
PHYSICAL REVIEW E 99, 022309 (2019)

Coevolution of nodes and links: Diversity-driven coexistence in cyclic competition of three species
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When three species compete cyclically in a well-mixed, stochastic system of N individuals, extinction is
known to typically occur at times scaling as the system size N . This happens, for example, in rock-paper-scissors
games or conserved Lotka-Volterra models in which every pair of individuals can interact on a complete graph.
Here we show that if the competing individuals also have a “social temperament” to be either introverted or
extroverted, leading them to cut or add links, respectively, then long-living states in which all species coexist can
occur. These nonequilibrium quasisteady states only occur when both introverts and extroverts are present, thus
showing that diversity can lead to stability in complex systems. In this case, it enables a subtle balance between
species competition and network dynamics to be maintained.

DOI: 10.1103/PhysRevE.99.022309

I. INTRODUCTION

Evolutionary game theory [1–4] considers populations
composed of individuals with different strategies or behav-
ioral programs who compete generation after generation in
game situations of the same type. A central question is
how evolutionary forces like natural selection and mutation
shape the time evolution of a population. In particular, one
is interested to learn about mechanisms underlying mainte-
nance of species diversity and extinction of species. Typically,
one studies fixed environments which may be, for example,
well-mixed or spatially extended systems, where the players
of the game are located at the nodes of a complete graph
or a regular lattice, respectively. On another front, much
of network science [5–7] has been devoted to the study of
the structure or topology of the links in a graph, while the
nodes have no degrees of freedom. Though the properties of
static networks, such as Erdős-Rényi random graphs [8], have
received considerable attention, there has also been interest in
networks with links that evolve dynamically, such as in the
formation of scale-free networks by preferential attachment
[9,10]. Bringing together these two paradigms, statistical me-
chanics of node degrees of freedom connected by fixed links
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and networks with an evolving link topology, is the central
motivation of our work. Clearly, in many complex systems in
nature, the evolution of both components must be accounted
for simultaneously.

Studies of networks that have “coevolving” nodes and
links, also known as “adaptive networks,” began to emerge
about two decades ago [11–15]. In attempts to model real-
istic co-evolving systems, complex mathematical structures
and serious challenges are encountered. In this context, we
introduce a minimal system of node and link degrees of free-
dom, co-evolving with stochastic rules. Finding unexpected
behavior in extensive numerical simulations, we exploit the
simplicity of the model to derive tractable mean-field equa-
tions and to obtain some analytic results. This study should be
regarded as one of a few first steps toward investigating more
complex and realistic coevolving systems.

Our model combines the node dynamics of the well-known
rock-paper-scissors game [3,16], also known as cyclic Lotka-
Volterra model [17–19], and the link dynamics in recent
studies of networks with preferred degrees [20–23]. In the
former, the three “species” compete cyclically and, if N
individuals play stochastically on a complete network, the
typical extinction timescales with the population size N [24].
In the latter system, designed to model the actions of indi-
viduals with different “social temperaments”—introverts and
extroverts—are considered. The links fluctuate as a randomly
chosen individual cuts or adds connections. Even in a simple
population with extreme temperaments, surprising behavior
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emerged [20,22,23]. Here, we consider a system with nodes
that can be one of three species and can have one of two
temperaments, with specific rules of evolution for both the
nodes and links. When a link between two nodes is absent,
they do not interact, so that the competition between the three
species is both “tempered” and dynamic. In the following,
we report simulation results with N up to 1000, as well as
a theoretic description, based on mean-field approximation.
Specifically, we discover long-living, quasistationary states
(QSS), persisting for up to 1012 node changes. For these QSS
to occur, nodes with both temperaments must be present.
Thus, we refer to this kind of stability as “diversity-driven
coexistence.”

In the next section, we specify the setup of our model and
its dynamics. Results from simulation studies and analysis of
a set of mean-field equations are presented in a following
section. It is natural that findings of the QSS states raise
more interesting questions for future research. These issues,
as well as an outlook for exploring more realistic models of
coevolution and of the stabilizing influence of diversity in
complex systems, are discussed in the final section.

II. SPECIFICATIONS OF THE MODEL

Our model of coevolution consists of merging two of
the simplest statistical systems, each involving node or link
dynamics only. The former is designed for neutral cyclic
competition among three species. Known as the cyclic Lotka-
Volterra model, it is often portrayed as the game of rock-
paper-scissors. We refer to it here as the ABC model [18,24].
The latter consists of a network of links, cut or added by a
collection of “introverts” (I) and “extroverts” (E ), the extreme
case of which is the XIE model [20]. Thus, we will refer to
the union as the ABC-XIE model.

For the ABC component, let us follow the notation of
Refs. [24,25] and consider the simplest possible scenario: a
system with N individuals, each being one of three “species”
(A, B, C), competing cyclically with unit rates:

A + B → 2A; B + C → 2B; C + A → 2C. (1)

With no spatial structure, the configuration of a “well-mixed”
system is completely specified by the numbers of each
(NA,B,C) with the total number N = NA + NB + NC being a
constant of motion. In the large N limit, the evolution is
well approximated by a deterministic set of “chemical rate”
equations,

∂t NA = NANB − NCNA, (2)

and similarly for cyclic permutations of the labels {A, B,C},
where t is appropriately normalized (all rates are taken as
unity). It is well-known that R ≡ NANBNC is a constant of
motion of these equations, so that the orbits in configuration
space form closed loops and extinction never occurs [16]. In
this sense, the competition is “neutral.” However, if stochastic
aspects of the evolution is included, then extinction of two
of the species is inevitable for finite systems, typically in
O(N ) steps [17,24]. Indeed, highly counterintuitive behavior
is found when the competition rates are unequal [25]. Simi-
larly, many interesting phenomena emerge when such systems
are placed into some spatial structure [26–34], in which an

individual may interact with, say, only nearest neighbors in a
lattice.

For the XIE component, the simplest version [20,22,23]
consists of a fixed number of introverts and extroverts, con-
nected by a network with dynamic links that change as a
result of the action of a randomly chosen individual: An I
will cut one of its existing links while an E will add a link
to an individual it is not already connected to. With random
sequential update, this simple model displays an extreme
Thouless effect: an extraordinary transition when the numbers
of the subgroups are equal [22].

Our interest here is to study the importance of behavioral
diversity in games of cyclic dominance. To do so we merge
the ABC and XIE models, by endowing the individuals of
the ABC model with a temperament, τ ∈ {I, E}. To avoid
confusion, we will denote “species” by α ∈ {A, B,C}, so that
an individual’s state is given by (α, τ ). In this sense, each
node can be one of six “types”: AI,E , BI,E , and CI,E . A system
configuration is specified by C: {(α, τ )i; ai j}, where i, j ∈
{1, ..., N} label an individual and ai j are elements of A, the
adjacency matrix describing the presence or absence of links.
Thus, ai j = 1/0 if the link between i and j is present/absent.
There are no self-loops: aii ≡ 0.

A related model has studied cyclic dominance on an adap-
tive network in a model of opinion spreading [35]. However,
the link dynamics were very different in that model. All
nodes behaved identically. Link updates were coupled to the
outcome of node interactions through an ABC competition. A
losing node either chose to adopt the “opinion” of the winner,
indicated by its ABC state, or cut its link with the winner
and rewired that link by connecting it to another, randomly
selected, node. All nodes therefore maintained their initial de-
gree. Depending on the density of links and the propensity of
losing nodes to rewire versus changing their opinion, a variety
of behavior can occur, including both reaching consensus and
network fragmentation.

In our model the system evolves according to the following
rules: From any configuration C, in a Monte Carlo sweep
(MCS), we execute N updates, each of which consists of
choosing a random pair of nodes and, with probability r and
(1 − r), attempt to change the states of, respectively, nodes
and links. Suppose the pair (i, j) is chosen. For a node-update,
if ai j = 0 or if αi = α j , then C remains unchanged, but a pair
with a link connecting it (ai j = 1) and αi �= α j (regardless
of τi, j) will be changed according to the rules Eq. (1), while
all links are unaffected. Additionally, the temperament of the
winning node in the ABC cyclic competition is inherited by
the “offspring.” For example, when an AC pair turns into CC,
both of the nodes at the end have the temperament that the
original C node had. On the other hand, for a link-update, the
nodes remain unchanged, while the link value ai j is assigned,
regardless of its previous state, to be 1 or 0 if the temperaments
(τi, j) are both E ′s or both I ′s, respectively. If τi �= τ j , ai j is
set to 1 or 0 with equal probability. This link update rule
is not the one introduced in the original XIE model [20].
Instead, it is in the spirit of ‘heat-bath dynamics’ that often
are used in simulations of the Ising model [36–38]. Though
such a rule does not lead to the remarkable behavior reported
in Refs. [20,22], it does allow tractable differential equations
for the link dynamics to be written. An analysis of the variant
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of the model with the more complicated link dynamics of the
original XIE model will be deferred to a future publication.

The full stochastic dynamics can—given the above rules—
be written in terms of a master equation for the probability to
observe a system configuration C at time t , P(C, t ), and solved
exactly employing a stochastic Gillespie simulation [39]; see
next section. Here, we briefly discuss some general features
of the stochastic dynamics. First, one should note that if the
population of one of the node types ever vanishes, then it will
be remain zero: there is no mechanism to create a species
anew. Let us consider some limiting cases first:

(1) r = 0 : There is no node dynamics. With frozen nodes
states, the system reverts simply to the XIE model with
fixed number of I ′s and E ′s. Only the I-E links fluctuate
between being present and absent. The steady state probability
distribution P∗(A) is a simple product of appropriate p(ai j )′s.

(2) r = 1: There is no link dynamics. The network is
frozen at the initial topology, on which the final state crucially
depends, as the system evolves with only the ABC dynamics.
Depending on the topology of the network interesting phe-
nomena emerge [40–42].

(3) If the I ′s go extinct and r �= 0, 1, then the network will
quickly evolve to a complete graph and the system reverts to
the well-mixed ABC-model.

(4) If instead, the E ′s go extinct, then all links will even-
tually disappear and any {αi} is an absorbing state.

(5) If any α ∈ {A, B,C} goes extinct, the competition
among the remaining two is trivial, though the final state may
again consist of arbitrary ratios provided they are all introverts
(where all links are absent).

From these limits, one aspect is clear: there are many
absorbing states for r > 0. Here we are not interested in cal-
culating extinction times but in identifying and characterizing
nontrivial, long-living, “quaistationary” states (QSS), similar
to the “active states” in many epidemic models.

There are only two control parameters, N and r, in our
model. By contrast, there are many “order parameters,” char-
acterizing the collective behavior of this system. The most
natural set consists of 27 = 6 + 21 quantities: Nα,τ , the total
number of each node type, as well as Lα,τ ;α′,τ ′ , the total
number of existing links between individuals of each pair
of types. Of course, the set of N ′s is constrained by N =
�α,τ Nα,τ . At any given time, not every individual of type
(α, τ ) is connected to every one of type (α′, τ ′). Therefore,
Lα,τ ;α′,τ ′ is a fluctuating quantity, even for configurations
with fixed Nα,τ and Nα′,τ ′ . Also, unlike the absence of self-
loops (aii ≡ 0), the links between individuals of a single type
(Lα,τ ;α,τ ) is a nontrivial, dynamic variable (lying in the range
[0, Nα,τ (Nα,τ − 1)/2]).

III. STOCHASTIC SIMULATIONS AND
MEAN-FIELD THEORY

Using Monte Carlo simulations, our initial explorations
began with a random collection of all six nodes types, with N
up to 1000, connected by a random, half filled network. Not
surprisingly, the early stages of the dynamics appear “chaotic”
with 27 interdependent variables. Often, extinction of species
sets in quite quickly. However, the system can settle into
relatively regular and long-living QSS. We find that these QSS

FIG. 1. Schematic diagram showing the results of a node update
in a AE BECI QSS, showing the coevolutionary nature of the dynam-
ics. Particles in the square boxes represent individuals of each node
type, while those in circular urns represent links of the appropriate
category. The dark urns (purple-online) represent E-E links, while
the medium (green-online) and light colored (yellow-online) urns
represent I-E and I-I links, respectively. If a node changes in, say,
an A + B → 2A update, then a particle moves from box B to box
A, represented by the long thin dark gray (red-online) arrow. All the
links that the changed node has also change, thus particles moves
from urns BA, BB, and BC to urns AA, AB, and AC, respectively,
represented by the short thick dark gray (red-online) arrows. The
medium gray (blue-online) and light gray (yellow-online) arrows
indicate the particle moves resulting from B + C → 2B and C +
A → 2C updates, respectively. By contrast, during a link update,
at most, a single particle will be added to or removed from the
appropriate urn.

contain the “most diverse” set of three node types, namely,
all three species and both temperaments are present. Without
this diversity present, quick extinction is always observed. Of
course, we may expect this behavior, given our discussion
above on the limiting cases (3–5). Since they appear to be
more tractable, we will devote our attention only to such QSS
in the rest of this paper.’

There are two distinct classes of “diverse” QSS. Exploiting
cyclic symmetry, they can be labeled as AE BECI or AE BICI .
For simplicity, we will focus here mainly on the former and
only comment briefly on the latter. In either cases, α and τ

are uniquely related and, from now on, we will drop the τ

label and write, e.g., NA and LBC instead of NAE and LBECI ,
respectively. To re-emphasize, our A′s and B′s are extroverts,
while C′s are introverts.

Of course, the links in our system are nondirectional, so
that Lαβ = Lβα . Thus, there are only 3 N ′s and 6 L′s to
monitor, numbers that can be regarded as particles in 3 “square
boxes” and 6 “round urns”; see Fig. 1. Furthermore, the 3 N ′s
are constrained: N = �αNα , leaving 8 independent numbers.
When a node changes its state, say through an A + B → 2A
update, a particle moves from one box to another (denoted
by the thin arrows in Fig. 1). All the links to this node
will also change character, and the corresponding particles
in the urns must move also (denoted by the thick arrows
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in Fig. 1). These considerations will play a key role when
we derive approximate mean-field equations for ∂t Lαβ . By
contrast, the moves associated with a link update are simple:
adding or removing a “particle” in an urn. For example, if an
unconnected AB pair is chosen, then we would add a “particle”
to the LAB urn (always, in this case). Note that the urns on
each row are updated with the same rule: Always remove one
at the top (CC), always add for urns at the bottom row, and
add/remove with equal probability for those in the middle.

To focus on the QSS in simulation studies, various values
of (N, r) were chosen. The system was typically initialized
near the symmetry point (Nα

∼= N/3) and randomly half-filled
with links. It was then evolved for up to ∼109 MCS, during
which time the 9 variables were measured. We first discovered
that, for a narrow range of r, the lifetime of a QSS can be
orders of magnitude longer than the typical extinction time of
the ABC model, as many as 105 MCS. Encouraged by the pres-
ence of such unexpected longevity, and seeking insight into
the QSS’s, we postulated a set of equations for the evolution
of the macroscopic quantities, based on a mean-field approach
and discussed below. The fixed points and their associated
stability properties led us to perform further simulations at
r ∼= 4/N . At this value of r, runs with N = 1000 remain active
after 109 MCS! Figure 2 illustrates the typical behavior in
such a QSS, more details of which will be discussed below.

Let us first consider the mean-field equations, however, as
they provide some insight into the nature of the coevolving
system. The full equations are given in the Appendix. Here
we only outline their derivation. Formulating how the node
variables change is straightforward. They only change through
node updates, which occur with rate r, and during which a
chosen link, if present, will lead to one of its nodes being
altered. For example, there are LAC links connecting an A
and a C. If one of these links is chosen and a node update is
attempted, then NA will decrease by one and NC will increase
by one. Thus, instead of Eq. (2), we may write

∂t NA = r(LAB − LAC ) (3)

and similarly for cyclic permutations of {A, B,C}. Unlike the
standard ABC model, the action of the I ′s means that Lαβ <

NαNβ typically. Thus, we define a useful variable,

σαβ ≡ Lαβ/NαNβ , (4)

which plays the role of an effective interaction rate in Eq. (1).
For example, we can cast the ∂t NA equation above as ∂t NA =
rσABNANB − rσACNANC . Though this form is neater, the pres-
ence of the variables σ signals complications, as the derivation
of the link equations below will show. Note that, since the
nodes do not change during link-updates, there are no terms
proportional to (1 − r). Of course, the equations for the
different node variables sum to ∂t N = 0 as N is a constant
of motion.

Describing the evolution of the link variables Lαβ is more
involved, as it is affected by both kinds of updates. There are
terms due to link updates, which occur at a rate of (1 − r): a
chosen link will be cut or added according to the temperament
of its two nodes, and the number of I-I (E -E ) links can
only decrease to zero (increase toward the maximal value),
while the I-E links are driven toward half of the maximum
value. Thus, we have (r − 1)LCC in the ∂t LCC equation,
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FIG. 2. Results from a typical 5 × 104 section of a very long (109

MCS) run with N = 1000 and r = 4/N . (a) Population numbers of
A (dark gray, blue online), B (medium gray, red online), and C (light
gray, orange online). (b) Total self-links AA (dark gray, blue online),
BB(medium gray, red online), and CC (light gray, orange online).
(c) Total cross-links AB (dark gray, blue online), AC (medium gray,
red online), and BC (light gray, orange online). (d) Same data for the
cross-links but shown as a fraction of the maximum number possible.
Note that the results in (d) are remarkably in phase.
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and, e.g., (r − 1){LAC − NANC/2} in the ∂t LAC equation and
(r − 1){LAB − NANB} in the ∂t LAB equation. In addition, terms
proportional to r are needed to account for changes induced
by a node update, as shown by the thick arrows in Fig. 1.
At the microscopic level these terms involve the probability
of three-node (say, A, B, and γ ) clusters. Consider choosing
a particular connected AB pair, which will change to an AA
pair, under our rules. But then, all the other links this B had
will also change, as a Bγ link is now an Aγ link, and the
three-node cluster changes: A-B-γ → A-A-γ . Denoting the
number of γ ′s linked to B by kBγ , we see that LAγ /LBγ gains or
loses by this amount. Unfortunately, a complication is that kBγ

differs from one B node to another. In the spirit of mean-field
theory, we replace it by the average, namely, LBγ /NB. Such
standard approximation schemes for moment closure [35] can
be exploited to arrive at a set of terms for the link equations.
For example, in the ∂t LAB equation, we would include gain
terms like LBCkCA 	 LBCLCA/NC (from choosing the BC pair
in a cluster linked as B-C-A) and loss terms like −LCAkAB ∼
−LACLAB/NA (from choosing the CA pair in a cluster linked
as C-A-B). The result of such straightforward but tedious
considerations are given as the first set of equations in the
Appendix. Together with the set of Eq. (3), these will be the
basis of our theory.

To continue, it is convenient to define the fractions

ηα ≡ Nα/N, (5a)

λαβ ≡ 2Lαβ/N (N − 1), (5b)

and consider the “thermodynamic limit”: N → ∞ with

ρ ≡ r(N − 1)/2 (6)

fixed. Then rescaling t by N , only one control parameter, ρ,
remains [43]. The full set of mean-field equations for these
variables simplify slightly, as shown in the Appendix. We
provide two examples here:

∂tηA = ρ(λAB − λCA), (7)

∂tλAB = ρ

{
λBCλCA

ηC
−λABλAC

ηA
+2

λBBλBA

ηB
−λ2

AB

ηB

}

− {λAB − 2ηAηB}. (8)

Despite these simplifications, it is not feasible to solve these
equations analytically. Even the fixed point equations involve
solving nonlinear (algebraic) equations for five variables. Be-
fore discussing the numerical results, let us offer some insight
into their behavior.

First, note that the fraction of the total number of links,
λ ≡ ∑

α λαα + ∑
α �=β λαβ , satisfies a very simple equation:

∂tλ = (1 − r){ηA + ηB − λ}. (9)

Here we keep (1 − r), instead of writing (1 − 2ρ/N ) → 1,
to highlight the absence of r terms in the evolution of the
total link-number, which is conserved during node updates.
Equation (9) is intuitively reasonable, as it simply forces λ to
follow the fraction of extroverts.

As a next step we study the fixed points of the mean-field
equations (denoted by a superscript ∗) and their neighbor-
hoods. Despite some simplifications (λ∗

AB = λ∗
BC = λ∗

CA ≡ x∗,

λ∗ = η∗
A+η∗

B), the analytic form of (η∗
α, λ∗

αβ ) is quite complex
(as they are solutions of nonlinear equations for five vari-
ables). Let us discuss briefly the simpler r → 0, 1 limits. For
the former (r → 0), the rapid link dynamics leads to effective
rates of 1/2 for all I-E pairs, so that we have η∗

A,B = η∗
C/2 =

1/4, x∗ = 1/8, λ∗
AA,BB = 1/16, and λ∗

CC = 0. For r → 1, the
fast ABC dynamics is expected to symmetrize all variables,
so that we have η∗

A,B,C = 1/3. Meanwhile, λ∗
αα = x∗/2. To

obtain a definite result, we appeal to 3(λ∗
αα + x∗) = λ∗ = η∗

A +
η∗

B = 2/3 and arrive at x∗ = 4/27 and λ∗
αα = 2/27. Apart from

these limiting cases, we can find (η∗
α, λ∗

αβ ) numerically. They
are shown, as a function of ρ, in Figs. 3(a) and 3(b). For
finite N , these values differ slightly, for example, by ∼1% for
N = 1000.

Linearizing the evolution equations around the fixed point,
we find the following remarkable properties in the spectrum
of the stability matrix. There are typically multiple complex
conjugate pairs, the real parts of all eigenvalues are negative,
so that the fixed point is always stable! Except for one
complex conjugate pair, the magnitudes of these real parts are
approximately 1 or larger, leading to rapid decay of six modes.
Meanwhile, the real part of the last complex conjugate pair, μ,
is only 0.01 or less, so they are associated with the dominant
modes at late times. Plotting μ in Fig. 3(c), we find μ → 0
at the two limits, indicating that the fixed point becomes
marginally stable, as expected. There is also a surprisingly
significant dip around ρ = 2. At this ρ, the fixed point values
are

η∗
A,B,C

∼= 0.274, 0.315, 0.411, (10a)

λ∗
AA,BB,CC

∼= 0.0637, 0.0690, 0.0565, (10b)

x∗ ≡ λ∗
α �=β

∼= 0.133. (10c)

The eigenvalues associated with the two slowest modes
are μ∼= −0.0427±1.43i. Meanwhile, the next eigenvalue is
−0.853, so that the next mode decays about 20 times faster.
Thus, we can expect the dominant stochastic evolution to take
place in a “slow plane” spanned by the eigenvectors of the two
slowest modes. The direction of these eigenvectors in phase
space encode valuable information. We find the magnitudes of
all the components are comparable. Thus, all quantities (η, λ)
vary with similar amplitudes. The relative phases of the three
η components are quite close to ±120◦, reflecting the under-
lying threefold cyclic behavior. Meanwhile, the intraspecies
links (λαα) and the crosslinks (λαβ) are essentially in phase
with ηα and ηαηβ , respectively. A significant consequence of
the latter is that, even if the amplitudes in η and λ can be large,
the ratios σαβ oscillate with much smaller amplitudes.

The main conclusion of this linear stability analysis is as
follows. The trajectory of our system in eight-dimensional
space relaxes quickly onto a “slow plane.” In the absence of
noise, the phase portrait within this plane is that of a stable
spiral such that the dynamics converges to the fixed point
(η∗

α, λ∗
αβ ), similar as an underdamped, simple oscillator. Thus,

we observe the stochastic evolution to be well approximated
by noisy oscillations (see Fig. 2). Since fluctuations move
the system away from the attractive fixed point, the long
time behavior consists of oscillations with random amplitudes
(within a finite range, of course). The dominant frequency is
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FIG. 3. Solution of the mean-field equation and fixed-point sta-
bility analysis, as a function of ρ. (a) Fixed point values of η, from
top to bottom: C (green online), B (blue online), A (red online).
(b) Fixed point values of λ. Dashed line is for all three types of
cross-links. For the self-links, from top to bottom: BB (blue online),
AA (red online), CC (green online). (c) Real part of the slowest
eigenvalue, μ.

given by the imaginary part of the eigenvalue (1.43 here) and
comparable to ρ (2 here). All of this behavior also occurs for
all other finite, nonzero values of ρ. However, for ρ �= 2 a
QSS is less stable and will die more quickly.

All these properties are consistent with the data from simu-
lations (see Fig. 2), confirming that these mean-field equations

FIG. 4. Contour plot of the frequencies of the occurrence of
(A, B,C) during a very long (109 MCS) run, representing (a section
of) the quasistationary distribution, PQSS. The units in the legend
are arbitrary; total number of occurrences being the length of the run:
109. Also shown is a typical trajectory of length 5000 MCS (jagged
line, gray, red online), which started near the center at t=90,022,001.

capture the typical behavior of the stochastic system. The
cross-links, Lαβ , oscillate considerably, around the same value
with phase lags of ∼120◦ [Fig. 2(c)]. The main contributions
to these variations are, however, due to the time-dependent, to-
tal number of available links: NαNβ . When these are factored
out, by considering σαβ instead, we find oscillations which are
not only much smaller in amplitudes but also approximately
in phase [Fig. 2(d)]. Furthermore, these effective interaction
rates, when normalized by σ̂ ≡ σ/�αβσαβ , are almost con-
stant, varying by at most 5%. These constant values,

σ̂AB,AC,BC
∼= 0.418, 0.312, 0.270, (11)

are entirely consistent with the η∗′
α s [24,25].

Another perspective of the QSS is the distribution function,
PQSS (ηα, λαβ ), which can be obtained by compiling a his-
togram with the long time series. Figure 4 shows only the sec-
tion of PQSS associated with the node variables. Not surpris-
ingly, the central contours are essentially circular, where PQSS

is well approximated by a symmetric Gaussian. To illustrate
the stochastic nature of the evolution, we also included a short
section of the trajectory (red online). This short trajectory
begins near the center and spirals away. Later, not shown, it
spirals back toward the fixed point.

Unfortunately, while the mathematical analysis shows how
the addition of link dynamics and social temperament diver-
sity promotes the coexistence of the species, an intuitively
clear picture remains elusive. Here, let us offer a few obser-
vations. First, the slight asymmetry in the fixed point values
of η∗

α can be argued as follows. Once an A is converted to a C,
it starts cutting its links, an in particular those to B. This action
implies that it can survive longer than otherwise. Another
perspective is that a smaller fraction of C′s participate in the
game, leading to a larger total population. Meanwhile, since
they “consume” the A′s and “feed” the B′s, their abundance
can account for the slight difference between A and B. Next,
let us focus on the A′s, with the smallest average population.
As they near extinction, they are more likely to recover than
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in the ordinary ABC model, since their predators tend to cut
links, thereby reducing those effective interactions. Indeed, in
simulations a strong correlation between ηA � 1 and rapid
decrease in the effective rate σCA is observed, without signifi-
cant variations in σAB, the rate they prey on the B′s. A similar,
but “opposite,” scenario appears to be the case for the B′s.
As they near extinction, their effective predation rate, σBC ,
increases, while their susceptibility to the A′s, σAB, remain
roughly constant. In this sense, the drift toward extinction
in the standard ABC model is averted by the action of the
introverts.

Finally, we report very similar findings for the AE BICI

case. Changes to equations such as Eqs. (7) and (A12) are
minor, only in the (1 − r) terms in the ∂tλBα equations. The
most stable system occurs at a slightly different ρ, but is much
more stable (μ ∼ −0.3). Simulation results are also similar,
except that the system are extremely stable, showing few
sustained oscillations as fluctuations decay rapidly. Of course,
the scenarios painted above must be modified.

IV. SUMMARY AND OUTLOOK

To summarize, in an attempt to merge two standard
paradigms in statistical physics, we introduced a simple model
to explore coevolution of node and link degrees of freedom.
Specifically, we combined the cyclically competing game
of three species with the link dynamics in a population of
extreme introverts and extroverts. Whereas the former always
ends in extinction within a short time, we find that the addition
of link dynamics leads to a surprising long-lived state of
coexistence when both introverts and extroverts are present.
Though a mean-field approach, analyzed numerically, pro-
vides much insight into this state, an intuitive understanding
of how coevolution and diversity prevent extinction remains
elusive. Our results, however, clearly demonstrate that diver-
sity of behavior within a complex system can be important for
stabilizing its dynamics.

There are many avenues for further study of this particular
model, in addition to the QSS in the complementary AE BICI

case. Interesting issues include incorporating noise into the
mean-field equations, analytic perturbative treatments near
the two extremes of r, paths of partial population collapse
from six- to three-node types, possible existence of QSS’s
involving four- or five-node types, intrinsically asymmetric
interspecies interaction rates, potential emergence of phase
transitions between extinction and coexistence, and symmetry
in coevolutionary dynamics near such transitions [44]. Be-
yond our simple model, many generalizations come to mind
readily. One is to impose a structure in the interaction network,
such as making it a spatial network [45,46]. Also, the link
dynamics of the original XIE model leads to an extreme
Thouless effect [22]. If such a dynamics were implemented,
instead of the heatbath dynamics used here, then can we
expect similar phenomena?

Of course, our ABC-XIE model is just a prototype, de-
signed only for a theoretical exploration of the nonequilibrium
statistical physics of coevolution and of the stabilizing influ-
ence of diversity in complex systems. More realistic complex
systems in nature should be considered, an example being how
susceptible individuals would naturally reduce contacts in the

presence of an epidemic. In this sense, an SIS model with
adaptive networks [47–49] mark the inception of a serious
pursuit. Recent work studying competing bacteria colonies
that produce and degrade antibiotics are another example [50].
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APPENDIX

Here, we provide some details of the equations for the
evolution of Lαβ . The terms stemming from link updates, be-
ing proportional to (1 − r), are easily understandable. Those
needed to account for a node update are more involved; see
thick arrows in Fig. 1. In the main text, we discussed how
the leading terms associated with the probability of three-node
clusters arise. However, there is no unique scheme for the next
leading terms. Here, we choose a set which reduces properly
to the original ABC model (a fully connected population) in
the limit of r = 1. The result is

∂t LAA = r

{
LABLAB

NB
− 2

LAALAC

NA
− LAC + LAB

2

}

− (1 − r)

{
LAA − NA(NA − 1)

2

}
, (A1)

∂t LBB = r

{
LBCLBC

NC
− 2

LBBLBA

NB
− LBC + LBA

2

}

− (1 − r)

{
LBB − NB(NB − 1)

2

}
, (A2)

∂t LCC = r

{
LCALCA

NA
− 2

LCCLCB

NC
− LCB + LCA

2

}

− (1 − r){LCC}, (A3)

∂t LAB = r

{
LBCLCA

NC
− LABLAC

NA
+ 2

LBBLBA

NB
− LABLAB

NB
+ LAB

}

− (1 − r){LAB − NANB}, (A4)

∂t LCA = r

{
LCBLBA

NB
− LCALCB

NC
+ 2

LAALAC

NA
− LCALAC

NA
+ LCA

}

− (1 − r)

{
LCA − NCNA

2

}
, (A5)

∂t LBC = r

{
LCALAB

NA
− LCBLBA

NB
+ 2

LCCLCB

NC
− LCBLCB

NC
+ LCB

}

− (1 − r)

{
LCB − NCNB

2

}
. (A6)
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It is straightforward to verify that setting r to unity and
substituting Lαα = Nα (Nα − 1)/2 and Lαβ = NαNβ �=α into
Eqs. (A1)–(A6) gives us the same set as Eqs. (2).

Keeping these next-to-leading order terms, the total num-
ber of links, L ≡ ±αLαα + ±α �=βLαβ , satisfies the simple
equation

∂tL = (1 − r){(N − 1)(N − NC )/2 − L}. (A7)

As for fixed points, the following results are trivial: L∗
AB =

L∗
BC = L∗

CA ≡ X ∗, L∗ = (N − 1)(N − N∗
C )/2. Thus, the num-

ber of independent variables reduces to five. Nevertheless,
the analytic forms of (N∗

α , L∗
αβ ) are, in general, quite com-

plex. The exceptions are, as in the main text, the r →
0, 1 limits. Here, we provide the next-to-leading terms as
well. For the former (r → 0), we have N∗

A,B = N∗
C/2 = N/4,

X ∗ = N2/16, L∗
AA,BB = N (N − 4)/32, and L∗

CC = 0. For r →
1, the fast ABC dynamics is expected to symmetrize all
variables, so that we have N∗

A,B,C = N/3. Exploiting L∗ =
(N − 1)(N − N∗

C )/2, the final results are X ∗ = 2N (N + 1)/27
and L∗

αα = N (N − 7/2)/27.
Finally, let us present the full set of equations for the

fractions, in the thermodynamic limit:

∂tηA = ρ(λAB − λCA); ∂tηB = ρ(λBC − λAB);

∂tηC = ρ(λAC − λBC ), (A8)

∂tλAA = ρ

{
λ2

AB

ηB
− 2

λAAλAC

ηA

}
− {

λAA − η2
A

}
, (A9)

∂tλBB = ρ

{
λ2

BC

ηC
− 2

λBBλBA

ηB

}
− {

λBB − η2
B

}
, (A10)

∂tλCC = ρ

{
λ2

CA

ηA
− 2

λCCλCB

ηC

}
− λCC, (A11)

∂tλAB = ρ

{
λBCλCA

ηC
− λABλAC

ηA
+ 2

λBBλBA

ηB
− λ2

AB

ηB

}

−{λAB − 2ηAηB}, (A12)

∂tλCA = ρ

{
λCBλBA

ηB
− λCAλCB

ηC
+ 2

λAAλAC

ηA
− λ2

CA

ηA

}

−{λCA − ηCηA}, (A13)

∂tλCB = ρ

{
λCAλAB

ηA
− λCBλBA

ηB
+ 2

λCCλCB

ηC
− λ2

CB

ηC

}

−{λCB − ηCηB}, (A14)

where, of course, ηC stands for 1 − ηA − ηB. We should
emphasize that, in this limit, the period of typical oscillations
is of the order of 1/ρ, since they are controlled by the ABC
dynamics.
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