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We study the dynamical proprieties of phase synchronization and intermittent behavior of neural systems
using a network of networks structure based on an experimentally obtained human connectome for healthy and
Alzheimer-affected brains. We consider a network composed of 78 neural subareas (subnetworks) coupled with
a mean-field potential scheme. Each subnetwork is characterized by a small-world topology, composed of 250
bursting neurons simulated through a Rulkov model. Using the Kuramoto order parameter we demonstrate that
healthy and Alzheimer-affected brains display distinct phase synchronization and intermittence properties as a
function of internal and external coupling strengths. In general, for the healthy case, each subnetwork develops
a substantial level of internal synchronization before a global stable phase-synchronization state has been
established. For the unhealthy case, despite the similar internal subnetwork synchronization levels, we identify
higher levels of global phase synchronization occurring even for relatively small internal and external coupling.
Using recurrence quantification analysis, namely the determinism of the mean-field potential, we identify regions
where the healthy and unhealthy networks depict nonstationary behavior, but the results denounce the presence
of a larger region or intermittent dynamics for the case of Alzheimer-affected networks. A possible theoretical
explanation based on two locally stable but globally unstable states is discussed.
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I. INTRODUCTION

Neural systems are characterized by the presence of neural
cells and a complex structure of connections among them [1].
A large variety of neural systems is found in nature, from
those composed of just hundreds of neurons and a few thou-
sand connections, as in the Caenorhabditis elegans nematode
neural network [2], to large structures, e.g., the human brain,
where ∼1011 neural cells and ∼1015 connections are found
[3]. In general, the neural systems are composed of different
subsystems (network areas), each one responsible for essential
functions, e.g., language, memory and perception, vital regu-
lations and more [1], each area preserving its own complex
pattern of connectivity, making each one distinguishable from
the others [4].

To mimic some characteristics of real neural systems and
their complex connectivity patterns, the study of complex
networks and networks of networks is particularly useful.
The neural networks can be understood as a first approach
to the real neural system, where neurons and connections are
represented by nodes and links. Such a modeling of the neural
system through a complex network can also be understood
at a macroscopic level, where each neural area is represented
by an entire network connected externally to other networks,
and internally where the neurons are connected to other
neurons of the same network. In general, different internal
and external connection schema are considered [3,5–7]. The
study of complex network phenomenology provides useful
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approaches to many problems of science, mainly physics,
chemistry, biology, physiology, and even social science
[8–11]. An important phenomenon of complex networks
consists of emergent behavior, where the collective dy-
namics is richer than the single sum of individual behav-
iors [10], resulting in a richness of dynamical properties
such as phase synchronization, nonmonotonous (anomalous)
synchronization processes, and nonstationary transitions to
phase-synchronized states [12–16].

In this paper, we study a neural system composed of
a network of networks. We consider 78 subnetworks, each
one containing 250 neurons, resulting in a total of 19 500
neurons in the entire system. The use of subnetworks brings
the possibility to distinguish different network areas, allowing
some heterogeneity for the entire network. The connection
architecture between subnetworks is based on the connectome
of the human brain obtained from the original work of Lo et al.
[17]. The connectome is constructed using diffusion-weighted
images [18] obtained from magnetic resonance data of 25
Alzheimer patients and a healthy control group composed of
30 cognitively normal, free of neurological disease, patients.
The experimental procedure results in a weighted 78 × 78
matrix. The weight of each matrix element (i, j) depends
on the number of fibers connecting i and j areas, deter-
mined using the fiber assignment with continuous tracking
algorithm [19]. This reflects in some sense the observation
that Alzheimer’s disease can promote effects on the network
level, affecting its dynamics [20–22]. The weight matrices are
representative of a mean real topology of Alzheimer-affected
and healthy brains. Differences on the distribution of the con-
nections (fibers) between areas composing the neural system
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in the disease and healthy cases are observed: Both follow
a small-world topology but the Alzheimer-affected networks
exhibit higher shortest path lengths [17], evidencing the loss
of connections between brain areas and, consequently, loss
of communication between different functional brain regions
that reflects the cognitive decline in Alzheimer’s disease.
These points reveal the relevance of regarding dementia as a
functional network disorder [22].

For each subnetwork, we consider a small-world topology
coupling scheme, with a second neighborhood local structure,
resulting in 1000 local connections added to ≈214 nonlocal
connections (Newman-Watts route) [23], leading to 78 non-
identical matrices with a similar small-world topology. The
internal small-world topology is chosen since it adequately
mimics real neural network connections by displaying high
clustering and low average path length, two well-known char-
acteristics of a small-world topology [2,24,25]. At the same
time, the small-world coupling scheme shows rich dynamic
behavior at the transition from unsynchronized to synchro-
nized states [5,13,26,27] and may be useful to understand
details of the not completely understood dynamics at the tran-
sition to globally stable synchronized states as the coupling
strength is varied [28].

A network of networks, as supposed here, is also used
in experimental situations where individual brain areas have
been reported as statistically independent dynamical systems
but depicting coherent behavior with other areas [29,30]. The
transition to synchronization or collective coherent behavior
in a neural network consists of a very important research point
since there are indications of a close relation between excess
(or lack) of synchronization levels of some neural diseases
[31,32]. Some neurological disorders are also related to inter-
mittent and nonstationary behavior of the brain dynamics [33].

The phase synchronization of a network is characterized by
the temporal synchrony of the slow timescale of the neurons
in the network. In order to quantify the phase synchronization,
we compute the Kuramoto order parameter [34] based on
data from the associated phase of each neuron. If the system
displays a phase synchronization, then the order parameter
gets close to 1, oscillating near a vanishing value for a
nonsynchronized network.

To analyze the intermittent characteristics of the system,
we make use of the recurrence quantification analysis, partic-
ularly the determinism (�) [35,36]. The δ analysis presents
robust results to investigate the intermittent behavior [37] and
can be evaluated making use of the mean field of the network
only, as they are data that are experimentally obtained more
easily [13,14].

The paper is divided as follows: In Sec. II the Rulkov
model is presented and the internal and external connection
schemes are defined. In Sec. III the associated phase of each
neuron and the Kuramoto order parameter are defined and the
recurrence matrix and the determinism are explained in detail.
In Sec. IV results and discussions are shown, supporting the
conclusions that are in Sec. V.

II. RULKOV MODEL AND CONNECTION
ARCHITECTURE

Based on previous results [6,12–16], where distinct models
lead to similar transitions to phase synchronization, we use

FIG. 1. Dynamical behavior of (a) fast x and (b) slow y variables
of the neuron model, Eqs. (1) and (2). The fast variable (a) simulates
the bursting neural activity, consisting of a sequence of chaotic spikes
followed by a resting period, while the slow variable (b) is used to
associate a geometric phase to each neuron since local maxima of y
coincide temporally with bursting beginnings.

the Rulkov model [38], consisting of two coupled maps to
reproduce the neuron behavior,

x j
t+1,i = α

j
i

1 + (
x j

t,i

)2 + y j
t,i + I j

int,t,i + I j
ext,t , (1)

y j
t+1,i = y j

t,i − 0.001x j
t,i + 0.001. (2)

Here i = 1, . . . , N , where N = 250 is the number of neurons
in each subnetwork; j = 1, . . . , M, where M = 78 is the
number of subnetworks; x j

t,i represents the fast variable of the
system and can be understood as the membrane potential of
neurons; and y j

t,i represents the slow variable of the system.
The constant values were chosen in order to obtain the burst-
ing behavior regime, as observed in Ref. [39]. We consider
nonidentical bursting neurons characterized by the presence
of two timescales: a fast one, related to the time interval
between two chaotic spikes, and a slow one, consisting of the
time interval of a sequence of spikes (a burst) followed by a
quiescent period [40–43]. The distinction among neurons is
made by the parameter α

j
i , randomly (Gaussian) distributed in

the interval [4.15; 4.25] with a standard deviation of 0.02 and
leading to bursting behavior for all neurons [39]. The typical
fast-scale dynamical behavior of the neurons x j

t+1,i is depicted
in Fig. 1(a), where bursts and quiescent periods are clearly
visualized. Figure 1(b) depicts the slow variable y j

t+1,i, making
clear its relation with starting and ending of a burst.

The internal coupling term (Iint) between neurons in a
subnetwork is

I j
int,t,i = εint

χ

N∑
k=1

ei,kx j
t,k, (3)

where εint is the internal coupling strength, χ is the normal-
ization factor given by the average number of connections
in the network, and ei,k are small-world matrix elements.
Each subnetwork has a nonidentical, but similar, small-world
coupling matrix, resulting in a unique χ ≈ 4.85 value valid
for all subnetworks.
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FIG. 2. Graphical representations of two examples of the human connectome where 78 neural subareas are identified. The matrices are
obtained from magnetic resonance data of cognitively normal and Alzheimer patients [17] and rescaled into four discrete levels in Ref. [5].
Panel (a) and (b) show one example of a healthy and Alzheimer connective matrices. Four connection levels are identified for the case of
healthy and Alzheimer-affected brains. A white pixel denotes the absence of connection, while yellow, blue, red pixels identify connection
levels of intensity 1, 2, and 3, respectively.

The external coupling term (Iext) is based on the human
brain matrix given by

I j
ext,t = εext

M∑
k=1

gj,k V
k
t , (4)

where εext is the external coupling strength and gj,k are the
human brain matrix elements depicted in Fig. 2(a) for a
healthy brain and in Fig. 2(b) for Alzheimer-affected brains
[17]. In Figs. 2(a) and 2(b) white pixels represent the absence
of connection between the ith and jth subnetworks leading
to gi, j = 0. Yellow, blue, and red pixels denote connection
factors of gi, j = 1, gi, j = 2, and gi, j = 3, respectively [17].

V
k
t is the mean field of each subnetwork k,

V
k
t = 1

N

N∑
i=1

xk
t,i. (5)

In a similar way, the mean field of the entire network is
defined as

V global,t = 1

NM

M∑
j=1

N∑
i=1

x j
t,i. (6)

Each subnetwork follows small-world properties consid-
ering a second neighborhood regular network and nonlocal
connections with a probability p = 0.0035 [23]. The total
number of connections of each subnetwork is given by

n = 4N︸︷︷︸
local

+ N (N − 5)p︸ ︷︷ ︸
nonlocal

, (7)

where p = 1 leads to a globally connected network.

III. THE KURAMOTO ORDER PARAMETER AND
RECURRENCE QUANTIFICATION ANALYSIS

Figure 1(b) depicts the dynamics of the y variable of the
neuron map. The local maximum of y coincides with the

starting of a burst in x dynamics, so a geometric phase for
each neuron can be evaluated and the phase synchronization
computed through the Kuramoto order parameter, since the
phase is increased by 2π every time y assumes a local maxi-
mum. A continuous variation of phase for each neuron in the
network is obtained by using linear interpolation [44]

θ
j

i (t ) = 2πk j
i + 2π

t − t j
k,i

t j
k+1,i − t j

k,i

, t j
k,i < t < t j

k+1,i, (8)

where t j
k,i is the time for which y assumes a local maximum

and the kth burst of the ith neuron belonging to the jth
network starts.

The Kuramoto order parameter for each network j is
defined as [34]

R j (t ) =
∣∣∣∣∣

1

N

N∑
k=1

eiθ j
k (t )

∣∣∣∣∣, (9)

and the global Kuramoto order parameter can be computed for
the entire network as

Rglobal(t ) =
∣∣∣∣∣∣

1

MN

M∑
j=1

N∑
k=1

eiθ j
k (t )

∣∣∣∣∣∣. (10)

To evaluate the intermittent behavior of the network, we em-
ploy determinism, a well-known tool of recurrence quantifi-
cation analysis (RQA) [35]. The RQA is based on the original
idea of the recurrence matrix, a graphical tool developed
by Eckmann et al. [36]. A mathematical definition of the
recurrence matrix is given by

Ri j (μ) = 	(μ − ||wi − w j ||), wi ∈ R, i, j = 1, 2, . . . , S,

(11)

where μ is the recurrence threshold, S is the size of the time
series, and 	 is the Heaviside function. So if a given state i
is (not) recurrent to another state j, then the correspondent
element of the matrix is set to a value 1 (zero).
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FIG. 3. Recurrence plot for an unsyncronized (a) and synchro-
nized (b) networks. Observe that for case (b) the diagonal structures
are clearer, suggesting � as a useful tool to diagnose the phase
synchronization of networks.

Particularly important are the diagonal lines of the re-
currence matrix formed by 1s, since the determinism (�)
is measured as the ratio of recurrent points that belong to
diagonal lines and all recurrent points on the recurrence matrix

�(
min, μ) =
∑S


=
min

P(
, μ)∑S


=1 
P(
, μ)
, (12)

where 
 and 
min are the lengths of diagonal lines and the min-
imum diagonal length considered. P(
, μ) is the probability
distribution function (PDF) of diagonals lines.

The recurrence threshold μ is chosen from the condi-
tion that d[�(μ)]/dμ assumes a maximum, resulting in a
more sensitive quantifier to analyze stationary changes in the
time series [37]. To avoid small diagonals such that phase-
synchronized and -unsynchronized states are better distin-
guishable, the minimum diagonal length considered is lmin =
35 [14]. � is evaluated using a moving window of 10 000
points and over the mean field of the entire system described
by Eq. (6), turning it in an easier tool in comparison to other
quantifiers that must be evaluated using information of each
neuron in the network. These parameters are kept constant for
all analyses.

To understand better why � can be used to quantify
(un)synchronized states, Figs. 3(a) and 3(b) display the re-
currence plots of the global mean-field representative of
unsynchronized and synchronized networks, respectively. A
phase-synchronized network has a higher oscillatory mean-
field amplitude when compared to a nonsynchronized one.
Using an optimized vicinity parameter [37], the determinism
is able to capture the “periodic” behavior of the synchronized
network mean field, as demonstrated by clearer diagonal lines
in the recurrence plot, Fig. 3(b), leading to bigger values of �.

IV. RESULTS AND DISCUSSIONS

A. Phase synchronization

First, we focus on the general scenario of the synchroniza-
tion level of the network as a function of internal and exter-
nal coupling strengths. To quantify the transition to phase-
synchronized states of each subnetwork, we use the mean

value in time 〈·〉 of the Kuramoto order parameter, Eq. (9),

〈R〉 j = 1

t f − t0

t f∑
t=t0

R j (t ), (13)

where j is the specific subnetwork, t0 = 100 000 is the tran-
sient time, and t f = 150 000 is the total time considered.
Accordingly, the average over all subnetworks of the mean
value of the Kuramoto order parameter of each subnetwork is
written as

〈R〉 = 1

M

M∑
j=1

〈R〉 j . (14)

Similarly, the global mean value in time of the Kuramoto
order parameter, Eq. (10), is

〈R〉global = 1

t f − t0

t f∑
t=t0

Rglobal(t ). (15)

We also define the difference between the average over
all subnetworks of the mean value of the Kuramoto order
parameter and the mean value of the global Kuramoto order
parameter as [6]

δR = 〈R〉 − 〈R〉global. (16)

Figure 4 depicts the results about the synchronization scenario
of the networks. Figures 4(a) and 4(b) depict the mean value
of the global Kuramoto order parameter [Eq. (15)] of the
healthy and the Alzheimer-affected networks. A first com-
parison reveals visual differences between the healthy and
unhealthy brain coupling matrices. For the healthy network
[Fig. 4(a)], even for larger values of εint and εext, just moderate
levels of phase synchronization are observed and accordingly
max〈R〉global ≈ 0.75. For the Alzheimer network [Fig. 4(b)],
large values of εint and εext result in max〈R〉global ≈ 0.9, sug-
gesting a higher level of global phase synchronization.

Another important point consists of the behavior of the
networks for εext < 0.25 × 10−3. For the healthy one, a sub-
tle transition from unsynchronized (dark tones) to partially
phase-synchronized states (yellow tones) as εext grows is
observed. The level of phase synchronization is then smoothly
increased as εext increases. For the Alzheimer-affected net-
work, the transition region spreads over a larger interval of εext

and strong levels of phase synchronization are found, even for
small amplitudes, εext < 0.25 × 10−3, as can be observed by
the occurrence of pale yellow spots in Fig. 4(b), configuring a
large region where intermittent phase synchronization is likely
to occur. This scenario corroborates the idea that disruption on
synchronized rhythms from slow δ range to ultrafast γ ranges
may be related to neurological conditions, including brain
trauma, schizophrenia, and Alzheimer’s disease processes
[21]. The literature reports that disruptions of γ -collective
oscillations might contribute to the accumulation of amyloid-
β protein in the brain—a hallmark of Alzheimer’s disease
[45]. Abnormal network activity in Alzheimer’s disease is also
provided by radiological studies, positron-emission tomog-
raphy or single-photon-emission computed tomography, and
magnetic resonance imaging [46–48]. These alterations may
reflect the overall decreases in neuronal and synaptic activity
but could also result from intermittent excesses in excitatory
neuronal activity [46].
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FIG. 4. Mean value of the Kuramoto order parameter as function of internal (εint) and external (εext) coupling strengths. High mean values
of the Kuramoto order parameter indicate high phase synchronization. Panels (a) and (b) depict the mean value of the global Kuramoto order
parameter [Eq. (15)] for healthy and Alzheimer-affected networks. Note the higher levels of phase synchronization for the unhealthy network.
Panels (c) and (d) depict the average of the Kuramoto order parameter over all subnetworks. Despite the distinct global behavior of the
networks, the internal phase synchronization of each subnetwork is very similar.

The scenario is completely different when the individual
behavior (local level) of each subnetwork is considered since
the pathological concentration of naturally secreted oligomers
of amyloid-β trigger aberrant patterns of neuronal circuit
activity and epileptiform discharges at the network level [46].
Figures 4(c) and 4(d) depict the average of the mean value of
the Kuramoto order parameter of each subnetwork [Eq. (14)].
Independently of healthy or unhealthy networks, the transition
to phase-synchronized states of each subnetwork occurs in
a very similar way. Note that 〈R〉 → 1 for relatively small
values of εext and/or εint, showing that all subnetworks acquire
the internal phase synchronization but for almost all phase
space considered the subnetworks are not synchronized with
each other. An important point emerges from the analyses
of Figs. 4(a)–4(d), the major levels of globally phase syn-
chronization (phase-synchronized subnetwork) for large εext

and a more significant intermittent region for low values of
εext are artifacts of the Alzheimer-affected network connec-
tion matrix. The results of Fig. 4 suggest that Alzheimer’s
disease makes subnetworks more susceptible to dis-
play intermittent phase-synchronized dynamics for low-εext

regimes.
A quantitative method to observe the difference between

global phase synchronization and the subnetwork internal
phase synchronization is given by δR, defined by Eq. (16).

Results for δR are depicted in Fig. 5(a) for the healthy network
and in Fig. 5(b) for the unhealthy one. When each subnetwork
is individually phase synchronized but not synchronized to
each other, the entire network will be desynchronized and
δR ≈ 1. This behavior is clearly observed for the regime of
weak εext and strong εint, resulting in the pale red and yellow
tones observed at the bottom of Figs. 5(a) and 5(b). All other
features of Fig. 5 must be discussed in association with Fig. 4
since a globally phase-synchronized or -unsynchronized net-
work results in δR ≈ 0. Dark tones associated with small
values of εint and εext, as observed in both panels, result from
the completely unsynchronized subnetworks due to small cou-
plings. On the other hand, the overall dark red tones observed
in Fig. 5(b) show that Alzheimer-affected networks reach an
almost completely globally phase-synchronized network. This
feature is absent in healthy networks, which never display
global phase synchronization for the same interval of εint and
εext.

The results obtained so far have used the individual signals
of each neuron of the network. However, important features
of the network dynamics can be obtained using just the mean
field of the entire network, described by Eq. (6). To do so,
we make use of recurrence quantification analysis [13,14,37];
namely, we compute the determinism described by Eq. (12)
for the healthy and Alzheimer networks.
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FIG. 5. Differences between the global Kuramoto order parameter, Eq. (15), and mean values of all subnetwork Kuramoto order
parameters, Eq. (14). High mean values of the δR indicate high phase synchronization of subnetworks but absence of global phase
synchronization. (a) A healthy network. (b) Alzheimer network. The healthy network presents larger values of δR, indicating a bigger difference
between the entire synchronization behavior of the network and the mean internal subnetwork synchronization behavior.

The standard deviation of the time series of the windowed
computed determinism �,

σ (�) =
√√√√ 1

T

T∑
i=1

[�(i) − 〈�〉]2, (17)

can be used to investigate the dynamical properties of the
network since the individual synchronized subnetwork and
the globally phase-synchronized network result in distinct
values for σ (�). Moreover, another important feature of the
recurrence analysis is the clear distinction of the transition
regions from the unsynchronized network, individually phase-
synchronized subnetwork, and globally phase-synchronized
network [14]. Since � distinguishes between synchronized
and nonsynchronized states displaying distinct mean values
[14], the temporal standard deviation of � can be used to
get information about the intermittent behavior of the neural
system. As long as � displays stationary oscillations around a
fixed value, σ (�) will display a low value. For an intermittent
behavior of the windowed computed �, large oscillations of
σ (�) are expected, such that it can be used to characterize
intermittency of the time series. The results provided by
σ (�) lead to a similar scenario to the one described by the
difference of the order parameter, as depicted in Fig. 5, but
making use only of the network mean field.

Figures 6(a) and 6(b) depict σ (�) of the windowed com-
puted determinism based on time series (length of 106 points)
of the mean field of the network, Eq. (6), as a function of
εint and εext for the healthy [Fig. 6(a)] and Alzheimer-affected
[Fig. 6(b)] networks. As already observed in Figs. 5(a) and
5(b), individually phase-synchronized subnetworks are ob-
served for low values of the εext and high values of the
εint. Results based on σ (�), namely its large dispersion in
time in the region of individual subnetwork phase synchro-
nization, lead us to conclude that the global dynamics is
intermittent. Such an intermittent behavior must come from
the nonperennial clustering synchronization of the subnet-
works. The unsynchronized regime for low values of both
couplings results into small values of σ (�), revealing that for
the unsynchronized regime of the network, all subnetworks

evolve in a similar stationary dynamics. The transition from
a completely unsynchronized regime to the partially global
phase-synchronized network occurs via an increase of σ (�),
suggesting again an intermittent (nonstationary) transition, as
observed in other networks [13,14]. Finally, for large values of
both coupling parameters, a relatively stationary behavior of
all subnetworks can be inferred since σ (�) oscillates around
a very low value.

B. Intermittent transition to phase synchronization

To explore the details of the intermittent characteristics
of the transition to global phase synchronization depicted
by the healthy and unhealthy connectome brain matrices,
Figs. 7(a)–7(f) depict the normalized PDFs of six represen-
tative regions as defined in Fig. 6. The PDFs are computed
for the windowed determinism of the global mean field of
the networks of healthy (black dashed lines) and Alzheimer-
affected (red solid lines) networks.

Figure 7(a) depicts PDFs of the unsynchronized states
of both networks, region (1) in Fig. 6. Narrow distributions
reveal the stationary characteristic of the dynamics of both
networks. Figure 7(b) shows results for region (2) in Fig. 6,
a transition region characterized by small values of both
couplings. A clear intermittent characteristic of the transition
is evident. The two peaks of both distributions are related to
the presence of two distinct states, characterized by different
levels of phase synchronization. The networks stay shifting
between these two states, suggesting a local stability but a
global instability of the network dynamics [13,14].

Figure 7(c) is representative of a region of intermediate
values of εint and weak values of εext. Once again the inter-
mittent characteristic is evident but only for the Alzheimer-
affected (red solid lines) networks. These results suggest that
Alzheimer-affected connectomes demand higher values of εext

to shift from individual subnetwork phase synchronization to
partially global phase-synchronized states. This behavior of
the Alzheimer-affected networks corroborates the experimen-
tal evidence that the Alzheimer connectome still behaves as
a small-world matrix but exhibits higher shortest path lengths
[17], evidencing the loss of connections between brain areas.

022402-6



PHASE SYNCHRONIZATION AND INTERMITTENT … PHYSICAL REVIEW E 99, 022402 (2019)

FIG. 6. Color-coded standard deviation of the windowed determinism time series of the network mean field as a function of εint and εext

coupling strengths. High mean values of σ (�) are an indication of intermittency regions of the parameter space. Panel (a) shows a healthy
network while panel (b) shows an unhealthy one. The intermittent transition areas are clearly observed as pale red, yellow, and pale yellow
tones. Selected areas (1)–(6) are analyzed in Fig. 7.

More than that, it reinforces the observation that Alzheimer’s
disease is characterized as a functional network disorder [22].
A representative distribution of the region of strong εint and
weak εext is depicted in Fig. 7(d). In this case, common
characteristics between healthy and unhealthy connectomes
reveal a moderate level of intermittency at the transition from
individual subnetwork phase synchronization to a partially
global phase synchronization. Figure 7(e) is representative of
a moderated εext amplitude. For this case the unhealthy con-
nectome shows a higher level of global phase synchronization,
suggesting an abnormal stationary and globally synchronized

state, occurring even for moderated εext strengths (a higher
value of � indicates a higher synchronization of the sig-
nal, corroborating the previously synchronization analysis).
Finally, Fig. 7(f) just reveals the case of an asymptotic global
phase-synchronized and stationary state depicted by both
networks. Note the higher mean value of � pointing out the
higher phase synchronization of the unhealthy network.

Figure 8 displays examples of time series of the windowed
computed determinism of the mean field of both networks.
Figures 8(a) and 8(b) show typical determinism signals for
unsynchronized and stationary states, εint = 0.007, εext =

FIG. 7. Normalized PDFs of the windowed determinism time series of the mean-field potential of the entire network for healthy (black
dashed lines) and Alzheimer (red solid lines) connectomes. Regions (1)–(6) are identified in Fig. 6 and coupling parameters are (a) εext =
0.05 × 10−3 and εint = 0.007, (b) εext = 0.05 × 10−3 and εint = 0.015, (c) εext = 0.12 × 10−3 and εint = 0.040, (d) εext = 0.10 × 10−3 and
εint = 0.080, (e) εext = 0.50 × 10−3 and εint = 0.070, and (f) εext = 1.00 × 10−3 and εint = 0.080.
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FIG. 8. Time series of the windowed computed determinism.
Panels (a) and (b) depict the globally stable unsynchronized case
[εext = 0.05 × 10−3 and εint = 0.007 region (1) on Fig. 6] for healthy
and Alzheimer-affected networks. Panels (c) and (d) display a two-
state intermittency case [εext = 0.05 × 10−3 and εint = 0.015 region
(2) on Fig. 6] for healthy and unhealthy networks. Panels (e) and (f)
show a global stable phase-synchronized case [εext = 1.00 × 10−3

and εint = 0.080 region (6) on Fig. 6] for healthy and unhealthy
networks.

0.05 × 10−3 [region (1) as depicted in Fig. 6] for healthy
and Alzheimer networks. Figures 8(c) and 8(d) depict typical
intermittent determinism signals for εint = 0.015 and εext =
0.05 × 10−3 [region (2) as depicted in Fig. 6], where � clearly
oscillates around two distinct values. Last, Figs. 8(e) and 8(f)
show the global stable phase-synchronized states occurring
for εint = 0.80 and εext = 1.00 × 10−3 [region (6) as depicted
in Fig. 6].

Further details about the dynamical process that allows the
shifting between the two states observed for the networks
and shown in Figs. 7 and 8 can be attained using the PDFs
of the time intervals (τ ) where the networks spend in each

particular state, leading to higher and lower values of �.
The results are depicted in Figs. 9(a)–9(d) and suggest that
the windowed determinism is sensitive enough to evaluate
different dynamical states shown by the networks.

Figures 9(a) and 9(b) depict the PDFs of the laminar
time periods where the healthy network spends in a less-
synchronized state [the lower state; Fig. 9(a)], and in the more
globally phase-synchronized state [upper state; Fig. 9(b)],
while Figs. 9(c) and 9(d) depict the same analysis but for the
Alzheimer-affected network. For both cases, εext = 0.05 ×
10−3 and εint = 0.015 [region (2)] in Figs. 6 and 7(b) are
considered. Power-law -scaling PDFs for the smaller laminar
periods associated with an exponential distribution for large
intervals of time are observed. The exponential scales for
large intervals are expected due to intrinsic noise in the
simulation that does not allow large intervals of time in a
specific dynamical state.

A similar scenario was found in other neural systems
[12–14] and in turbulent regimes [49] and they have been
explained in terms of two-state on-off intermittency [50].
In this scenario, two locally stable but globally unstable
asymptotic states are present in the dynamics, such that the
network dynamics can be classified as nonstationary and the
transition from unsynchronized to phase-synchronized states
are characterized as an out-of-equilibrium transition. As the
coupling parameter is varied, the global stability of the lower
branch of the dynamics is lost, turning it in just a locally stable
state. Further increase of the coupling allows a transition
region where locally stable and globally unstable lower and
higher phase-synchronization states exist. For high values
of the coupling parameter, the transition region vanishes,
giving rise to a globally stable phase-synchronized state and
the intermittent scenario is replaced by globally stable and
stationary states, as depicted in Fig. 7(f). A similar scenario
of network intermittent mean-field dynamics is associated to

FIG. 9. Normalized PDF of laminar periods for which the networks stay in each intermittent state (characterized by two peaks in
determinism distribution) depicted in Fig. 7(b) for healthy and unhealthy networks. Thick red lines are power-law fitting. (a) P(τ ) ∝ τ−1.16,
(b) P(τ ) ∝ τ−1.17, (c) P(τ ) ∝ τ−1.10, and (d) P(τ ) ∝ τ−1.18. The thin blue lines represent exponential fits.
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the behavior of neural synchronization in Alzheimer’s disease,
where abnormal disruptions of γ oscillations are reported to
be common and, in general, associated to the presence of
amyloid-β protein, a hallmark of Alzheimer’s disease [21].

V. CONCLUSION

We have studied the dynamical properties of a neu-
ral system composed of a network of networks based on
human health and Alzheimer-affected brains. The neural
systems were composed of 78 subnetworks representative of
the cortical areas and coupled by experimentally obtained
connectomes of Alzheimer-affected and healthy patients, as
described by Lo et al. [17].

We have identified distinct characteristics of the dynamical
properties of healthy and unhealthy networks, regarding the
global phase-synchronization transition, intermittency, and
local and global stabilities of the asymptotic states of both
cases. The subnetworks are internally coupled through a
similar small-world connection scheme since real networks
displaying such a topology are reported [2,24,25]. The internal
dynamics of each subnetwork is considered to be composed of
250 nonidentical bursting neurons.

By using the Kuramoto order parameter [34], we have
demonstrated that the unhealthy neural networks reach a
higher level of global phase synchronization in comparison
to the healthy cases, which is an interesting observation, since
some neural diseases are associated with excess of synchro-
nization, as observed in Refs. [31,32,51,52].

Through recurrence quantification analysis, particularly
determinism [35], we have identified distinct behaviors re-
garding the intermittency characteristics of the transition to
the global phase synchronization of healthy and Alzheimer-
affected networks. Unhealthy cases reach a higher level of
intermittency in a relatively large interval of εext. Despite
the large intermittent regime occurring as the εext grows,
Alzheimer-affected networks rapidly reach a stronger global
phase-synchronized state, occurring even for relatively small
εext.

Healthy networks present a much smoother transition to
global phase synchronization as the εext is increased. The
global level of phase synchronization is lower than those
observed for the Alzheimer networks. In this way, the distinct
dynamical characteristics found here can help the understand-
ing of dynamical details of neural systems related to the inter-
mittent behavior and associated with neural dysfunctions [33].

This scenario may be related to the idea that intermit-
tent disruption on synchronized rhythms of several brain
rhythms may be related to neurological conditions, including
Alzheimer’s disease processes [21]. In fact, disruptions of
γ -collective oscillations might contribute to the accumulation
of amyloid-β protein in the brain—a well-known signature of
Alzheimer’s disease [45].

Despite the differences found between the healthy and
Alzheimer networks, a common characteristic of both cases
consists of the fact that the transition regions present non-
stationarity behavior, where we identify sets of coupling
parameters in which the system displays two-state on-off
intermittency [49], where asymptotic states display local sta-
bility but global instability, allowing the networks to show
perennial shifting between two distinct short-time character-
istic trajectories. Similar results found in other neural systems
demonstrate this recurrent phenomenon in the transition from
unsynchronized states to globally phase-synchronized ones
[12–14].

Last, we emphasize that the use of the Kuramoto order
parameter demands data of each neuron of the networks, while
the determinism is computed over the mean-field potential
of the entire network, which is more easily accessible in
most real situations, where, in general, information for each
neuron is not available. This fact demonstrates that recurrence
analysis may be used as a useful tool to analyze dynamical
properties and, as observed in Refs. [53–55], to be able to
evaluate data from experimental systems.
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