We analyze growth for surfaces with spatial pe-
riods: d = 10, 5, 3, 1.5, and 0.5 μm. Images of axonal growth
on these surfaces and the corresponding angular distributions
are shown, respectively, in Figs. 1(b) and 4(b) (for d = 5 μm),
Figs. 1(c) and 4(c) (for d = 3 μm), and Figs. 1(d) and 4(d) (for
d = 1.5 μm). Examples of AFM topography images obtained
on these surfaces are shown in Fig. 2. Images of axonal growth
on surfaces with d = 10 μm and d = 0.5 μm, as well as the
corresponding angular distributions, are shown in Fig. S1 in
the Supplemental Material [25].

The experimental data show that there is no preferred di-
rectionality for axonal growth on PDMS surfaces with pattern
spatial periods d = 10 μm and d = 0.5 μm (Fig. S1 in the
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FIG. 6. Data points represent the variation of the parallel component of the deterministic acceleration with the growth cone speed for
axons growing in θ = 0 (a), respectively, θ = π/2 (b) directions [the growth angles are defined in Fig. 2(a)]. The growth substrates are
PDMS surfaces with d = 3 μm. Each data point was obtained by conditional averaging the parallel component of acceleration according
to Eq. (2), for a number N of growth cones between 10 and 40 per data point. Error bars indicate the standard error of the mean. The
continuous curves represent fit to the data points with Eq. (14). The fit of the data points gives the following values for the growth parameters:
a0 = (35.1 ± 0.9) μm/h2, γ1 = (0.09 ± 0.06) h−1, and γ2 = (0.8 ± 0.1) μm−1.

Supplemental Material [25]). In contrast, neurons cultured
on surfaces with d = 5 μm and d = 3 μm display strong
directional alignment with the surface patterns [Figs. 1(b) and
1(c), and Figs. 4(b) and 4(c)]. Axons grown on surfaces with
d = 1.5 μm display a lower degree of alignment with the
surface pattern [Figs. 1(d) and 4(d)].

A. Neuronal growth on micropatterned PDMS surfaces with
spatial periods d = 5 μm, d = 3 μm, and d = 1.5 μm

We focus first on analyzing neuronal growth on PDMS
surfaces with the pattern spatial periods d = 5 μm, d = 3 μm,
and d = 1.5 μm for which experimental data show axonal
alignment along the surface patterns [Figs. 4(b)–4(d)]. We
note that these values for d are comparable to the linear
dimension of the growth cone: l = 2 to 5μ m. This range for
l was obtained from both fluorescence (Fig. 1) and AFM
measurements [12] and it corresponds to the typical growth
cone size reported in the literature [1]. We will show that the
axonal dynamics on these surfaces cannot be modeled by the
simple OU process described by Eqs. (8)–(12) above. Inspired
by previous work on directional cell migration [18–21] we
introduce a neuronal growth model described by a nonlinear
Langevin equation:

�a(�V , t ) ≡ d�V

dt
= �ad (�V , t ) + ��(�V , t ), (13)

where �ad (�V , t ) is the deterministic component of the axonal
motion and the term ��(�V , t ) represents the stochastic contri-
butions.

We use the method of conditional averaging [18,26] (see
the Data Analysis section) to experimentally extract the de-
terministic and stochastic components in Eq. (13) and their
functional dependence on time, axonal speed, and direction.
Figure 6 shows the variation of ad,||(�V , t ) (the deterministic
part of the acceleration parallel to the instantaneous direction
of motion) with the growth cone speed V for two different
growth angles: θ = 0 [Fig. 6(a)] and θ = π/2 [Fig. 6(b)]. The
continuous curves in these figures represent quadratic fit to

the data points. We find that (for any angle θ ) the component
of the deterministic acceleration parallel to the instantaneous
direction of motion, ad,||(�V , t ), is well approximated by a
quadratic function of the growth cone speed V:

ad,||(V, θ ) = a0| sin θ | − γ1V − γ2V
2, (14)

where a0, γ1, and γ2 are three experimentally measurable
parameters that characterize axonal dynamics on PDMS sub-
strates with different geometries. These parameters are dis-
cussed below.

The first term on the right-hand side of Eq. (14) shows that
the angular dependence of the parallel component is described
by the absolute value of the sine function [Fig. 7(a)]. The ab-
solute value |sin θ | reflects the symmetry of the growth around
the x axis: the two distributions centered at θ = π/2 and θ =
3π/2 are symmetric with respect to the directions θ = π and
θ = 0 [as shown in Figs. 4(b)–4(d)], which in turn means that
there is no preferred direction along the pattern (i.e., the “up”
and “down” directions in Figs. 1 and 2 are equivalent for neu-
ronal growth). The fit of the data in Fig. 6 with Eq. (14) gives
the following values for the three dynamical parameters that
describe axonal growth on PDMS surfaces with d = 3 μm:
a0 = (35.1 ± 0.9) μm/h2, γ1 = (0.09 ± 0.06) h−1, and γ2 =
(0.8 ± 0.1) μm−1. Remarkably, the experimental data show
that the parameter γ1 (the coefficient of the linear term in V)
has a constant value, which is independent of the neuronal
growth surface and of the angle θ of the growth cone motion
(Figs. S2(a) and S2(c) in the Supplemental Material [25]).
Furthermore, the data show that (within the experimental
uncertainties) γ1 ≈ γg; i.e., the linear coefficient that describes
neuronal growth on PDMS surfaces is equal to the constant
damping coefficient for growth on glass. Thirdly, we find that
for a given type of geometrical pattern (characterized by a
constant spatial period d), the parameter γ2 (the coefficient
of the quadratic term in V) has a constant value that does not
depend on the angle θ of the growth cone motion (Fig. S2(b)
in the Supplemental Material [25]). The significance of these
experimental findings will be presented in the Discussion
section.
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FIG. 7. Variation of the parallel (a) and perpendicular (b) components of the deterministic acceleration with the angle θ of axonal growth.
The growth substrates are PDMS surfaces with d = 3 μm. Each data point was obtained by conditional averaging the parallel and perpendicular
components of acceleration according to Eqs. (2)–(4), for a number N of growth cones between 30 and 110 per data point. Error bars indicate
the standard error of the mean. The continuous curve in (a) is the plot of Eq. (14) with the parameters a0, γ1, and γ2 found from the data shown
in Fig. 6(a). The continuous curve in (b) represents the fit of the data points with Eq. (15). The data fit gives the following value for the angular
parameter: a1 = (21.5 ± 0.6) μm/h2.

The perpendicular component of the deterministic acceler-
ation ad,⊥(�V , t ) was determined using Eqs. (3) and (4). The
data show that ad,⊥(�V , t ) is independent of the growth cone
speed and depends only on the growth angle θ (Fig. 7(b)
and Fig. S3 in the Supplemental Material [25]). The angular
dependence is well approximated by the cosine function,

ad,⊥(V, θ ) = a1 cos θ, (15)

where the parameter a1 is a constant acceleration, for a given
pattern spatial period d .

The magnitude ad,⊥(θ ) of the acceleration perpendicular
to the instantaneous velocity has a maximum value when the
direction of axonal growth is perpendicular to the surface
pattern (i.e., for θ = 0 and θ = π ), and it equals zero when
the axon grows along the pattern (θ = π/2 and θ = 3π/2).
This implies that the perpendicular component of acceleration
ad,⊥(�V , t ) tends to rotate the growth cone towards the direction
of the pattern. The parameter a1 quantifies the magnitude of
this effect. We note that this effect is similar to a previous
result we have reported for neurons grown on directional
nano-ppx surfaces [12]. In this previous work we have iden-
tified a deterministic torque that tends to align axons along
certain preferred directions on the nano-ppx surface.

From the fit to the data in Fig. 7(b) we find a1 = (21.5 ±
0.6) μm/h2, for axonal growth on PDMS surfaces with d =
3 μm. By performing a similar analysis for neuronal growth
on PDMS surfaces with different spatial periods d = 10 μm,
5 μm, 1.5 μm and 0.5 μm, we find the corresponding values
for the deterministic parameters, a0, a1, γ1, and γ2, that control
axonal dynamics on these surfaces. Figure 8 shows the depen-
dence of the parameters a0, a1 [Fig. 8(a)], and γ2 [Fig. 8(b)]
on the surface geometry quantified by the surface spatial
periods d. The parameter γ1 does not depend on d (Fig. S2(c)
in the Supplemental Material [25]).

We conclude that the deterministic components of the
acceleration for neuronal growth on PDMS surfaces where

the pattern spatial periods d matches the dimension l of
the growth cone, d ≈ l , are described by four independent
parameters. Three of these parameters are determined by the
surface geometry. The angular dependence for each compo-
nent is separated from the speed dependence. The component
of the acceleration parallel to the instantaneous speed has
a maximum value a0 for growth cones moving along the
surface pattern. Moreover, the parallel component has two
additional damping terms: one linear and one quadratic in the
growth cone speed, which lower the value of the acceleration
along the surface pattern. The perpendicular component of the
acceleration tends to align the axons along the pattern with
an effective acceleration of constant magnitude a1. All these
terms contribute to the axonal alignment as we will show in
the Discussion section below.

To determine the stochastic terms in Eq. (13) we calculate
the variance of the distributions for each component of the
acceleration within each speed and angle interval [Eqs. (5)
and (6)] in the Data Analysis section). The data show that the
stochastic contributions for both parallel �|| and perpendicular
�⊥ components fluctuate around their average values with
zero correlations (Fig. S4 in the Supplemental Material [25]).
Consequently, we model the stochastic term in Eq. (13) as an
uncorrelated Wiener process, with each component satisfying
the conditions for Gaussian white noise with zero mean
[19,20,27]:

〈�||(t )〉 = 0 and 〈�||(t1)�||(t2)〉 = σ||δ(t1 − t2), (16)

〈�⊥(t )〉 = 0 and 〈�⊥(t1)�⊥(t2)〉 = σ⊥δ(t1 − t2), (17)

where σ||, σ⊥ quantify the strength of the noise, and δ(t1 − t2)
is the Dirac delta function.

Putting everything together [Eqs. (14)–(17)] we arrive at
the conclusion that the conditional averaging of the experi-
mental data imposes the following two equations of motion
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FIG. 8. (a) Variation of the acceleration parameters a0 (squares) and a1 (open circles) with the surface spatial period d. These parameters
measure the magnitude of the angle-dependent terms of the deterministic acceleration: a0 for the parallel component, Eq. (14); a1 for the
perpendicular component, Eq. (15). (b) Variation of the coefficient of the quadratic term in speed with the surface spatial period. (a), (b) Error
bars indicate the standard error of the mean.

for the growth cones on patterned PDMS surfaces with d
comparable to the growth cone dimension:

a||(V, θ, t ) ≡
⎛
⎝d

⇀

V

dt

⎞
⎠

||

= a0| sin θ | − γ1V − γ2V
2 + �||(t ),

(18)

a⊥(V, θ, t ) ≡
⎛
⎝d

⇀

V

dt

⎞
⎠
⊥

= a1 cos θ + �⊥(t ). (19)

B. Neuronal growth on micropatterned PDMS surfaces with
spatial periods d = 0.5 μm and d = 10 μm

Experimental data show that there is no directional align-
ment for neurons grown on PDL coated PDMS surfaces
with the pattern spatial periods d = 0.5 μm and d = 10 μm
(Fig. S1 in the Supplemental Material [25]). For these
types of surfaces the values of the measured parameters
that describe the angular dependence of the acceleration
[Eqs. (18) and (19)] are close to zero: a0 ≈ 0 and a1 ≈
0 [Fig. 8(a)]. Furthermore, the values for the coefficients
of the quadratic term in V in Eq. (18) for these surfaces
are γ2 = (0.9 ± 0.08) μm−1 for d = 0.5 μm, and, respec-
tively, γ2 = (0.01 ± 0.08) μm−1 for d = 10 μm [Fig. 8(b)].
The coefficients of the linear terms in V in Eq. (18)
are equal (within the experimental uncertainties) to the
constant damping coefficient for growth on glass γ1 ≈ γg

(Fig. S2(c) in the Supplemental Material [25]).
The values of the parameters measured for neuronal growth

on these PDMS surfaces imply that the growth cone dynamics
on PDMS surfaces with the pattern spatial periods d � l and
d 	 l is similar to the dynamics of growth cones on glass, and
thus it is described by an OU process. This approximation is
exact for PDMS surfaces with d = 10 μm for which Eqs. (18)
and (19) are simply reduced to a linear Langevin equation
[Eq. (8)] with the same value for the constant damping
coefficient γg (the quadratic term in V is zero). For neuronal
growth on PDMS surfaces with d = 0.5 μm the coefficient

γ2 of the quadratic term in V is nonzero, and the Langevin
equation (18) is nonlinear. However, even in this case the
nonlinear effects are small, there is no angular dependence of
the acceleration (a0 ≈ 0), no alignment term (a1 ≈ 0), and no
terminal velocity (see below). Thus the OU process provides
a very good approximation for describing neuronal growth
dynamics on both types of PDMS surfaces (d = 0.5 μm,
d = 10 μm), which are incommensurate with the growth cone
dimensions.

VI. DISCUSSION

The experimental data for neurons grown on PDL coated
glass show that the axonal dynamics on these surfaces is
governed by an Ornstein-Uhlenbeck process, i.e., a linear
Langevin equation with Gaussian white noise [Eq. (8)]. The
OU process with Gaussian white noise, which is inspired by
the study of the Brownian motion, represents the simplest
stochastic model used for describing cellular motility. It has
been successfully used for modeling the dynamics of many
types of cells including endothelial cells [22], human gran-
ulocytes [19], and fibroblasts and human keratinocytes [20],
as well as cortical neurons [12,16,17]. The values we have
obtained for the diffusion coefficient and the characteristic
speed for growth cones on glass are comparable with the cor-
responding values reported for human peritoneal mesothelial
cells [28], one order of magnitude smaller than the values
reported for human keratinocytes [20], and for endothelial
cells [22], and about two orders of magnitude smaller than
the corresponding values reported for glioma cells [29]. These
results are consistent with the relatively slower dynamics
expected for growth cones as they move to form connections
and to wire up the nervous system [1,2].

As we have noted above the linear dimensions for the
growth cones of the cortical neurons are in the range l =
2 to 5 μm. The experimental data (Figs. 1(b) and 1(c), and
Figs. 4(b) and 4(c)], show that axons display maximum align-
ment along the PDMS patterns for substrates with d = 3 μm
and d = 5 μm, i.e., for surfaces where the pattern spatial
period matches the linear dimension of the growth cone: d ≈ l .
The PDMS surfaces with d = 1.5 μm (for which d < l) show
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a lower degree of axonal alignment [Figs. 1(d) and 4(d)]. A
detailed analysis of the data (previous section) shows that,
unlike the growth on glass, the dynamics of growth cones on
these PDMS surfaces cannot be described by an OU process.
We found that Eqs. (18) and (19) summarize the growth
dynamics on PDMS surfaces with d ≈ l [instead of Eq. (8)
for the OU process on glass].

Equations (18) and (19) have several remarkable features.
First, they show that the acceleration parallel to the instan-
taneous direction of motion is decoupled from the accelera-
tion perpendicular to this direction (including the stochastic
terms). Second, the angular dependence of the motion for
each direction can be separated from the dependence on
speed. The deterministic part of the motion in the parallel
direction [Eq. (18)] has a sine dependence on the angle
multiplied by a constant magnitude factor a0, as well as
linear and quadratic dependence on speed. Mathematically
this is similar to the motion of an object in a gravitational
field with both linear and quadratic air resistance, as we will
discuss below. Thirdly, the deterministic term in the equation
for the perpendicular direction has a cosine dependence on
the angle. This term has a maximum value a1 for the direc-
tion perpendicular to the direction of the geometrical pattern
(θ = 0 and θ = π ) and equals zero for directions along the
pattern (θ = π/2 and θ = 3π/2). Therefore the growth cone
tends to rotate as it extends and aligns with the pattern.
It is the combination of this effect with the fact that the
growth cone reaches a terminal velocity along the direction
pattern (see below) that is ultimately responsible for the high
degree of alignment between the axons and the geometrical
patterns.

We note that for a given growth angle θ , the deterministic
part of the acceleration parallel to the instantaneous velocity
[Eq. (19)] has the same mathematical form as the equation
describing the vertical motion of an object in gravitational
field, subject to both linear and quadratic air resistance [30].
For growth angles θ � 0, Eq. (18) implies the existence of a
deterministic terminal speed (the contribution from stochastic
terms averages to zero) given by the condition ad,||(V, θ, t ) =
〈| d

⇀

V
dt |||〉 = 0. The terminal speed depends on the pattern spa-

tial period d , and (for a given d) it has a maximum value
for axonal growth along the pattern direction: θ = π/2 and
θ = 3π/2 (Fig. S5 in the Supplemental Material [25]). For
example, for growth on PDMS surfaces with d = 3 μm, we
get Vter = (6.5 ± 0.6) μm/h (see the Supplemental Material
[25]). This value is a factor ∼3 larger than the characteristic
speed for the random OU growth on glass [Eq. (12)], consis-
tent with longer axonal lengths measured on PDMS surfaces.

Figure S1 (Supplemental Material [25]) shows that, in
contrast with the case discussed above, there is no alignment
for neuronal growth on PDMS surfaces with d = 0.5 μm and
d = 10 μm. For these surfaces the pattern spatial period d is
either much smaller or much larger than the linear dimension
l of the growth cone. There is no deterministic term that tends
to align axonal growth along the direction of the patterns,
and the terminal speed for axons growing along the pattern
is Vterm ≈ 0 (Fig. S5 in the Supplemental Material [25]).
The growth cone dynamics on these surfaces is described by

an OU process with the same parameters as in the case of
neuronal growth on glass [Eq. (8)].

Equations (18) and (19) [as well as Eq. (8) for the growth
on glass] contain terms described by Gaussian white noise
that characterizes stochastic changes in speed. The Gaussian
white noise is a general characteristic of cellular motion,
and it reflects the stochastic nature of both the extracellular
(neuron-neuron) signaling [1,2,7,8], as well as the intracellu-
lar processes, such as the stochasticity of biochemical reac-
tions taking place in the growth cone, polymerization rates
of microtubules and actin filaments, and the formation of
lamellipodia and filopodia [1,4,16]. Theoretical models using
uncorrelated Gaussian white noise have been used to describe
the dynamics of endothelial cells [22], human granulocytes
[19], fibroblasts, and human keratinocytes [20], as well as
cortical neurons [12,16,17]. We mention that the description
of the dynamics for some other types of eukaryotic cells, e.g.,
D. discoideum, requires the introduction of speed-dependent
multiplicative noise, which suggests a nonlinear character of
the chemotactic mechanisms in these cells [18]. In the case
of neurons, however, we conclude that the stochastic part of
neuronal dynamics is described by Gaussian white noise, and
it is not influenced by geometry, velocity, or angle of motion.

Role of geometry on neuronal growth on micropatterned
PDMS surfaces. The axonal alignment on PDMS surfaces
with d ≈ l is completely determined by four measurable pa-
rameters, a0, a1, γ1, and γ2, which characterize the determinis-
tic components of the growth cone acceleration. Three of these
parameters depend on the surface geometry (quantified by the
pattern spatial period d), while the parameter γ1 is surface
independent. We emphasize that the directional motion of the
growth cone results from two combined effects: (a) growth
cones are more likely to move in the directions parallel with
the surface patterns [cosine dependence in Eq. (19) tends
to rotate the growth cone along these directions]; and (b)
growth cones that are moving along the direction of the
surface patterns have maximum speed (Eq. (18) and Fig. S5 in
the Supplemental Material [25]). These results are consistent
with contact-guidance behavior that we and other groups have
previously reported for neurons grown on different types of
patterned surfaces [12,31–34]. Contact guidance is defined as
the ability of some cells to orient their motion in response to
surface geometrical structures. It has been observed for many
types of cells including granulocytes, fibroblasts, and tumor
cells [31–35]. Growth cones have several different types of
surface receptors and membrane curvature sensing proteins
involved in surface adhesion, and locomotion including am-
phipathic helices and bin-amphiphysin-rvs (BAR) domain
containing proteins [1,5,31]. In the case of contact-guidance
locomotion it has been shown that the degree of directional
cell motility increases proportionally with the density of an-
chored surface receptors [31–35]. An important parameter for
contact guidance is the ratio between the cell size and the
characteristic dimensions of the surface geometrical features
[31]. This parameter determines the surface density of surface
receptors, which mediate adhesion and mechanotransduction
between the cell cytoskeleton and the substrate. We hypoth-
esize that for neurons grown on PDMS surfaces with d ≈ l
(i.e., where the linear dimension of the growth cone matches
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the pattern spatial period) the growth cone “wraps tightly”
around the surface features, which results in a minimum
contact area and thus maximum density of surface receptors.
Previous reports have shown that the maturation of the surface
receptor and focal adhesion points responds to external forces,
including cell-substrate traction forces [36]. Thus the focal
contacts on a filopodium wrapped over a geometrical feature
(ridge) with high curvature (see AFM images of the PDMS
patterns in Fig. 2) will undergo higher forces than those con-
tacting a lower curvature feature. Furthermore, microtubules
and actin filaments inside the growth cone act as stiff load-
bearing structures that provide resistive forces to the bending
of the filopodia. Together these effects will ultimately lead to
axonal alignment along the PDMS surface pattern when the
pattern spatial period is comparable to the size of the growth
cone.

We conclude that the theoretical model given by Eqs. (18)
and (19) represents the simplest nonlinear generalization of
the OU process, that (1) fully accounts for the experimental
data of neuronal growth on PDMS surfaces; (2) has a min-
imum number of phenomenological parameters that account
for the cell-surface interactions; and (3) allows for meaningful
comparisons with the simpler case of linear Langevin dynam-
ics that describes neuronal dynamics on glass, as well as for
comparison with the dynamics of other types of cells reported
in the literature. The model predicts characteristic speeds for
neuronal growth on surfaces with uniform geometries (e.g.,
glass and PDMS with d � l and d 	 l), terminal velocities
for neuronal growth on surfaces with d ≈ l , deterministic
torque that tends to align axons along certain preferred direc-
tions along the surface, and crossover between linear (OU)
and nonlinear dynamics, which depend on surface geometry.
We hypothesize that these could be general features of cel-
lular motility in various environments with inhomogeneous
physical and chemical properties. Evidence for this hypothesis
comes from previous studies of neuronal growth on surfaces
with various geometries, textures, and biochemical properties
[3,7,9–17], as well as from motility studies for other types of
cells [18–22]. In addition, the model could be further extended
to account for the explicit dependence of the phenomenologi-
cal parameters on the surface geometrical properties (such as
pattern period d for the PDMS surfaces presented here). This
will require measuring cell-surface coupling forces (using,
e.g., traction force microscopy) and quantifying the density

of cell-surface receptors (using fluorescence techniques) that
determine axonal contact-guidance dynamics. In principle
these future studies will allow the quantification of the
influence of environmental cues (geometrical, mechanical,
biochemical) on neuronal growth, and to correlate the ob-
served growth dynamics with cellular processes (cytoskeleton
dynamics, cell-surface interactions, cell-cell communication,
etc.).

VII. CONCLUSIONS

In this paper, we have used stochastic analysis to model
neuronal growth on PDL coated glass and micropatterned
PDMS substrates coated with PDL. We have shown that the
experimental data for neurons grown on glass and on PDMS
substrates with pattern spatial periods which are large, or
small, compared to the dimension of the growth cone are
well described by Ornstein-Uhlenbeck (OU) processes (linear
Langevin equations with white noise). On the other hand,
neuronal growth on PDMS surfaces where the pattern spatial
period matches the dimension of the growth cone (d ≈ l)
cannot be described by an OU process. Our model describes
a crossover between linear (OU) and nonlinear behavior for
the same type of cell, which is controlled only by the surface
geometry.

These results are consistent with contact-guidance phe-
nomena for neuronal growth. We conclude that the growth
behavior of axons on these surfaces is determined solely by
one external parameter (pattern period) which characterizes
the surface geometry. The model is general and could be
applied to neurons cultured on other types of substrates with
different geometrical features as well as to neuronal growth
in vivo. Moreover it could be applied to the motion of other
types of cells in controlled environments including electric
fields, surfaces with different stiffness, or biomolecular cues
with different concentration gradients.
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