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We introduce a k-leaf removal algorithm as a generalization of the so-called leaf removal algorithm. In this
pruning algorithm, vertices of degree smaller than k, together with their first nearest neighbors and all incident
edges, are progressively removed from a random network. As the result of this pruning the network is reduced
to a subgraph which we call the Generalized k-core (Gk-core). Performing this pruning for the sequence of
natural numbers k, we decompose the network into a hierarchy of progressively nested Gk-cores. We present an
analytical framework for description of Gk-core percolation for undirected uncorrelated networks with arbitrary
degree distributions (configuration model). To confirm our results, we also derive rate equations for the k-leaf
removal algorithm which enable us to obtain the structural characteristics of the Gk-cores in another way. Also
we apply our algorithm to a number of real-world networks and perform the Gk-core decomposition for them.

DOI: 10.1103/PhysRevE.99.022312

I. INTRODUCTION

Structural decomposition of complex networks providing
classification of the vertices into different subsets is one of
the effective approaches for studying the structural properties
of networks. As a primary and well-known example, one can
indicate k-core decomposition, which is an efficient technique
for uncovering structural properties of large networks [1,2].
The k-core of a network is defined as the largest subgraph
whose vertices have degree at least k [3]. There is a pruning
algorithm enabling one to obtain k-core subgraphs for a
given network: at each step, a vertex of degree less than k
is randomly chosen and removed. The pruning is continued
until no further removal is possible. As the result of this
pruning the network is decomposed to a set of enclosed
k-cores. The vertices belonging to higher (more central) cores
are more strongly connected. It was also shown that the
vertices of the inner core are more influential spreaders in
epidemic processes [4]. A giant k-core emerges above a
percolation threshold [5]. The most remarkable result is that
for k � 3 the giant k-core shows a discontinues hybrid phase
transition combining discontinuity and a critical singularity
[5,6]. Furthermore, generalized models for k-core percolation
have been studied on interdependent and multiplex networks,
which reveal more features than the ordinary k-core percola-
tion problem on single networks [7,8].

Another key subgraph of a random network is simply
called its core. These subgraphs significantly differ from the
k-cores. A core of an undirected network is obtained only
by a pruning algorithm in contrast to the k-core, which is, in
addition, defined by a specific constraint on the connectivity of

its vertices. The pruning algorithm producing a core is called
the leaf removal algorithm and was introduced by Karp and
Sipser [9]. In this pruning algorithm, a vertex of degree one
(a leaf) is randomly chosen and removed together with its
neighbor and all incident edges. The algorithm is continued
until no leaves remain. The resulting subgraph is formed by
some isolated subgraphs and the giant one, which is called
the core. For the Erdős-Rényi (ER) random graphs, Bauer
and Golinelli showed that the core percolation threshold is
located at the mean degree 〈q〉 = e = 2.718 . . ., so that above
this point the network contains the giant core, while below
the threshold the size of the giant core is zero [10]. The core
structure and the phase transition at 〈q〉 = e is related to a
number of phenomena in physics such as conductor-insulator
transitions [11] and replica symmetry breaking in the minimal
vertex covers [12]. Moreover it was shown that the formation
of the core is related to controllability robustness [13,14]
and some combinatorial optimization problems such as the
maximum matching and minimum vertex cover [9,12,15].
Also a generalized leaf removal process, which is applicable
in the minimum dominating set problem, has been introduced
in Ref. [16]. Using a time-dependent analysis, people have
studied the core percolation related to this generalized leaf-
removal algorithm.

In this paper, we generalize definition of the leaf to the
“k-leaf,” defined as a vertex of degree less than k. In this
algorithm we remove recursively a k-leaf together with all its
first neighbors and their incident edges. Following this prun-
ing algorithm, the network is decomposed to a hierarchy of
nested cores, similarly to the ordinary k-core decomposition.
We call this structure the Generalized k-core (Gk-core). In this
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FIG. 1. The open green dot shows a k-leaf. Once a k-leaf is
selected, the k-leaf together with the dashed red edges are removed.

notation, the ordinary core is represented by the G2-core. The
vertices belonging to inner Gk-cores and their first neighbors
are of high degree and well connected. Analytical calculation
is possible only for the networks with a locally treelike
structure. For these kind of networks, and using the generating
function technique, we study the structural transitions and
emergence points of the Gk-core subgraphs.

The k-leaf removal algorithm can be also considered as the
inducing effect, introduced by Zhao et al. [17]. In the inducing
process, a collapsed vertex i will induce its remaining neigh-
bors, to be collapsed if vertex i has fewer than k remaining
neighbors. In Ref. [17] the inducing effect together with the
spontaneous collapsing process leads to the emergence of
other subgraphs, called protected cores.

The leaf removal algorithm is a Markovian process. We
describe evolution of the network structure during the pruning
process by applying rate equations, which have been derived
for the ordinary leaf removal algorithm on undirected and
directed graphs [15,18,19]. This approach provided the size
and the emergence point of the ordinary core. In this paper,
we also derive rate equations for the degree distribution of a
network during the execution of the k-leaf algorithm, which
enables us to obtain the structure of the Gk-cores in an
alternative way.

The paper is organized as follows. In Sec. II we present an
analytical framework to study Gk-core percolation for random
networks with arbitrary degree distributions. We apply our
general results to the ER and scale-free networks. We compare
our results with numerical simulations. In Sec. III we derive
the rate equations for the k-leaf removal algorithm, and using
these equations we find in another way how Gk-cores are or-
ganized. In Sec. IV a set of real-world networks are analyzed
in the framework of our approach.

II. ANALYTICAL FRAMEWORK

Let us consider an uncorrelated network with an arbitrary
degree distribution P(k). To produce a generalization of the
core subgraph, we use the following pruning algorithm: at
each step we randomly choose a k-leaf (i.e., a vertex of degree
less than k) and remove it together with its neighbors and all
incident edges to the neighbors. Figure 1 shows a k-leaf (open
green dot) and the k-leaf removal process. As a result of the
pruning, the degrees of some vertices change. The procedure
is iterated until no vertices of degree less than k remain in
the network. The residual network, if it exists, is called the
Gk-core.

To find the size of the Gk-core, we classify the vertices into
three groups: (1) α-removable: the vertices that can become a

FIG. 2. Schematic representation of the probabilities α and β.

leaf; (2) β-removable: the vertices that can become a neigh-
bor of a leaf; (3) the vertices that are neither α-removable
nor β-removable and hence belong to Gk-core. Using the
assumption that the network has a locally treelike structure,
we can write self-consistency equations for probabilities that
a random neighbor of a random vertex is α-removable, β-
removable, or a nonremovable vertex. We call these proba-
bilities α, β, and 1 − α − β, respectively. These probabilities
are represented graphically in Fig. 2. Note that the definition
of these probabilities is the same as that already defined in
Ref. [20]. The difference is in the definition of the leaves.

At least one of the neighbors of a β-removable ver-
tex must be α-removable. Furthermore, an end vertex of
a randomly chosen edge belongs to the Gk-core, if it
has at least k − 1 neighbors which belong to the Gk-core
and none of its neighbors are of type α. Taking into ac-
count these facts, we write the following two self-consistent
equations:

1 − α − β =
∑

q

qP(q)

〈q〉

×
q−1∑

s=k−1

(
q − 1

s

)
(1 − α − β )sβq−1−s,

β = 1 −
∑

q

qP(q)

〈q〉 (1 − α)q−1. (1)

The first equation represents the probability that an end
vertex of a randomly chosen edge belongs to the Gk-core.
qP(q)/〈q〉 is the probability that the end vertex of a uniformly
randomly chosen edge has degree q, and the combinatorial
multiplier (m

n ) gives the number of ways one can choose n
edges from a sample of m edges. At least k − 1 edges of q − 1
edges (other edges than the starting one) must lead to the
Gk-core. Equation (1) also shows the probability that an end
vertex of a randomly chosen edge is β-removable. At least one
of the neighbors of a β-removable vertex must be a leaf, i.e.,
an α-removable vertex. These two equations are schematically
represented in Fig. 3.

FIG. 3. Graphical representation of the self-consistency equa-
tions for the probabilities β and 1 − α − β.
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FIG. 4. Schematic representation of the probability that a vertex
belongs to the Gk-core, which is the relative size nkc of the Gk-core.

From Eq. (1), one can derive the following self-
consistency equation for α:

α =
∑

q

qP(q)

〈q〉
k−2∑
s=0

(
q − 1

s

)
(1 − α − β )sβq−1−s. (2)

The probabilities α and β enable us to obtain the probability
nkc that a randomly chosen vertex belongs to the Gk-core,
which is also the relative size of the Gk-core. Figure 4 shows a
schematic representation of this probability. A vertex is in the
Gk-core if the vertex has at least k neighbors which belong to
the Gk-core. Hence we can write the following equation for
the relative size of the Gk-core:

nkc =
∑
q>k

P(q)
q∑

s=k

(
q
s

)
(1 − α − β )sβq−s. (3)

To be able to solve Eqs. (1)–(3) analytically, we rewrite these
equations using generating functions [21]. For a network with
a given degree distribution P(q), the generating function G(x)

is defined as

G(x) ≡
∑

q

P(q)xq. (4)

Hence, we obtain the following equations for α, β and nkc in
terms of the generating function:

α = 1

〈q〉
k−2∑
s=0

(1 − α − β )s

s!
G(s+1)(β ),

β = 1 − G(1)(1 − α)

〈q〉 , (5)

nkc = G(1 − α) −
k−1∑
s=0

(1 − α − β )s

s!
G(s)(β ),

where we used the notation G(s)(x) for the sth derivatives of
G(x).

Furthermore, the probability that both end vertices of an
edge in the network belong to the Gk-core is (1 − α − β )2.
Hence, the fraction of edges in the Gk − core, denoted by lkc,
is obtained as

lkc = c

2
(1 − α − β )2. (6)

Let us first consider ER networks with Poisson degree
distributions, P(q) = cqe−c/q!, where c is the vertex mean
degree for the network. For the Poisson distribution, the
generating function and its sth derivative are G(x) = e−c(1−x)

and Gs(x) = cse−c(1−x), respectively. One can easily find the
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FIG. 5. The relative sizes and the normalized number of edges of the Gk-core for k = 2, 3, 4. The points are the results of numerical
simulation for the ER and asymptotically scale-free networks of size N = 106, averaged over 10 realizations. The lines are analytical results
obtained from Eqs. (5) and (6). As γ approaches 2, finite size effects become more important, and a deviation between theoretical results and
simulations is observed.
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FIG. 6. The behavior of (a) the transition point c∗ and (b) the
size of the Gk-core at the transition point, n∗

kc, vs k for ER random
networks.

relation between α and β probabilities as β = 1 − e−cα ,
which is independent of the value of k. For ER networks with
Poisson degree distributions, one can write a closed form for
α and nkc from Eqs. (1) and (2):

α = e−cα �[k − 1, c(e−cα−α)]

(k − 2)!
,

nkc = e−cα

{
1 − �[k, c(e−cα−α)]

(k − 1)!

}
, (7)

where �(s, x) is the upper incomplete � function.The relative
size and the normalized number of edges of the Gk-core for
k = 2, 3, and 4 are shown in Fig. 5. The analytic results
(curves) are compared with numerical simulations (symbols).
As we can see in the figure, in contrast to the ordinary core
(k = 2), for k � 3 a Gk-core emerges discontinuously at the
percolation threshold.

Equations (7) enable us to obtain the transition point
c∗ and the size of the Gk-core at the transition point, n∗

kc,
for each k. From numerical data, we estimate the asymptotic
representations for c∗ and n∗

kc as the following:

c∗ ≈ k + C
√

k ln ln k,

n∗
kc ≈ 1 − 1

C
√

k ln ln k
, (8)

C = 2.413 . . . .

Figure 6 shows the behavior of c∗ and n∗
kc, in which the

curves asymptotically coincide to Eqs. (8).
Next we consider scale-free networks. It was shown

that for the purely power-law scale-free networks the
ordinary core does not exist [20]. Hence we con-
sider the asymptotically scale-free, uncorrelated networks
generated by the static model with the degree distri-

bution P(q) = [ c(γ−2)
2(γ−1) ]

γ−1
�[q − γ + 1,

c(γ−2)
2(γ−1) )/�(q + 1) ∼=

q−γ , where �(s) is the � function [22,23]. For this de-
gree distribution the generating function is G(x) = (γ −
1)En[(1 − x) c(γ−2)

2(γ−1) ], where En(x) = ∫ ∞
1 dye−xyy−n is the ex-

ponential integral. Figure 5 shows the relative size and the nor-
malized number of the general 2-, 3-, and 4-cores for different
values of γ versus c. With decreasing γ , the emergence point
is shifted towards higher values of c. For scale-free networks
when γ → 2, finite-size effects become more significant.
By imposing the proper degree cutoffs, one can eliminate
the finite-size effects and the intrinsic degree correlations
[24,25]. In Fig. 5 we compare the emergence of cores for
asymptotically scale-free and ER networks. As one can see,
the dependence of the cores on c for these networks is similar
and, as expected, the curves with larger γ approach the result
for ER networks.

We define pruning time steps in a way that enables us
to classify the vertices of the network into a set of layers
for a given k. At time step t ′ = 1, we select the vertices of
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FIG. 7. Total number of pruning steps τ vs mean degree c. The curves shows diverging of τ (c) at the emergence point of (a) G2-core, (b)
G3-core, and (c) G4-core for the ER and asymptotically scale-free networks of size N = 106, averaged over 10 realizations.
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FIG. 8. (a) The relative sizes and (b) normalized number of edges
of the Gk-core in ER networks for k = 2, 3, and 4, vs the mean
degree c of the network. The points show the results obtained by
the rate equation approach and lines show the results obtained using
the formalism of Sec. II [Eqs. (5) and (6)].

degree less than k (k-leaves) and remove these vertices and
their neighbors by applying the k-leaf algorithm. Removing
the vertices in the first step may produce new k-leaves, which
will be removed at t ′ = 2 and so on. The vertices removed

at each step t ′ form a layer of the network. In other words,
the network is pruned layer by layer until there is no k-leaf
left. We denote the total number of pruning steps as τ so that
t ′ = {1, 2, . . . , τ }. After τ steps, the network consists of finite
components or a giant Gk-core. For different networks we
obtain τ (c) using numerical simulation; see Fig. 7. As we can
see, the dependencies τ (c) diverge at the birth points of the
cores.

III. RATE EQUATIONS

The structural evolution of the network during pruning
processes is described by the so-called rate equations for the
degree distribution of the remaining network [15,18]. Here we
derive rate equations for the k-leaf removal algorithm. Let us
consider a network of N vertices and L edges. For simplicity
we remove only the edges during the pruning process. In
other words, at each time step t we choose randomly a k-
leaf and remove all k edges incident to it, together with all
edges incident to its k neighbors. In this way, the number of
vertices of the network remain constant. Note that the time
steps t differ from t ′. The algorithm is iterated until P(q) = 0
for all q < k. The important point of this approach is that
the dynamics is self-averaging in the thermodynamic limit:
N → ∞. After a certain number of time steps, almost all
random networks have the same degree distribution, which is
independent of the (random) order of the removal of leaves
[10]. Hence this approach can be used as a confirmation of
the results obtained in the previous section.

We introduce the rescaled time t = T
N , where T is the total

number of steps of the pruning algorithm, so �t = 1/N is the
rescaled time of one iteration. Let N (q, t ) be the average num-
ber of vertices with degree q at time t . Since the total number
of vertices is constant, i.e., N (t ) = N , we have N (q, t ) =
NP(q, t ). We can write the change of N (q, t + �t ) − N (q, t )
after one iteration. In the large network limit, we can pass
from the discrete difference to the time derivative of the degree
distribution and obtain the following evolution equation for
the degree distribution:

N (q, t + �t ) − N (q, t ) = Ṗ(q, t )

= − θ (k − q)P(q, t )∑
q θ (k − q)P(q, t )

+ δq,0

[
1 +

∑
q qθ (k − q)P(q, t )∑
q θ (k − q)P(q, t )

]
−

∑
q qθ (k − q)P(q, t )∑
q θ (k − q)P(q, t )

qP(q, t )

〈q〉t

+
∑

q qθ (k − q)P(q, t )∑
q θ (k − q)P(q, t )

∑
q q(q − 1)P(q, t )∑

q qP(q, t )

[
(q + 1)P(q + 1, t ) − qP(q, t )

〈q〉t

]
. (9)

Let us explain different terms on the right-hand side of
Eq. (9). First, we choose a random vertex of degree less than
k and remove all edges incident to it. The probability that a
vertex has degree less than k is θ (k−q)P(q,t )∑

q θ (k−q)P(q,t ) , where θ (i) is

defined for integers: θ (i�0) = 1 and θ (i < 0) = 0. Thus with
this probability, the number of vertices with q < k decreases
by 1. This gives the first term. After removing the edges
incident to the leaf and all edges incident to its neighbors, the

leaf and all its neighbors become vertices of degree zero. The
average number of neighbors of a vertex of degree less than k

is
∑

q qθ (k−q)P(q,t )∑
q θ (k−q)P(q,t ) . Hence the second term shows the number of

vertices whose degrees become zero. On the other hand, the
degree distribution of the end vertices of a randomly chosen
edge is qP(q)

〈q〉 . When we remove the edges incident to the
nearest neighbors of the leaf, the number of vertices of degree
q is decreased by the mean degree of the leaf with probability
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FIG. 9. Graphical visualization of the Gk-core decomposition of (a) astrophysics and (b) transcriptional regulation networks.

qP(q)
〈q〉 . Finally the last contribution results from modification

of degrees of the second neighbors of the leaf. After removal
of all edges incident to the leaf and its nearest neighbors,
the number of connections of the second nearest neighbors of
the leaf decreases by one. The average number of the second
neighbors is equal to the mean degree of the nearest neighbors
except one (connection to the leaf), multiplied by the average
number of the nearest neighbors of the leaf. Equation (9)
is a set of differential equations, describing the evolution of
a network during the pruning. For k = 2, these equations
coincide with the known ones [18]. Solving Eq. (9) iteratively,
we can obtain the degree distribution of the network at each
time step t .

As we already mentioned, we do not remove the vertices
during the leaf removal algorithm, and so the total number
of the vertices remains constant. However, at each time step
all edges incident to the leaf and the edges incident to all
its nearest neighbors are removed. Hence, at each time step
the average number of removed edges is equal to the mean
number of nearest neighbors multiplied by their mean degree.
This results to the following evolution equation for the aver-

age number of remained edges in the network:

L̇(t )

N
= −〈q2〉t

〈q〉t

∑
q qθ (k − q)P(q, t )∑
q θ (k − q)P(q, t )

. (10)

We apply the leaf removal algorithm to an uncorrelated
network with a degree distribution P(q, t = 0) and a vertex
mean degree equal to c0 as the initial conditions. For each
value of k, the algorithms are iterated until no vertices of
degree less than k remain. To find the Gk-core, the algo-
rithm must continue until time t∗

k at which P(1, t∗
k ) = P(2, t∗

k )
= · · · = P(k − 1, t∗

k ) = 0. Our numerical results for different
networks show that P(1, t ) is the last probability to become
zero; that is, the vertices of degree 1 disappear after all other
leaves. This is why during iteration we look at the behavior of
P(1, t ), and the algorithm stops at time t∗

k for a given k. The
remaining subgraph is the Gk-core. For k = 2 the algorithm
coincides with the ordinary leaf-removal algorithm and the
remaining subgraph is the G2-core or simply the core. After
we find t∗

k , the size and the number of edges of the Gk-core

TABLE I. Gk-core decomposition of real networks with the number of vertices N and the number of edges L. kmax is the label of the
innermost core. nkmax−core and n2−core show the relative size of the innermost and outermost cores, respectively. Similarly, lkmax−core and l2−core

show the normalized number of edges of the innermost and outermost cores, respectively.

Name N L Ref. kmax nkmax−core lkmax−core n2−core l2−core

E. coli, transcription 97 212 [26] 3 0.319 0.793 0.917 2.051
AS Oregon 6474 12 572 [27] 2 0.001 0.001 0.001 0.001
Astrophysics 16 046 121 251 [28] 31 0.002 0.045 0.769 5.980
C. elegans, neural 297 2148 [29] 3 0.885 6.037 0.915 6.447
Cond-Mat 16 264 47 594 [28] 10 0.006 0.003 0.618 1.884
Dolphins 62 159 [30] 3 0.161 0.290 0.645 1.322
Email-Enron 36 692 183 831 [31] 7 0.0004 0.001 0.389 1.052
Linux 30 834 213 217 [32] 5 0.0003 0.0008 0.147 0.375
petster-friendship-hamster 1858 12 534 [32] 8 0.010 0.047 0.584 2.664
Sociopatterns-Infectious 410 2765 [33] 9 0.056 0.443 0.912 6.090
PGPgiantcompo 10 680 24 316 [34] 17 0.001 0.014 0.158 0.483
US Air Transportation 500 2980 [35] 3 0.008 0.012 0.260 0.494
Yeast-protein 2284 6646 [36] 3 0.003 0.011 0.025 0.052
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can be obtained from the following relations:

Nkc = N[1 − P(0, t∗
k )], (11)

Lkc = L(t∗
k ). (12)

We apply this approach to the ER random graphs. The
Poisson degree distribution rapidly decays, and it is sufficient
to consider qmax = 30, i.e., we solve the set of the first 31
equations. Figure 8 shows the size and the number of edges
calculated from Eqs. (9)–(12) for the ER networks. In this
figure we compare the results obtained by solving the rate
equations (points) with the analytic results of the previous
section (lines) for the general 2-, 3-, and 4-cores.

IV. REAL-WORLD NETWORKS

We apply the k-leaf removal to a number of real-world
networks and find cores of these networks. The characteristics
of real-world networks, analyzed in the paper, are listed in
Table I. The outermost core is the largest core, which cor-
responds to k = 2 and includes other cores. As we increase
the value of k, the size of cores is decreased, and the core
corresponding to maximum k (kmax) is the smallest and in-
nermost core. We present the relative size and number of
edges of the outermost and innermost Gk-cores in Table I.
We find that many real social networks are decomposed to
a large hierarchy of the Gk-cores. For instance, the layers of
arXiv networks, e.g., cond-mat, astro-ph, or hep-th, have the
highest numbers of the Gk-cores nested into each other among
networks analyzed in this paper. In contrast, the food webs
and biological networks have a small number of cores. Using
the visualization algorithm proposed in Ref. [1], visualization
of the astrophysics network in 2005 [28] and transcriptional
regulation network [26] are presented as two examples in
Fig. 9. The regulation network has a few cores, while the
astrophysics network has around 30 cores in our proposed
network decomposition scheme. Comparing with the random
networks, the real networks have more cores. Similarly to
what was found in the ordinary core problem, this difference
reveals that other structural features such as correlations and

clustering may be significant for the sizes and organization of
the Gk-cores.

V. CONCLUSION

In this work we have generalized the ordinary core sub-
graph to the Gk-cores. We proposed the k-leaf removal al-
gorithm as a generalization of the ordinary leaf removal The
k-leaf pruning algorithm enables us to decompose large ran-
dom networks into a hierarchical set of progressively nested
subgraphs which we called the Gk-cores. Our approach can
also be considered as a generalization of the ordinary k-core
decomposition. In our pruning at each time step, not only the
vertices of degree less than k but also their nearest neighbors
are removed. Following this pruning, the network is decom-
posed into a hierarchy of progressively nested Gk-cores such
that the vertices, belonging to the inner cores, and also their
first neighbors are of higher degree and well connected. Using
the generating function technique, we found the structural
characteristics and the emergence point of the Gk-cores for the
Erdős-Rényi and scale-free random networks. Similarly to the
ordinary k-core percolation, Gk-cores show a discontinuous
phase transition for k � 3. We compared our results with
numerical simulations and observed a complete agreement. In
addition, we used the rate equation approach to describe the
evolution of degree distribution of random networks during
the k-leaf pruning algorithm. We checked that the result of
the application of this approach to the ER graph completely
coincides with the exact result obtained by the analytical
calculations. We have applied the k-leaf removal algorithm
to a number of real-world networks. Among the real networks
explored, the social networks have a large kmax.

We emphasize that in contrast to the k-core decomposi-
tion, the Gk-cores are not about the classification of vertices
in a network according to their properties but rather about
the characterization of a specific robustness of this network.
Suppose that a network is attacked by a virus infecting and
removing weak vertices (of degree less than k) and their
nearest neighbors. The Gk-cores show what will remain of the
network after this epidemic. The resilience and robustness of
a network against this kind of epidemic is characterized by the
size of its Gk-core. This may explain why the social networks
that we explored have a large kmax.
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