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A question in evolutionary biology is why the number of males is approximately equal to that of females
in many species, and Fisher’s theory of equal investment answers that it is the evolutionarily stable state. The
Fisherian mechanism can be given a concrete form by a genetic model based on the following assumptions: (1)
Males and females mate at random. (2) An allele acts on the father to determine the expected progeny sex ratio.
(3) The offspring inherits the allele from either side of the parents with equal probability. The model is known
to achieve the 1:1 sex ratio due to the invasion of mutant alleles with different progeny sex ratios. In this study,
however, we argue that mutation plays a more subtle role in that fluctuations caused by mutation renormalize
the sex ratio and thereby keep it away from 1 : 1 in general. This finding shows how the sex ratio is affected by
mutation in a systematic way, whereby the effective mutation rate can be estimated from an observed sex ratio.
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I. INTRODUCTION

The number of males per female is close to one in the world
population, and the value has been found stable across many
countries [1]. This 1:1 sex ratio at birth is also commonly
observed in many other sexually reproducing species. This is
indeed highly nontrivial in that the ratio is suboptimal from
the viewpoint of the population: As far as the growth rate is
concerned, which is directly related to reproductive success
of the species, it would be more efficient to produce more fe-
males than males because females can give birth to offspring.
This female-biased state cannot be sustained, however, and
the reason can be understood from the “selfish-gene” point
of view. Along this line, Fisher’s theory states that the one-
to-one ratio between males and females is the evolutionarily
stable state in this game of genes [2]. The argument goes
as follows [3]: Consider an individual with n offspring, of
which nx are male and the others are female (0 � x � 1). This
individual’s next generation has K offspring in total, where
KX and K (1 − X ) are the numbers of males and females,
respectively (0 < X < 1). In this case, the relative investment
of the individual is Cinv = n/(2K ) because we assume that an
offspring inherits one half of the genes from either parent.
The focal individual’s genetic contribution to the population is
C1 = Cinv, which is a reference point to judge an individual’s
genetic success. The situation becomes different in the second
next generation: If males and females mate randomly, then the
focal individual’s genetic contribution is calculated as

C2 = 1

4

(
nx

KX
+ nx̃

KX̃

)
, (1)

where x̃ ≡ 1 − x and X̃ ≡ 1 − X . According to this formula,
if X exceeds 1/2, then C2 is greater than Cinv for x < X .
By symmetry, it is also obvious that C2 > Cinv for x > X
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if X is less than 1/2. It thus follows that it is genetically
beneficial to “invest” in the rare sex, which constitutes the
basic mechanism for maintaining the Fisherian sex ratio of
1:1. In this sense, the sex-ratio problem is an example of
conflict between individual and collective interests [4].

The Fisherian mechanism has many subtleties, and still
not much is known about deviations from its prediction [5,6].
In particular, it is noteworthy that if the population achieves
this predicted ratio, i.e., X = 1/2, C2 of Eq. (1) becomes
Cinv regardless of an individual’s x as long as the population
size is large enough [7]. It implies that the timescale of this
evolutionary dynamics may actually diverge as the restoring
force toward X = 1/2 vanishes at this point. Put differently, if
mutation occurs with a rate μ, the timescale would be of an
order of μ−1, and Fisher’s ratio X = 1/2 can be achieved in a
limit of μ → 0. If μ is small yet finite, on the other hand, the
1:1 ratio may not be reached within finite time.

In this work, we show that a dynamic equilibrium out of
1:1 actually forms in a minimal model devised for Fisher’s
theory. This is counterintuitive because mutation is an es-
sential ingredient of the Fisherian mechanism. In short, it
cannot work without mutation, and it cannot work with it
either. We will explain this observation in the following way:
In the next section, we introduce a genetic model and study
it with three different approaches: Monte Carlo simulation,
integrodifference equations, and renormalization analysis. We
discuss the implications in Sec. III and then conclude this
work in Sec. IV.

II. GENETIC MODEL

A. Monte Carlo simulation

Although Eq. (1) illustrates the basic mechanism of
Fisher’s theory, a more detailed view is provided by genetic
models [8–10], of which we will investigate the simplest one
called a haploid model [11]. As a Monte Carlo version of it, let
us consider a population of N individuals with the following
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FIG. 1. (a) Time evolution of the male fraction with μ = 10−3.
The horizontal axis represents time in units of generations. Initially,
every individual has an equal expected progeny sex ratio, x0 = 0.8,
and the numbers of males and females are the same. The lines are ob-
tained from Monte Carlo calculation with population size N = 103,
and the line points are from the integrodifference equations [Eqs. (4)
and (5)] started with φm(x, t = 0) = φ f (x, t = 0) = δ(x − x0 )/2. (b)
Pearson correlation coefficient of the offspring sex ratio between
parents and children, calculated from the Monte Carlo simulation for
various values of μ. The population size is N = 103, and we have
used 102 equilibrated samples. The offspring sex ratio of a father is
positively correlated with that of his sons who have offspring, and
the degree of correlation decreases as μ grows. No such correlation
exists between mothers and daughters.

assumptions: (i) Every individual i has two attributes, i.e., one
is the allele related with the expected progeny ratio denoted
by xi, and the other is the sex. (ii) For each mating event, we
randomly choose a male and a female as parents. (iii) The
resulting offspring inherits either xfather or xmother equally prob-
ably, and (iv) the sex is male with probability xfather. (v) With
probability μ � 1, mutation changes xi to a random number
drawn from a probability density function on the unit interval,
which we choose to be the uniform distribution U (0, 1) for
the sake of analytic tractability. (vi) One generation consists
of N mating events to produce N individuals of the offspring
generation, and an individual may be chosen to mate more
than once. This is a model of nonoverlapping generations in
the sense that the offspring generation completely replaces the
parental one, which is common in many evolutionary models.

The first three assumptions are already found in the
evolutionary-stability argument [see, e.g., Eq. (1)]. On the
other hand, we adopt from Ref. [11] the fourth assumption
that only one parent’s allele is relevant to the expected progeny
sex ratio. Yet the difference from Ref. [11] is that we regard
the father as the relevant side, which has been supported
by empirical studies [12–14]. Note that this is the point
where the symmetry between males and females is broken.
Most importantly, it is purely hypothetical that the expected
progeny sex ratio is determined by a single gene as in this
model (see, however, Ref. [14] for more discussion). With
regard to the fifth assumption, such memoryless mutation with
full variation within the unit interval would certainly be ideal,
but we can always think of an effective mutation rate with
which the genetic information is lost. We will see below that
the choice of the uniform distribution greatly simplifies our
analysis in calculating the average effect of mutation.

A typical simulation result is shown in Fig. 1(a), where
one can see the average fraction of males, denoted by r,
approach 1/2 as time t goes by, even if the system starts from a
state far from x = 1/2. However, if one measures the average

carefully, then r(t → ∞) is actually slightly above 1/2, as
will be detailed below. Before proceeding, we stress that this
Monte Carlo approach provides detailed information of the
population. For example, we can trace the offspring sex ratio
of a father and compare it with that of his son. The correlation
in their offspring sex ratios can thus be calculated as a function
of μ [Fig. 1(b)]. The ratios are positively correlated between
fathers and sons, whereas they are not between mothers and
daughters, in accordance with Ref. [14].

B. Integrodifference equations

To observe this deviation without statistical fluctuations,
let us deal with an infinite population. We define φm(x, t )dx
as the probability of being male with an expected progeny
sex ratio ∈ (x, x + dx) at generation t . The fraction of males
in the total population will thus be r(t ) = ∫ 1

0 φm(x, t )dx. We
define φ f (x, t ) as the female counterpart, together with the
fraction of females,

∫ 1
0 φ f (x, t )dx = 1 − r(t ). According to

the population dynamics given above, the time evolution is
described by the following integrodifference equations in the
absence of mutation:

φm
μ=0(x, t + 1) = 1

2

[
φm(x, t )

r(t )
x + φ f (x, t )

1 − r(t )
〈x〉m

]
, (2)

φ
f
μ=0(x, t + 1) = 1

2

[
φm(x, t )

r(t )
x̃ + φ f (x, t )

1 − r(t )
〈x̃〉m

]
, (3)

where 〈x〉m ≡ ∫ 1
0 xφm(x, t )/r(t )dx and 〈x̃〉m ≡ 1 − 〈x〉m.

When mutation happens to individuals randomly drawn
without replacement, the full dynamics can be written as

φm(x, t + 1) = (1 − μ)φm
μ=0(x, t + 1) + μ〈x〉m, (4)

φ f (x, t + 1) = (1 − μ)φ f
μ=0(x, t + 1) + μ〈x̃〉m, (5)

where μ is the mutation rate. The right-hand sides of Eqs. (4)
and (5) are determined by φm

μ=0 and φ
f
μ=0 at t , as one can

see by plugging Eqs. (2) and (3) there. Note that if one
integrates Eq. (4) over x, with φm

0 given in Eq. (2), it correctly
leads to r(t + 1) = 〈x〉m, confirming that fathers determine
the progeny sex ratio. If we start from uniform distribution
φm(x, t = 0) = φ f (x, t = 0) = 1/2, then numerical iteration
of Eqs. (4) and (5) shows that r(t ) converges to a stationary
value away from 1/2 as t → ∞ [Fig. 2(a)]. The stationary
sex ratio is well fitted by the least-squares method to

rfit
∞(μ) ≈ 1/2 + 0.5μ − 2.8μ2. (6)

It is also instructive to look into φm(x, t ) itself: At t � O(10),
individuals with larger x occupy higher portions in φm(x, t )
because they are more likely to produce male offspring
[Fig. 2(b)]. This effect competes with the loss of genetic con-
tribution in the Fisherian mechanism, generating a unimodal
shape at t ∼ O(10). These two effects eventually balance each
other by making φm(x, t ) a linear function of x with a small
positive slope [Fig. 2(c)]. In Appendix A, we show how one
can find the functional forms of the stationary distributions
φm

st and φ
f
st as Taylor series. Although it takes long from the
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FIG. 2. (a) The sex ratio deviation from 1/2, obtained by iter-
ating Eqs. (4) and (5). The initial condition is given as φm(x, t =
0) = φ f (x, t = 0) = 1/2. Note that r(t = 1) is exactly 1/2 for this
initial condition because r(t + 1) = 〈x〉m. We use the trapezoidal rule
[15] in evaluating integrals such as r(t ) and 〈x〉m. (b) Short-time and
(c) long-time evolution of φm(x, t ) from the same uniform random
initial condition as in (a). (d) Transition to another stationary state
when μ changes to μ′ = 2μ immediately after time τ = 104. Inset:
Zoomed view around t = τ , where the first 20 generations after the
change are drawn in light yellow.

uniform initial condition to this stationary state, the distance
between stationary states of different μ’s is relatively short
[Fig. 2(d)].

C. Renormalization analysis

To understand the behavior in Eq. (6), let us assume that the
mutation rate μ is so low that the population may have only
two alleles at most, i.e., one is resident and denoted by A, and
the other is mutant and denoted by a. These alleles are related
to the expected progeny sex ratio but independent of the
probability for the carrier to be a parent of the next generation
[16]. Let x and X be the expected progeny sex ratios of a and
A, respectively. The allele a is observed with frequency qm

among males and with q f among females. The possibilities
of mating events are summarized in Table I. Using this table,

TABLE I. Frequencies and the progeny types of the four mating
cases in the haploid model with two alleles a and A. A male with
the mutant allele a will have a son with probability x, whereas the
probability is X for a male with the resident allele A. We have defined
X̃ ≡ 1 − X and x̃ ≡ 1 − x.

Daughters Sons

♂×♀ Frequency a A a A

a × a qmq f x̃ x

a × A qm(1 − qf ) 1
2 x̃ 1

2 x̃ 1
2 x 1

2 x

A × a (1 − qm )qf
1
2 X̃ 1

2 X̃ 1
2 X 1

2 X

A × A (1 − qm )(1 − qf ) X̃ X

one can calculate the frequencies of a in the next generation
as follows [11]:

q′
m = qmq f x + 1

2 qm(1 − q f )x + 1
2 (1 − qm)q f X

qmx + (1 − qm)X
, (7)

q′
f = qmq f x̃ + 1

2 qm(1 − q f )x̃ + 1
2 (1 − qm)q f X̃

qmx̃ + (1 − qm)X̃
. (8)

For example, the expected fraction of male offspring is ob-
tained from the last two columns as

r = qmq f x + qm(1 − q f )x + (1 − qm)q f X

+ (1 − q f )(1 − qm)X, (9)

= qmx + (1 − qm)X, (10)

which is the denominator of Eq. (7). Likewise, the probability
to have male offspring with allele a is calculated from the
second last column of Table I, which is the numerator of
Eq. (7).

The system of Eqs. (7) and (8) has three fixed points:

(qm, q f ) = (0, 0), (1, 1), (q̂m, q̂ f ), (11)

where q̂m ≡ (X − 1/2)/(X − x) and q̂ f ≡ 2x̃q̂m. The first
fixed point is important in the context of invasion-fixation
dynamics because both qm and q f are small when a is newly
introduced at t = 0. We thus linearize Eqs. (7) and (8) in the
vicinity of (qm, q f ) = (0, 0) to obtain

(
q′

m

q′
f

)
= 1

2

(
x/X 1
x̃/X̃ 1

)(
qm

q f

)
. (12)

It is straightforward to obtain the eigenvalues λ± with λ+ �
λ− and the corresponding eigenvectors. The instability thresh-
old of the fixed point (qm, q f ) = (0, 0) is characterized by
λ+ = 1. In this case, a little algebra shows

1 = 1

2

(
x

X
+ x̃

X̃

)
, (13)

which is equivalent to Eq. (1) with C1 = C2 [11]. If X =
1/2 + ε with |ε| � 1, then the eigenvalues are approximated
to the first order of ε as

λ+ ≈ 1 + 2

(
1 − 2x

1 + 2x̃

)
ε, (14)

λ− ≈
(

x − 1

2

)
− 2x̃

(
1 + 2x

1 + 2x̃

)
ε, (15)

and the eigenvectors are

�v+ ≈
[

1, 2x̃ + 4x̃

(
1 + 2x

1 + 2x̃

)
ε

]
, (16)

�v− ≈
[

1,−1 − 4

(
1 − 2x

1 + 2x̃

)
ε

]
. (17)

If any of λ± exceeds one, then the mutant can invade the pop-
ulation. It happens either when X > 1/2 and x < X , or when
X < 1/2 and x > X , which implies that the sex ratio tends to
1 : 1 in agreement with Eq. (1). The linear-stability analysis
can be applied to the other fixed points as well, whereby we
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FIG. 3. Stable fixed points of Eqs. (7) and (8) represented on the
(X, x) plane. For example, if (X, x) = (0.4, 0.3), then the system will
converge to (qm, qf ) = (0, 0).

conclude that the relevant fixed point is (qm, q f ) = (0, 0) or
something close to it, as far as ε is sufficiently small (Fig. 3).

When a small number of mutants have appeared, (qm, q f )
will be aligned along �v+ ≈ (1, 2x̃) by the fast dynamics with
a timescale of t0 ≡ | ln λ−|−1 ∼ O(1). Because �v− ≈ (1,−1),
the sum of qm and q f is approximately conserved during this
alignment, after which

[
q(t=t0 )

m , q(t=t0 )
f

] ≈ Q

(
1

1 + 2x̃
,

2x̃

1 + 2x̃

)
, (18)

where Q ≡ q(t=0)
m + q(t=0)

f is the initial fraction of mutants.
The system then slowly approaches the fixed point (0,0),
which means that the mutants go extinct. From the fact that
λ+ ≈ 1, we see that the characteristic timescale diverges in
this slow dynamics. To be more precise, the trajectory can be
expressed by

q f ≈
[

2x̃ + 4x̃

(
1 + 2x

1 + 2x̃

)
ε

]
qm + Cq2

m, (19)

with

C ≈ −2x̃(1 − 2x)(1 + 2x)

1 + 2x̃

− 4x̃(21 − 78x + 180x2 − 168x3 + 32x4)

(1 + 2x̃)3
ε (20)

to the order of ε. Note that we have to keep the order of
q2

m. Plugging Eqs. (19) and (20) into Eq. (7) and using the
continuous-time approximation, we get the following differ-
ential equation:

dqm

dt
≈ c1qm + c2q2

m, (21)

where

c1 ≡ 2

(
1 − 2x

1 + 2x̃

)
ε, (22)

c2 ≡ − (1 − 2x)2

1 + 2x̃
− 6(7 − 10x + 12x2 − 8x3)

(1 − 2x)−1(1 + 2x̃)3
ε. (23)

One can readily solve Eq. (21) to find

qm(t ) = c1ec1t q(t=t0 )
m

c1e−c1t0 − c2(ec1t − e−c1t0 )q(t=t0 )
m

. (24)
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FIG. 4. (a) Time evolution of the fraction of males [Eq. (10)]
from the direct recursion [Eq. (7) and (8)] (points) and its approxima-
tion [Eq. (24)] (lines), when q(t=t0 )

f = q(t=t0 )
m = 0.01 and X = 0.49 in

the haploid model with two alleles. (b) Deviation from the Fisherian
ratio as a function of μ. The solid line shows the approximation in
Eq. (32). For comparison, we also plot 0.5μ-2.8μ2 of Eq. (6). The
points with error bars show results from the Monte Carlo version of
the haploid model with population size N . The errors are estimated
over 50 equilibrated samples.

In the limit of ε → 0, the timescale of this dynamics diverges
because qm(t ) ∼ t−1. In addition, if c1 > 0, then Eq. (24)
converges to

lim
t→∞ qm(t ) = −c1/c2 ≈ 2ε/(1 − 2x), (25)

which coincides with the correct result, q̂m in Eq. (11), to the
order of ε. Now we have an approximate expression for the
male fraction as a function of time by substituting Eq. (24)
into Eq. (10). It may be written as r(t |X, x) to emphasize that
it is also conditioned by X and x. Although this result involves
uncontrolled approximations such as Eq. (18) and t0 ≈ 0, the
formula works reasonably well as shown in Fig. 4(a).

Now imagine that the population initially had X = X0.
Random mutation occurs with a timescale t ∼ O(μ−1) at any
point of the population, and the sex ratio will be renormalized
as a response to mutation as follows:

εk+1 =
∫ 1

0
r(t = μ−1|X = Xk, x)dx − 1

2
, (26)

=
∫ 1

0
[εk + (x − Xk )qm(t = μ−1|Xk, x)]dx, (27)

≡ E (εk, μ), (28)

where we have defined εk ≡ Xk − 1/2 with an integer index
k = 0, 1, . . .. As an example, assume that μ can be made
arbitrarily small to satisfy μ � |c1| all the time. According
to the approximate expression given above, as t → ∞, the
male fraction r converges to εk + 1/2 when c1 > 0 and to
1/2 + O(ε2

k ) otherwise [see, e.g., Fig. 4(a)]. As a result, we
have approximately 1

2 [(εk + 1
2 ) + 1

2 ] on the right-hand side
of Eq. (28), which is to be identified with Xk+1 = 1/2 +
εk+1. The map obviously flows into ε∞ = 0, and we thus
conclude that the system achieves the Fisherian ratio X = 1/2
in this limit of μ → 0. Having observed this limiting case,
we assume that the right-hand side of Eq. (28) can still be
approximated by a linear function of εk for finite μ, i.e.,

E (εk, μ) ≈ U (μ)εk + V (μ), (29)
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when εk � 1. If this assumption holds, then we have

εk = U k (μ)ε0 +
k−1∑
l=0

U l (μ)V (μ), (30)

and the “dressed” value converges to

ε∞(μ) = V (μ)

1 − U (μ)
(31)

as long as |U (μ)| < 1. From Eq. (29), we may write V (μ) =
limεk→0 E (εk, μ) and U (μ) = ∂E/∂εk|εk=0, both of which
give closed-form expressions if the integral and the limiting
process of εk → 0 commute with each other (see Appendix B
for details). Then, we take another limit of Q → 0 and get our
main result,

ε∞(μ) ≈ 3μ(ln 3 − 1)

14 − 12 ln 3 + 3μ ln 3
, (32)

which gives ε∞(μ) ≈ 0.36μ − 1.46μ2 for μ � 1. Note the
order of the limiting processes: If we had taken this zero-Q
limit from the beginning, then the result would have been
trivially zero. In Fig. 4(b), we see that Eq. (32) correctly
captures the qualitative behavior of the Monte Carlo results.

III. DISCUSSION

We have investigated a model designed to support Fisher’s
theory, and it turns out that a small correction ∝μ has to
be added. The reason for this correction is that the system
reacts differently to female-biasing and male-biasing mutants,
as already implied in Eq. (18): When X ≈ 1/2, if we compare
female-biasing mutants, say, with x = 0.4, and male-biasing
ones with x = 0.6, then qm will be greater in the latter case.
On average, therefore, the male fraction is likely to be expe-
rienced as greater than 1/2. Recall that the asymmetric part
of the model is the father’s predominance in determining the
offspring’s sex. We have shown that the system nevertheless
becomes symmetric in a limit of μ → 0, which is the mes-
sage of the fixed-point analysis in Eq. (13). In this sense,
Fisher’s theory can be thought of as a symmetry preservation
mechanism. At the same time, each individual has an internal
variable, the expected progeny ratio x. An interesting point is
that this internal variable experiences little selection pressure
when the sex ratio is 1:1, so that the gene pool can retain a
high degree of genetic diversity [see, e.g., Fig. 2(c)].

For many species with female-biased sex ratios, the bias
has been successfully explained within the Darwinian frame-
work, e.g., by local mate competition [6]. On the other hand,
the human sex ratio is slightly biased toward males [17],
which is also believed to have an evolutionary origin. We
have already seen how the Fisherian mechanism maintains an
(almost) equal sex ratio at birth. If we furthermore assume that
males have a higher mortality rate than females in their youth
[18], then Fisher’s equal-investment theory predicts a male-
biased sex ratio at birth: Otherwise, the overall investment
in male offspring would eventually become smaller than in
female ones [6]. Unfortunately, empirical verification of this
prediction is exceedingly complicated by the difficulty of
measuring parental investment [19]. This work has proposed
another mechanism that induces a male-biased sex ratio. In

case of diploid organisms like humans, the proportionality
coefficient in front of μ will depend on the dominance be-
tween the resident and mutant alleles, but it is plausible that
our estimate from the haploid model sets an upper bound for
it because a recessive mutant would not much perturb the
system. If we naively guess that our mechanism is responsible
for the commonly known human sex ratio ≈1.07 : 1 at birth,
then the effective mutation rate will be μ � 0.05, meaning
that the allele of the expected progeny sex ratio will be
mutated roughly in 20 generations. We also note that one can
empirically measure the correlation of offspring sex ratios
in families, as we have depicted in Fig. 1(b). After suitable
modification of the modeling assumptions, this sort of Monte
Carlo calculation may be compared with genealogical data to
estimate μ. One can also monitor how the sex ratio varies
when mutations are induced by chemicals or radiation. For
example, the human mutation rate showed a twofold increase
among individuals involved in the Chernobyl accident even at
a conservative estimate [20]. A recent investigation demon-
strates that the sex ratio increased after the accident [21],
which seems consistent with our study.

In a more general context, our study suggests that the
conventional fixed-point analysis, focusing on a static equi-
librium, may not catch the exact picture if perturbative effects
are not taken into account, and that the behavior can be
explained by renormalizing the fluctuations around the fixed
point. Our result can also be regarded as an example of
mutation-selection balance [22], in which selection drives the
system to the fixed point while at the same time it is prevented
by mutation from reaching it. Although the mutation rate is
very small, its effect is of an observable magnitude because
the approach to the fixed point has a diverging timescale.

IV. SUMMARY

To summarize, we have presented a detailed analysis of the
haploid model, a microscopic foundation of Fisher’s theory of
equal investment: Although the invasion-fixation dynamics of
the haploid model explains the 1 : 1 ratio in the limit of μ →
0, the system reaches a dynamic equilibrium away from the
Fisherian ratio as long as μ is nonzero. We have demonstrated
this mutation-induced bias with three different approaches,
i.e., Monte Carlo simulation, integrodifference equations, and
renormalization analysis. All of these approaches give con-
sistent results, revealing nontrivial dynamical aspects of the
Fisherian mechanism. By linking the mutation rate and sex-
ratio bias, this picture yields testable predictions, whereby the
size of this effect can be assessed empirically.
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FIG. 5. (a) Stationary probability density of being males with expected progeny sex ratio x, and (b) that of being females. The points are
obtained by numerical iteration of Eqs. (4) and (5) with the same parameters as in Fig. 2(a), and the lines are drawn with the parameters that
minimize Eq. (A6).

APPENDIX A: STATIONARY SOLUTION OF THE INTEGRODIFFERENCE EQUATIONS

Let us expand the stationary distributions φm
st (x) ≡ φm(x, t → ∞) and φ

f
st(x) ≡ φ f (x, t → ∞) to the quadratic order:

φm
st (x) ≈ α0 + α1x + α2x2, (A1)

φ
f
st(x) ≈ β0 + β1x + β2x2. (A2)

Within this approximation, we actually have 5 degrees of freedom because of the following constraint:∫ 1

0

[
φm

st (x) + φ
f
st(x)

]
dx = α0 + 1

2
α1 + 1

3
α2 + β0 + 1

2
β1 + 1

3
β2 = 1. (A3)

Let us plug Eqs. (A1) and (A2) into Eqs. (4) and (5). We define

S(x) ≡ α0 + α1x + α2x2 −
{
μ

( α0
2 + α1

3 + α2
4

α0 + α1
2 + α2

3

)
+ 1

2
(1 − μ)

[
x(α0 + α1x + α2x2)

α0 + α1
2 + α2

3

+
( α0

2 + α1
3 + α2

4

α0 + α1
2 + α2

3

)(
β0 + β1x + β2x2

1 − α0 − α1
2 − α2

3

)]}
(A4)

T (x) ≡ β0 + β1x + β2x2 −
{
μ

(
1 −

α0
2 + α1

3 + α2
4

α0 + α1
2 + α2

3

)
+ 1

2
(1 − μ)

[
(1 − x)(α0 + α1x + α2x2)

α0 + α1
2 + α2

3

+
(

1 −
α0
2 + α1

3 + α2
4

α0 + α1
2 + α2

3

)(
β0 + β1x + β2x2

1 − α0 − α1
2 − α2

3

)]}
. (A5)

Equations (4) and (5) mean that S(x) = T (x) = 0, which will be only approximately true because Eqs. (A1) and (A2) are not
exact. We instead minimize

W ≡
∫ 1

0
dx[S2(x) + T 2(x)] (A6)

with respect to α0, α1, α2, β1, and β2. When μ = 10−3, the minimum Wmin = 3.46448 × 10−16 is found at α0 = 0.499004,
α1 = 0.00298505, α2 = 2.76624 × 10−10, β1 = −0.989074, and β2 = −0.0059523 [23], which indeed describe the stationary
solution with high precision (Fig. 5).

APPENDIX B: EVALUATION OF U (μ) AND V (μ)

Let us express Eq. (28) as an integral by plugging Eq. (24) into Eq. (27). Then, we introduce U (μ) and V (μ) as in Eq. (29),
which implies that V (μ) = limεk→0 E (εk, μ) and U (μ) = ∂E/∂εk|εk=0. Provided that the integral and the limiting process of
εk → 0 commute, we can find their closed-form expressions as follows [23]:

V (μ) = E (0, μ), (B1)

= −
∫ 1

0

μQ(−3 + 2x)(−1 + 2x)

2[Q(1 − 2x)2 + μ(3 − 2x)2]
, (B2)

= − μQ

4(μ + Q)
×

{
−2(μ + Q) + 4

√
μQ

[
arctan

(
3μ + Q

2
√

μQ

)
− arctan

(
μ − Q

2
√

μQ

)]

−(μ + Q)[ln(μ + Q) + ln(9μ + Q)]

}
, (B3)
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U (μ) = ∂E

∂εk

∣∣∣∣
εk=0

(B4)

=
∫ 1

0

2μ2(3 − 2x)4(Q + 2x − 3)

2(2x − 3)[μ(3 − 2x)2 + Q(1 − 2x)2]2
dx +

∫ 1

0

2μQ(1 − 2x)2[2Q(12x3 − 16x2 + 9x − 6) + (2x − 3)3]

2(2x − 3)[μ(3 − 2x)2 + Q(1 − 2x)2]2
dx

+
∫ 1

0

Q2(2x − 3)(1 − 2x)3

2(2x − 3)[μ(3 − 2x)2 + Q(1 − 2x)2]2
dx (B5)

= 1

4(μ + Q)3

(
2[μ4(18 − 66Q) + 4μ3(8 − 9Q)Q + 14μQ3 + Q4 + 3μ2Q2(9 + 10Q)]

9μ + Q

−
√

μQ[15μ3 + Q2(1 + Q) + μQ(6 + 5Q) + μ2(−3 + 67Q)]

[
arctan

(
μ − Q

2
√

μQ

)
− arctan

(
3μ + Q

2
√

μQ

)]

−μ{12(mu + Q)3 ln 3 + [6μ3 + 17μ2Q + 2μ(2 − 7Q)Q − Q3][ln(μ + Q) − ln(9μ + Q)]}
)

. (B6)

We then combine these formulas as in Eq. (31) and take another limit of Q → 0 to obtain Eq. (32).
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