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Allele fixation probability in a Moran model with fluctuating fitness landscapes
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Evolution on changing fitness landscapes (seascapes) is an important problem in evolutionary biology. We
consider the Moran model of finite population evolution with selection in a randomly changing, dynamic
environment. In the model, each individual has one of the two alleles, wild type or mutant. We calculate the
fixation probability by making a proper ansatz for the logarithm of fixation probabilities. This method has been
used previously to solve the analogous problem for the Wright-Fisher model. The fixation probability is related to
the solution of a third-order algebraic equation (for the logarithm of fixation probability). We consider the strong
interference of landscape fluctuations, sampling, and selection when the fixation process cannot be described by
the mean fitness. Such an effect appears if the mutant allele has a higher fitness in one landscape and a lower
fitness in another, compared with the wild type, and the product of effective population size and fitness is large.
We provide a generalization of the Kimura formula for the fixation probability that applies to these cases. When
the mutant allele has a fitness (dis-)advantage in both landscapes, the fixation probability is described by the
mean fitness.
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I. INTRODUCTION

A century has passed since Fisher published his seminal
paper [1] on population genetics. The theoretical framework
developed by Fisher, Haldane, and Wright and, in particular,
Wright’s concept of the fitness landscape remain the foun-
dation of numerous theoretical and experimental studies on
genetic drift and allele fixation [2]. However, most of this
research addresses evolution in a stable environment: The
fitness of an individual is associated only with a combination
of alleles in different loci.

Evolution in fluctuating environments is one of the cen-
tral problems of modern evolution theory [3–12]. Classical
population genetics approaches are based on different formal-
izations of selection and mutation processes. In most cases,
external influences are not addressed, and the set of param-
eters depends only on the internal state and does not change
in time. However, experimental studies provide evidence that
seasonal variations [3] or nutrients fluctuations [4,5] can con-
tinuously affect the fitness landscape. The theoretical aspects
of this problem have attracted considerable interest [7–11,13–
15]. Of special note is the existence of mesoscopic (fitness)
flux [10] that has been assumed to be related to adaptation.
One of the crucial evolutionary characteristics to calculate
is the allele fixation probability. Kimura’s classic results on
fixation probability [16] in the Wright-Fisher [17–19] and
Moran models [20,21] comprise one of the cornerstones
of population genetics. Previous research [11] has already
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addressed fixation probabilities in dynamic environments;
here, however, we re-examine the problem, in an attempt to
obtain more general and accurate expressions.

Under the standard stochastic approach, the population has
a constant finite size N , and its evolution is characterized by a
fixed selective value s. The fitness of an individual depends on
the allele type in one specific locus: The wild-type allele a cor-
responds to the constant fitness value 1, and the mutant allele
A to the Wrightian fitness e−s. In a population evolving under
the Wright-Fisher model, the generations do not overlap. In
this case, a new generation is formed by uniform sampling
with replacement. Under the Moran model, evolution model
implies overlapping generations with a random birth-death
process at discrete time intervals. Both models incorporate
genetic drift but involve different iteration processes. In the
Moran model, the count of each allele changes by one per
generation, whereas the Wright-Fisher model allows substan-
tial increases in allele frequency. For static fitness landscapes,
there is no qualitative difference between the Moran and
Wright-Fisher models, apart from the simple rescaling of
the selective parameter s in the allele fixation probability.
However, the Moran model allows explicit expressions for
many evolutionary traits, e.g., in this case, Kimura’s result
for the fixation probability in static fitness landscape is exact,
whereas, in the Wright-Fisher model, it is characterized by the
relative accuracy O(1/N ) + O(s2N ) [22].

In Ref. [11], the evolutionary process was considered for
the case of strong selection (N |s| � 1) and large differences
between selection coefficients (|s2 − s1|N � 1) on different
landscapes. To deduce the fixation probability, the diffusion
equation (first approximation) was used, with subsequent
truncation of the random fluctuations of the periods with the
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given fitness by two first moments (second approximation),
following the earlier studies [13–15]. This approach, actually,
is the annealing approximation to the quenched disorder prob-
lem in statistical physics.

Although this approach with double approximations is
useful in principle, it lacks accuracy control. In particular,
the diffusion equation has some limitations: It is correct for
Ns2 � 1 [22] but it is complicated to calculate the O(1/N )
corrections. To calculate the probability of allele fixation for
the given initial landscape, O(1/N ) corrections to the bulk
solution are required, which is impossible to achieve with
the diffusion equation approach. To overcome this obstacle,
it is possible to use a method related to the Hamilton-Jacobi
equations [23], considering an equation for the logarithm of
the fixation probability and O(1/N ) corrections to the bulk
solution.

In this paper, we consider a generalization of the biallelic
Moran model for a fluctuating environment, starting with two
different fitness landscapes with a transition between them.
The model has three regimes: the slow transitions, where
we can simply average Kimura’s formula for the fixation
probability via the value of the selection coefficient; the fast
transitions when we can use an effective fitness; and the
intermediate case with strong interference of evolutionary
dynamics and transitions between landscapes. For the latter
process, the perturbative methods could fail, and we will
apply the rigorous methods that have proven their efficacy for
similar evolution models. For the solution of the quenched
disorder problem of evolutionary dynamics in the stochastic
landscape, we use an exact method as opposed to the an-
nealing approximation [11,13–15]. We applied such a method
recently to solve exactly the problem of hidden Markov
models [24].

II. THE RESULTS

A. The model

The state of the finite population is represented by the
distribution of wild-type a and mutant A alleles. If we define
the probability of having i copies of the first allele in the
population at the time moment n as pi(n) and the transition
probabilities between states as Pi j , then the evolutionary dy-
namics is described by the following iteration rule:

pi(n + 1) =
∑

j

Pi j p j (n). (1)

Consider the initial condition, where the population contains
i copies of A. We seek the probability of this allele fixation,
denoted by yi. For the values yi, we have the following
equation with a transposed transition matrix:

yi =
∑

j

Pjiy j, (2)

with the following boundary conditions:

y0 = 0, yN = 1. (3)

Equation (2) has explicit meaning: The fixation of A with the
initial state i will occur eventually if the system first gets to
the jth state with probability Pji and then reaches fixation.

The Moran model can be represented as the following
Markov chain: pi are the probabilities of different states in
Eq. (1), and Pi j are the transition probabilities [20]:

Pi+1,i = i(N − i)

N2
= μi, Pi−1,i = i(N − i)r

N2
= λi, (4)

and Pii = 1 − Pi−1,i − Pi+1,i. Here N is the population size,
r = e−s is the fitness, and s is the selection coefficient. For this
case, the fixation probability can be obtained via the following
exact solution [20]:

yi = 1 − e−si

1 − e−sN
. (5)

In the present study, we seek to deduce the fixation prob-
ability for the general case of the Moran model with the
accuracy O(1/N ), using the mathematical tools that have been
elaborated on for the gene autoregulation model [25].

As described above, we analyze the behavior of a finite-
size population evolving under the Moran model. In this sys-
tem, the individuals are haploid, and one biallelic locus is con-
sidered. We aim to generalize the original Moran model for
a fluctuating environment. To formalize the fluctuations that
affect the selection values of the evolving system, new tran-
sition parameters for the environmental state are introduced.
Two options for the probabilistic description of environmental
changes can be considered, with the underlying process being
either Markovian or non-Markovian. Here we examine the
first case, where the current state of the system determines the
probability of its state at the next time interval. If we apply
the Markovian rule to define the transition between two en-
vironmental states with rates d1 and d2, respectively, then the
probability of k successive choices of the first environment is
∼ exp(−kd1) and, for the second environment, ∼ exp(−kd2).

B. The equation of the fixation probability
for the Markov model

To calculate the fixation probability for the fluctuating
fitness case, we first analyze Eq. (2), which is represented
by a linear system of equations. The system (2) has a trivial
solution yi = 1; moreover, it has been shown [22] that yi =
e−si is another solution. Thus, Eq. (2) is a degenerate system
of linear equations. Under the constraint Eq. (3), the linear
combination of these two solutions leads to the well-known
Kimura’s formula Eq. (5). From our perspective, this is the
key idea that can be applied to the problem in the dynamic
environment. In this case, having four solutions and four
constraints, we will construct a linear combination of the
solutions that satisfies the boundary conditions.

Let us consider a dynamic environment with a finite num-
ber of states and denote two distinct states. The state of the
whole system is defined now via a couple of parameters, the
environmental state α and the copy number of the A allele
in the population. The number of allele A copies changes
from one generation to another with the probability Pα

i j for
the αth environment. At the time moment n, if we have the
environment α and the probability pα

j (n) of having j alleles of
the first type, then the behavior of the system is described by

022407-2



ALLELE FIXATION PROBABILITY IN A MORAN MODEL … PHYSICAL REVIEW E 99, 022407 (2019)

the following equation:

pβ
i (n + 1) =

∑
j,β

Pα
i j pα

j (n)πβ,α, (6)

where α, β ∈ {1, 2}, πβ,α are the transition probabilities of
the environment types. For the case with two landscapes, we
have a forward transition probability d1 (from the first state to
the second), and a backward transition probability d2, hence:
π2,1 = d1, π1,1 = 1 − d1, π1,2 = d2, π2,2 = 1 − d2.

Using a similar notation as in the Moran model setting, we
denote as yα

i the fixation probability of the first allele A with
the initial condition of having i copies of this allele in the αth
environment. We have the following equation for the fixation
probabilities, putting the transposed transition matrix in the
right-hand side:

yβ
i =

∑
j,α

Pα
jiy

α
j πα,β, (7)

where the boundary conditions have the following form:

yβ

0 = 0, yβ
N = 1. (8)

Thus, if the number of different environments is m, then we
have 2m boundary conditions.

First, we seek smooth solutions of the system (7). The
trivial solution is yβ

i = 1. To find nontrivial solutions, we
assume that the expression ln[yβ

i ]/N is smooth. As shown
below, three nontrivial solutions, smooth inside the interval
[0,1], exist. Two of these have singularities at the border and
are omitted. Thus, we should consider a linear combination of
the trivial and nonsingular nontrivial solutions as a solution to
the Eqs. (7) and (8).

C. The exponential ansatz for fixation probability

At the limit of large N , we introduce a continuous variable
x = i/N . Then consider the following ansatz:

yα
i = vα (x)eNu(x), (9)

assuming 1/N expansion for the logarithm of fixation proba-
bility. Putting this ansatz into Eq. (7), we obtain a differential
equation for the function u(x) and, solving the latter equation,
we can calculate u(x). An ansatz (9) has been introduced first
in Ref. [26] for the solution of the master equation, two related
chains of equations and later has been successfully applied in
a series of studies [22,25]. We will find several solutions of
Eq. (7) and identify their linear combination which satisfies
the conditions of Eq. (8).

Substituting the expression (9) into Eq. (7) and omitting
the small terms, we obtain:∑

β

πα,βvβ[(ep − 1)e−sβ + (e−p − 1)] − vα

≡
∑

β

vβAαβ = 0, (10)

where we denoted p ≡ u′(x). Thus, we have a linear system
of two equations (α = 1, 2) and Aαβ are the functions of the
variable ep.

It can be shown that the terms that are dropped in Eq. (10),
while, deriving from Eq. (7), are small under the constraint

Ns � 1. The bulk terms in Eq. (10) are of order ∼ps, where
p ∼ s, whereas the correction terms are ∼p′/N ∼ s/N . Hence,
Eq. (10) is valid within the 1/(Ns) accuracy.

Consider Eq. (10) as a system of linear equations for
v1(x), v2(x) at any point x. Zero determinant condition takes
the form:

A11A22 − A12A21 = 0, (11)

where the expressions for Aαβ, α, β ∈ {1, 2}, are defined in
the Appendix. Equation (11) is a fourth-order equation with
respect to ep. As p = 0 is a solution, we can reduce (11) to
the third-order equation. Assuming smoothness of vα (x), u(x)
as functions of x, we obtain a unique solution for u′. Two
other solutions have singularities near the borders 0 and 1.
Knowing the expression for u(x), we can also calculate the
corresponding ratio w = v2/v1:

w(x) = −A11

A12
. (12)

D. The main formulas for fixation probability

Using Eqs. (11) and (12), and a relation w(1) = 1 from the
Appendix, we obtain the following solution:

y1
i = [1 − v(x)eNu(x)]c, y2

i = [1 − v(x)w(x)eNu(x)]c,

c = 1

1 − v(1)eNu(1)
, (13)

where u(x) = ∫
p(x)dx and v(x) is calculated in the

Appendix.

Examining the average fixation probability yi = d1y2
i +d2y1

i
d1+d2

,
assuming v′ � Nu′(x), which is correct at least for Ns � 1,
we can consider the following approximation:

yi = 1 − eNu(x)

1 − eNu(1)
. (14)

Equations (13) and (14) are the central results of this work.

E. The case of the scaling for the s1, s2, d1, d2

For the case of scaling by

d1 ∼ 1/N2, d2 ∼ 1/N2, s1 ∼ 1/N, s2 ∼ 1/N, (15)

we get look simpler formulas, the following equation for p
instead of Eq. (11):

−(d1s2 + d2s1) + [−d1 − d2 + s1s2x(1 − x)]p

+ (s1 + s2)p2x(1 − x) + p3x(1 − x) = 0. (16)

Analyzing Eq. (16), we obtain two different regimes of solu-
tions:

|d1s2 + d2s1|
d1 + d2

N � 1 (17)

and

d1s2 + d2s1

d1 + d2
N � 1. (18)

We consider the case of Eq. (17).
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FIG. 1. The fixation probability p for a mutant with initial con-
ditions defined in the first landscape versus the selection parameter
s. The parameter values are N = 100, s1 = s/(2N ), s2 = s/N, d1 =
d2 = s2/N2. The solid line corresponds to the numerical simulation,
and the dotted line to the analytical solution. The analytical and
numerical results coincide with the accuracy better than 1% with
the result obtained as the average fixation probability over two
landscapes or with the fixation probability for average fitness.

F. The fast transitions

For Eq. (17), our analytical methods give the fixation
probability with the accuracy O(1/N ), see Figs. 1 and 2.
Keeping only the first two terms in Eq. (16), we obtain the
condition for the fast transition between environments,

s1s2

4d
� 1. (19)

The inequality (19) is always valid when either s1 = 0 or s2 =
0. Expanding Eq. (10) in degrees of p and keeping the first
degree of p and s1, s2, we obtain Eq. (5) with the substitution
s → s̄:

s̄ = s1d1 + s2d2

d1 + d2
. (20)

The coefficients d2
d1+d2

and d1
d1+d2

are the probabilities of stay-
ing in environments α and β. Therefore, Eq. (16) gives the
e−s̄i solution with the average selective value s̄. The linear

FIG. 2. The fixation probability versus the initial number i of
mutants with evolution starting in the first environment. The parame-
ter values are N = 100, s1 = 0.02, s2 = 0.04, p1 = 1 − 0.001, p2 =
p1. The solid line corresponds to the numerical result and the dotted
line to the analytical result. The analytical solution coincides with
the numerical result with a 0.2% accuracy.

FIG. 3. The fixation probability p for the initial conditions in the
first landscape case versus the selection parameter s. The parame-
ter values are N = 100, s1 = −s/N, s2 = s/N, d1 = d2 = s2/N2. The
solid line corresponds to the results of the numerical simulation. The
upper dashed line corresponds to the averaged fixation probability
over the two landscapes [slow transition approximation, Eq. (5)
is averaged via the landscape probabilities], and the dots to the
analytical solution. The lower dashed line is the fixation probability
with averaged fitness for the fast transition rate approximation [given
by Eq. (5) with a selection coefficient by Eq. (20)]. The analytical
result has a relative accuracy better than 10% at s = 20, while the
fast transition approximation gives an error ∼200%.

combination of this solution and the trivial solution gives
Kimura’s formula with effective s̄.

G. The case of strong interference of evolutionary
dynamics and transitions

Consider now the case (17) with

s1s2 < 0, |s1 + s2| � |s1|. (21)

We consider the symmetric transition case with

d1 = d2 = d. (22)

Following Eqs. (20) and (21) we ignore the p0 and p2 terms in
Eq. (16) and derive a simple expression,

p =
√

2d

x(1 − x)
. (23)

Our analytics is well supported by numerics. The critical value
of N |s2 − s1|, when the effective fitness approach fails, grows
with the order

√
N , see Figs. 3 and 4. The effective fitness-

based estimate (horizontal dashed lines in Figs. 3 and 4) fails,
whereas our analytical result (solid dots) is rather close to the
numerical result (smooth line).

III. CONCLUSION

In the current study, we investigated the evolutionary pro-
cess on a fluctuating fitness landscape which arguably is a
more realistic representation of the evolutionary processes
than a static landscape. Evolutionary dynamics on fluctuating
landscapes is a fundamental problem in evolutionary biology.
We considered the case of random transitions between two
landscapes. For many evolutionary processes, it is of principal
interest to calculate the fixation probability. We developed a
method to calculate the fixation probability for the transitions
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FIG. 4. The fixation probability p versus the parameter s for a
mutant with evolution starting in the first landscape. The parameter
values are N = 1000, s1 = −s/N, s2 = s/N, d1 = d2 = s2/N2. The
solid line corresponds to the numerical result, and the dots corre-
spond to the analytical solution. The dashed line corresponds to the
averaged fixation probability over the two landscapes.

between any finite number of landscapes when these transi-
tions are described by a Markov model, deriving an ordinary
differential equations with several branches and choosing the
proper solution without singularities. The diffusion equation
approach [11] does not allow the calculation of the fixa-
tion probability with a high accuracy. Therefore, we applied
an alternative approach [22] that provides for a consistent
solution for large Ns as well as O(1/N ) correction terms.
Such accuracy is essential to calculate the fixation probability
for a given initial environment. Here the fixation probability
was derived by solving a third-order algebraic equation. Our
analytical results were confirmed by numerical calculations:
Both stochastic simulations and algebraic derivations were
obtained for the rapid transition between environments. To
our knowledge, the proposed method is the first that works for
intermediate values of parameters, with a substantial interfer-
ence of landscape fluctuations and evolutionary factors, such
as sampling fluctuations and selection. The diffusion method
that was used in Ref. [11] is correct only under the constraint
Ns2 � 1. However, Desai and colleagues [11] have consid-
ered not only small but also large values s2N = 104, which
certainly are out of the validity interval Ns2 � 1 of the diffu-
sion approximation, as they also applied a series of further
approximations. The “effective diffusion process,” invented
first in Ref. [13] and widely applied in Ref. [11], requires ac-
curacy control. This is a version of annealed approximation to
the quenched disorder problem in statistical physics. The ap-
proximation appears to be applicable to the cases considered
by Kimura [13], but for the intermediate region (fluctuation
of landscapes have the same periods the fixation process),
the application of the method is questionable. Nevertheless,
Desai and colleagues observed large deviations of the fixation
probability from the value given by the averaged fitness (see
Figs. 3 and 4) for large values of N |s1 − s2| and different signs
of s1, s2. Our formula (13) applies with a good accuracy but
it is possible to derive more accurate expressions using the
higher-order corrections in the 1/N expansion. Equation (14)
gives the precise fixation probability for all cases including
both mutants that are beneficial in both environments and
those that are deleterious in one environment but beneficial
in the other one. Thus, we obtained a single formula for all

combinations of parameter values, as opposed to six different
formulas in Ref. [11] that were derived from the diffusion
equation via further approximations. Qualitatively, the depen-
dence of x in Eq. (13) is defined by the “potential” u(x) via
the term ∼ exp[Nu(x)], and the effective potential u(x) in
Eq. (13) is defined similarly to the potentials in the previously
developed models of other processes with transitions between
different environments, such as mutator models [22] and gene
autoregulation models [25].

As a further development, it will be interesting to examine
other situations in which the effective fitness notion fails as
well as to attempt to obtain a solution for the non-Markovian
random transitions between environments. Another poten-
tially promising direction involves examination of periodic
changes of the fitness, which might be an analytically solvable
problem, and obtaining estimates for the realistic case of
combined periodic trends and random transitions between
landscapes.

APPENDIX: THE DETAILS OF DERIVATIONS

1. The general solution with O(1/N) accuracy

We deduce the following expressions from Eq. (7):

A11 = [(e−p − 1)e−s1 + ep − 1]x(1 − x)p1 + (p1 − 1),

A12 = (1 − p1)x(1 − x)[(e−p − 1)e−s2 + ep − 1] + 1 − p1,

A21 = (1 − p2)x(1 − x)[(e−p − 1)e−s1 + ep − 1] + 1 − p2,

A22 = [(e−p − 1)e−s2 + ep − 1]p2x(1 − x) + p2 − 1, (A1)

where p1 = 1 − d1, p2 = 1 − d2. Let us consider the O(1/N )
correction terms to Eq. (11). Starting from Eq. (7), we denote
v1 = v and v2 = wv. From Eq. (A1) we get w(1) = 1.

To calculate the function v(x), we need to introduce the
correction terms in the exponent, using an ansatz instead of
Eq. (10):

p1
l = veNu+r1/N , p2

l = vweNu+r2/N . (A2)

Putting such an expression with correction terms into Eq. (11),
we can define r = r2 − r1 and v. To derive r1, r2, we need
to consider the second-order correction terms. As we are
interested just in v(x), we keep only the first correction terms
to Eq. (11), derived after a careful analysis of Eq. (7).

We examine the terms:

p1
l±1 = v(x ± 1/N )eNu(x±1/N )

≈ v(x ± 1/N )eNu(x)±u′ (x)+u′′(x)/(2N )+r1 ,

p2
l±1 = v(x ± 1/N )w(x ± 1/N )eNu(x±1/N )

≈ w(x ± 1/N )v(x ± 1/N )eNu(x)±u′(x)+u′′(x)/(2N )+r2 .

(A3)

We will separate the terms proportional to u′′ as a matrix B,
the terms proportional to w′ as a D, and terms proportional to
v′ as a matrix C. Thus, we should seek in the expressions of
matrix A the terms proportional to ep and e−p, skipping other
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terms. We get:

A12wr + (B11 + wB12)
u′′

2
+ w′D1 + (C11 + wC12)

v′

v
= 0,

A22wr + (B21 + wB22)
u′′

2
+ w′D2 + (C21 + wC22)

v′

v
= 0,

(A4)

where we denoted

B11 = x(1 − x)p1(e−p−s1 + ep),

B12 = x(1 − x)(1 − p1)(e−p−s2 + ep),

B21 = x(1 − x)(1 − p2)(e−p−s1 + ep),

B22 = x(1 − x)p2(e−p−s2 + ep), (A5)

C11 = x(1 − x)p1(−e−p−s1 + ep),

C12 = x(1 − x)(1 − p1)(−e−p−s2 + ep),

C21 = x(1 − x)(1 − p2)(−e−p−s1 + ep),

C22 = x(1 − x)p2(−e−p−s2 + ep), (A6)

and

D1 = x(1 − x)(1 − p1)(−e−p−s1 + ep),

D2 = x(1 − x)p2(−e−p−s2 + ep). (A7)

We calculate u′′ from the expression for u′(x). Then we define
v′/v:

−v′

v
= (D1A22 − D2A12)w′

A22(C11 + wC12) − A12(C21 + wC22)

+ [(B11 + wB12)A22 − (B21 + wB22)A12]

A22(C11 + wC12) − A12(C21 + wC22)

u′′

2
, (A8)

and for r(x)

−r = (D1C2 − D2C1)w′

(A12C2 − A22C1)w

+ (B11 + wB12)C2 − (B21 + wB22)C1

(A12C2 − A22C1)w

u′′

2
,

C1 = B11 + wB12, C2 = B21 + wB22. (A9)

2. The case of scaling by Eq. (15)

Equations (A1), (A5), (A6), and (A7) give:

A11 = −d1 + x(1 − x)(p2 + ps1),

A12 = d1, A21 = d2,

A22 = −d2 + x(1 − x)(p2 + ps2), (A10)

B11 = 2x(1 − x), B12 = 0, B21 = 0, B22 = 2x(1 − x).

(A11)

C11 = x(1 − x)(2p + s1), C12 = 0, C21 = 0,

C22 = x(1 − x)(2p + s2). (A12)

D1 = 0, D2 = x(1 − x)(2p + s2), (A13)

w(x) = 1 − x(1 − x)(p2 + ps1)/d1. (A14)

Then

v′

v
= − A22 − A12

(2p + s1)A22 − (2p + s2)A12w
u′′

+ (2p + s2)A12

(2p + s1)A22 − (2p + s2)A12w
w′. (A15)

We get the following equation instead of Eq. (11):

−d1S2 − d2S1 + [−d1 − d2 + S1S2x(1 − x)]p

+ (S1 + S2)p2x(1 − x) + p3x(1 − x) = 0. (A16)
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