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Synchronization in network geometries with finite spectral dimension
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Recently there is a surge of interest in network geometry and topology. Here we show that the spectral
dimension plays a fundamental role in establishing a clear relation between the topological and geometrical
properties of a network and its dynamics. Specifically we explore the role of the spectral dimension in
determining the synchronization properties of the Kuramoto model. We show that the synchronized phase
can only be thermodynamically stable for spectral dimensions above four and that phase entrainment of the
oscillators can only be found for spectral dimensions greater than two. We numerically test our analytical
predictions on the recently introduced model of network geometry called complex network manifolds, which
displays a tunable spectral dimension.
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I. INTRODUCTION

Recently there has been growing interest in characterizing
networked structures using geometrical and topological tools
[1–3]. On one side, an increasing number of works aim at
unveiling the hidden geometry of networks using statistical
mechanics [4–11], discrete geometry [12], and machine
learning [13,14]; on the other side, topological data analysis
is tailored to capture the structure of a large variety of network
data [15–21].

Simplicial and cell complexes are generalized network
structures not only formed by nodes and links but also by
triangles, tetrahedra, hypercubes, orthoplexes, etc. Having
geometrical building blocks, simplicial and cell complexes
are ideal discrete structures to investigate and model network
geometry and topology [1–3]. Modeling network geometry
with simplicial and cell complexes has long been the practice
in quantum gravity approaches, including causal dynamical
triagulations, Regge calculus, or tensor networks, to name a
few [22–24]. Moreover, simplicial and cell complexes have
recently become very popular to model complex systems
ranging from brain networks to social networks [1–3,25–27],
in part supported by the fact that their geometrical properties
are often retained if one considers their network skeleton, i.e.,
the network formed exclusively by their nodes and links.

Network geometries are typically characterized by having
a finite spectral dimension dS [28–32] that characterizes the
return time distribution of the random walk. For instance, Eu-
clidean lattices in dimension d have spectral dimension d =
dS . Therefore, in this case the spectral dimension is also equal
to the Hausdorff dimension of the lattice, dS = dH . However,
in general, networks can have non-integer spectral dimension
dS not equal to their Hausdorff dimension. The fundamental

role of the spectral dimension in characterizing the geometry
of discrete network structures has been widely recognized
in quantum gravity where the spectral dimension has been
extensively used to compare different approaches [31–34].

Interestingly, it has recently been shown that the skeleton
of simplicial and cell complexes generated by the model
called complex network manifolds (CNM) [5–8] displays
finite spectral dimension, heterogeneous degree distribution,
small-world property (Hausdorff dimension dH = ∞) and
rich community structure on top of an emergent hyperbolic
geometry. This suggests that a finite spectral dimension is not
only a very strong indication of a rich underlying geometry
of network structures, but is also totally compatible with the
main universal properties of complex networks. Therefore,
complex networks with a strong geometric component such as
brain networks [16,35,36] and power grids [37] are likely to
display a finite spectral dimension together with characteristic
properties of complexity.

Predicting the properties of synchronization dynamics on
network geometries is a fundamental statistical mechanics
problem that can be crucial to understand the relation between
structural and functional brain networks and to predict the
stability of power grids. Even though the interplay between
complex network structure and synchronization dynamics has
been extensively studied [38–48], so far most works have
considered complex networks where the smallest non-zero
eigenvalue of the Laplacian (the so called Fidler eigenvalue) is
well separated from zero, i.e., the network displays a spectral
gap and does not display a spectral dimension.

Only very recently a few works have pointed out that net-
work geometry can have a profound effect on synchronization
dynamics [16,25,49]. In particular, it has been found that
neuronal cultures have synchronization properties strongly
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affected by their dimensionality, so that 2D neuronal cultures
display weaker synchronization properties than neuronal cul-
tures grown in 3D scaffolds [49]. Additionally, large-scale
numerical models of the brain generated in the framework
of the Blue Brain project [16] reveal that neurons in the
brain can be thought of as forming a simplicial complex
where neurons belonging to higher dimensional simplices
are more correlated. Recently, these results have been inter-
preted in the framework of a numerical stylized model of the
Kuramoto model on complex network manifolds displaying
strong spatiotemporal fluctuations and strong effects of the
dimensionality of the simplicial complex [25].

Here we shed light in these numerical results by investi-
gating the synchronization properties of the Kuramoto model
[47] on networks with a finite spectral dimension. We first
derive analytically general results on the predicted stability
of the synchronized phase in the linear approximation of the
Kuramoto model. Subsequently we compare these predictions
with numerical results of the Kuramoto model on complex
network manifolds.

For Euclidean lattices of dimension d , it is known that the
synchronized phase of the Kuramoto model is thermodynami-
cally stable only for d > 4 [50,51]. Here we extend this result
by showing that in complex networks with finite spectral
dimension, the Kuramoto model can yield a synchronized
state in the infinite network limit only for spectral dimensions
dS > 4. For spectral dimensions dS ∈ (2, 4] instead, only an
entrained synchronization phase can be observed in the large
network limit. Our results are then tested on complex network
manifolds formed by regular polytopes of dimension d . We
validate our results and we show evidence that in these
network structures it is possible to observe entrained phase
synchronization also for dimensions d > 4 provided that the
spectral dimension dS � 4. Interestingly, complex network
manifolds are hyperbolic network geometries [7] which are
very different from regular Euclidean lattices. A notable dif-
ference with Euclidean lattices is that despite the fact that
they have a finite spectral dimension, their eigenvectors are
not delocalized over the network like the Fourier basis on
an Euclidean lattice. Rather they can be very localized on
a small fraction of nodes, reflecting the symmetries present
in the network. Therefore, here we characterize the spectral
properties of complex network manifolds and study the effect
of these properties on the entrained phase synchronization,
which is known to display strong spatiotemporal fluctuations
of the order parameter [25]. This phase, also called frustrated
synchronization [43,44], has a very rich structure and can be
interpreted as an extended critical region to be related to the
smeared phase observed in critical phenomena on hyperbolic
networks, such as percolation [52,53].

The paper is organized as follows. In Sec. II we define
the properties of the normalized Laplacian and the spectral
dimension of a network. In Sec. III we introduce the model
of complex network manifolds and characterize its spectral
properties. In Sec. IV we discuss our theoretical predictions
regarding the synchronization properties of the Kuramoto
model on complex networks with finite spectral dimension
using the linear approximation. In Sec. V we validate the
theoretical predictions and fully investigate the properties of
synchronization defined over complex network manifolds.

In Sec. VI we provide the conclusions. Finally, in the Ap-
pendices we provide an extensive account of our theoretical
derivations.

II. THE SPECTRAL DIMENSION

Diffusion on network structures is typically studied using
the properties of suitably defined Laplacian operators. On an
undirected network of N nodes and adjacency matrix a the
normalized Laplacian L is a N × N matrix of elements

Li j = δi j − ai j

ki
. (1)

The normalized Laplacian operator is typically used to char-
acterize the random walk on a given network, or a diffusion
dynamics in which, starting from each node i, there is a well-
defined probability of diffusion to every neighbor node. For
instance, the random walk can be characterized by studying
the equation for the probability πi(t ) that a random walker is
at node i at time t given by

πi(t ) = −
∑

j

L jiπ j (t − 1). (2)

Given the initial condition πi(0) = δi,i0 , this equation has the
solution

πi(t ) =
∑

λ

e−λt uλ
i v

λ
i0 , (3)

where vλ and uλ are the right and left eigenvectors corre-
sponding to the eigenvalue λ. While L is asymmetric, an
alternative definition of the normalized Laplacian considers
the symmetric matrix L̂ of elements

L̂i j = δi j − ai j√
kik j

. (4)

Interestingly, is it easy to show that the spectrum of L and
the spectrum of L̂ are the same. Therefore, although the
normalized Laplacian L is asymmetric, it has a real spectrum
and non-negative eigenvalues. Additionally, the normalized
Laplacian has the following spectral properties:

(1) The normalized Laplacian L has always one zero
eigenvalue λ = 0 with degeneracy equal to the number of
components of the network. So if a network is connected the
zero eigenvalue has degeneracy one.

(2) In a connected network the right and left eigenvectors
corresponding to the zero eigenvalue λ = 0 are given by

vλ=0 = 1√〈k〉N (1, 1, . . . 1),

uλ=0 =
√

〈k〉N (μ1, μ2, . . . , μN ), (5)

where

μi = ki

〈k〉N (6)

is the invariant measure of the random walk on the network.
The components of the right vλ and left uλ eigenvectors
of L are related to the components of the eigenvectors wλ

of L̂ by

uλ
i =

√
kiw

λ
i , vλ

i = 1√
ki

wλ
i . (7)
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Therefore, if follows that the elements uλ
i and vλ

i are simply
related by the expression

uλ
i = kiv

λ
i . (8)

Moreover, since the eigenvectors wλ are orthogonal, we have

N∑
i=1

uλ
i v

λ′
i =

N∑
i=1

wλ
i wλ′

i = δ(λ, λ′). (9)

(3) The effective number of nodes over which the λ eigen-
mode is localized can be measured using the participation
ratio Y defined as [25]

Y =
[

N∑
i=1

(
uλ

i v
λ
i

)2

]−1

=
[

N∑
i=1

(
wλ

i

)4

]−1

. (10)

In networks with distinct geometrical properties, the den-
sity of eigenvalues ρ(λ) of the normalized Laplacian follows
the scaling relation

ρ(λ) � λdS/2−1 (11)

for λ 	 1, where dS is called the spectral dimension of the
network. In d-dimensional Euclidean lattices dS = d . More
generally, it can be shown that dS is related to the Hausdorff
dimension dH of the network by the disinequalities [31,32]

dH � dS � 2
dH

dH + 1
. (12)

Therefore, for small-world networks, which have infinite
Hausdorff dimension dH = ∞, it is only possible to have
finite spectral dimension dS � 2.

We observe here that, in presence of a finite spectral
dimension, the cumulative distribution ρc(λ) evaluating the
density of eigenvalues λ′ � λ follows the scaling

ρc(λ) � λdS/2, (13)

for λ 	 1. In the presence of a finite spectral dimension it is
possible to evaluate the scaling with the network size of the
smallest nonzero eigenvalue λ2 of a connected network (also
called the the Fidler eigenvalue) by imposing that

ρc(λ2) = 1

N
, (14)

i.e., the eigenvalue λ2 is the smallest non zero eigenvalue.
From this relation and the scaling of the cumulative density
of eigenvalues we get

λ2 ∝ N−2/dS . (15)

Therefore, the Fidler eigenvalue λ2 → 0 as N → ∞ and we
say that in the large network limit the spectral gap closes.

III. COMPLEX NETWORK MANIFOLDS: A MODEL
WITH TUNABLE SPECTRAL DIMENSION

A. Definition and basic structural properties

Simplicial complexes and cell complexes are natural
objects to be considered when investigating network geom-
etry. In fact, they can be intuitively interpreted as geometrical
network structures built from geometrical building blocks.

A pure d-dimensional simplicial complex is formed by
d-dimensional simplices (fully connected networks of d + 1
nodes) such as nodes (d = 0), links (d = 1), triangles (d =
2), tetrahedra (d = 3), etc., glued along their faces. Here by a
face of a d-dimensional simplex, we indicate a δ-dimensional
simplex with δ < d formed by a subset of its nodes. A simpli-
cial complex has the following two additional properties:

(1) If a simplex α belongs to the simplicial complex K
(i.e., α ∈ K), then also all its faces α′ ⊂ α belong to the
simplicial complex K (i.e., α′ ∈ K).

(2) If two simplices α and α′ belong to the simplicial
complex (i.e., α, α′ ∈ K), then either their intersection is null,
i.e., α ∩ α′ = ∅ or their intersection belongs to the simplicial
complex, (i.e., α ∩ α′ ∈ K).

Here we consider a recently proposed model, complex net-
work manifolds [5–7], that generates discrete d-dimensional
manifolds by a nonequilibrium growing simplicial complex
dynamics. CNM are discrete manifolds generated by gluing
subsequently d-dimensional simplices along their (d − 1)-
faces. Every (d − 1)-face α of the CNM is characterized by an
incidence number nα indicating the number of d-dimensional
simplices incident to it minus one. Initially (at time t = 1), the
CNM is formed by a single d-dimensional simplex. At any
subsequent step (at time t > 1), a new d-dimensional simplex
is glued to a (d − 1)-face α with probability

�α = 1 − nα∑
α′ (1 − nα′ )

. (16)

In Ref. [7] the exact degree distribution of CNM has been
analytically derived. Mainly, the degree distribution P̃(k) is
exponential for dimension d = 2 and power law (i.e., P̃(k) �
Ck−γ ) for dimension d > 2, with power-law exponent γ

given by

γ = 2 + 1

d − 2
. (17)

CNM can be generalized to cell complexes that are not
just formed by simplices but instead they are formed by the
subsequent gluing of regular polytopes along their faces [8].
Since in dimension d > 4 there are only three types of convex
regular polytopes, the simplices, the hypercubes and the or-
thoplexes, here we focus on CNM formed by subsequently
gluing these building blocks along their faces. Therefore,
we consider CNM built using repeatedly the same building
block given by a d-dimensional simplex, a d-dimensional
hypercube or a d-dimensional orthoplex. To each face of the
polytopes we assign an incidence number nα given by the
number of d-dimensional polytopes incident to it minus one.
Finally, the cell complex is built by starting from a single
polytope and at each subsequent time adding a new polytope
of the same type to a (d − 1)-face with probability given by
Eq. (16).

The resulting CNM [8] have exponential degree distribu-
tion for d = 2 and power-law degree distribution for d > 2,
with power-law exponent γ given by

γ = 1 + F − 2

f − 2
, (18)

where F is the number of faces of the regular polytopes
that form the building block of the cell complex, and f is
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the number of (d − 1)-faces incident to a node on the same
regular polytope. By using the fact that F and f are given for
the different regular polytopes by

F = d + 1, f = d, simplices,
F = 2d, f = d, hypercubes,
F = 2d , f = 2d−1, orthoplexes,

(19)

we derive that the power-law exponent γ of the degree distri-
bution is given by

γ = 2 + 1
d−2 , simplices,

γ = 3 + 2
d−2 , hypercubes,

γ = 3 + 1
2(d−2)−1 , orthoplexes.

(20)

Interestingly, we notice that only CNM built using simplices
have a scale-free degree distribution with γ ∈ (2, 3] in dimen-
sion d > 2.

We observe that the network structure of simplicial com-
plexes CNM [5] reduces to Apollonian random graphs
[54–56] and the cell complexes CNM in d = 3 are strictly
related to the model proposed in Ref. [57].

It was recently revealed that CNM and their generalization
called network geometry with flavor [6], which allows us to
establish the connection with preferential attachment models,
have an emergent hyperbolic geometry. Here we focus ex-
clusively on the skeleton of CNM, i.e., the network formed
exclusively by its nodes and links. The geometrical nature
of the skeleton of CNM is strongly reflected in the spectral
properties of the network, characterized by a finite spectral
dimension, as we will discuss in the following section.

B. The spectral properties of complex network manifolds

CNM follow simple combinatorial rules that do not take
into account any embedding space. However, these structures
display an emergent hyperbolic geometry characterized by
an infinite Hausdorff dimension dH = ∞ (the networks are
small-world) [25] together with a finite spectral dimension
dS � 2.

In this section we investigate numerically the spectral prop-
erties of CNM. Figure 1 shows the cumulative distribution of
eigenvalues ρc(λ) as obtained for the simplices [Fig. 1(a)],
hypercubes [Fig. 1(b)], and orthoplexes [Fig. 1(c)], and for
dimensions d = 2, 3, 4, and 5, as indicated by the different
colours in the legend. A finite-size study of this spectrum
reveals that λ2 approaches zero in the large network limit,
as predicted in presence of a finite spectral dimension dS .
Moreover, ρc(λ) obeys Eq. (13) for λ 	 1, which allows
us to obtain the spectral dimension dS as a function of d
[see Fig. 1(d)] by performing a power-law fit to ρc(λ) for
λ 	 1. We notice that the spectral dimension dS increases
with the dimension of the regular polytope d for simplices,
hypercubes and orthoplex as well. However, the growth of dS

with d saturates for hypercubes and orthoplexes, while it does
not appear to saturate for simplices. Therefore, we conclude
that the spectral dimension dS does not only depend on the
dimension d of the polytopes forming the building blocks of
the cell complex, but also on the specific nature and symmetry
of these polytopes.

Moreover, we observe that although CNM appear to have
a finite spectral dimension as Euclidean lattices, the eigenvec-

(c) (d)

(b)(a)

FIG. 1. The cumulative distribution of eigenvalues ρc(λ) for
CNM of dimension d = 2, 3, 4, and 5, is shown in panels (a), (b),
and (c) for the simplex, hypercube, and orthoplex CNM, respectively.
Panel (d) represents the fitted spectral dimension of the CNM as a
function of the dimension d of its building blocks. Results are for
N = 6400 and the cumulative distribution of eigenevalue ρc(λ) is
averaged over 100 realizations of the network.

tors of CNM are very different from the Fourier eigenvectors
of a Euclidean lattice, as evidenced by the behavior of its
participation ratio Y (see Fig. 2). In fact, for Euclidean lattices
one would have Y = N for all eigenmodes, while for CNM
there is a large fraction of eigenmodes with partion ratio
Y 	 N . The eigenvectors have indeed a very heterogeneous
distribution P(Y ) of the participation ratio Y , including many
eigenvectors localized on a small number of nodes compared
to the total number of nodes of the network [see Figs. 2(a),
2(d) and 2(g)]. This phenomenon can be also appreciated
by observing that the cumulative distribution Pc(Y ) of eigen-
modes with partition ratio less than Y can be significantly high

FIG. 2. The probability distribution P(Y ), the cumulative distri-
bution Pc(Y ) of the participation ratio Y , and the average value of the
participation ratio Y as a function of the corresponding eigenvalue λ

are shown for CNM formed by simplices [panels (a), (b), and (c)],
hypercubes [panels (d), (e), and (f)], and orthoplexes [panels (g), (h),
and (i)] networks with dimension d = 2, 3, 4, 5 of the polytopes.
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also for values of Y much smaller than the number of nodes
N of the network, i.e., Y 	 N [see Figs. 2(b), 2(e) and 2(h)].
Finally, the dependence of the participation ratio Y on λ can
be highly nontrivial [Figs. 2(c), 2(f) and 2(i)], and it is likely
to be affected by the symmetries of the CNM [58].

IV. KURAMOTO DYNAMICS ON NETWORKS
WITH FINITE SPECTRAL DIMENSION

A. The Kuramoto model

Synchronization dynamics on complex networks has been
widely studied in the literature and it is known to be very
significantly affected by the spectral properties of the network.
However, the scientific interest so far has focused on networks
which do not have a spectral dimension and display instead
what is called a spectral gap, i.e., the smallest nonzero eigen-
value of the normalized Laplacian λ2 does not approaches
zero in the infinite network limit.

However, in network geometries it is important to consider
network structures in which the spectral gap closes, λ2 →
0 as N → ∞, and the density of eigenvalues follows the
scaling in Eq. (11), i.e., the network has a finite spectral
dimension. To investigate the role of the spectral dimension
in the synchronization dynamics, we consider the Kuramoto
model.

The Kuramoto dynamics describes a system of N coupled
oscillators i = 1, 2, . . . , N with phases θi(t ) obeying the fol-
lowing dynamical equation:

θ̇i(t ) = ωi + σ

N∑
j=1

ai j

ki
sin(θ j − θi ), (21)

where ki is the degree of node i, ai j the adjacency matrix of
the network, and σ the control parameter tuning the strength
of the coupling between nodes. Each internal frequency ωi is
independently drawn from a normal distribution with mean 0
and variance 1, i.e., N (0, 1). We note that sometimes the Ku-
ramoto model is defined by omitting ki in Eq. (21); however,
our choice here is dictated by the desire to screen out the effect
of having heterogeneous degree distributions. Therefore, the
considered dynamics is designed to be independent of the
degree distribution so that the effect of having networks with
different spectral dimension can be revealed.

B. Theoretical predictions

To study the stability of the synchronized phase, we have
linearized the Kuramoto dynamics in Eq. (21) assuming that
|θi − θ j | 	 1 for every pair of neighbor nodes. In this way we
get the linear system of equations

θ̇i(t ) = ωi − σ

N∑
j=1

Li jθ j, (22)

for i = 1, 2, . . . , N , where L is defined in Eq. (1). To evaluate
the stability of the synchronized state, we use an approach
already established for finite lattices [50,51]. Specifically, we
calculate the average fluctuation of the phases over the entire

network by evaluating W 2 given by

W 2 = 1

N

〈
N∑

i=1

[θi(t ) − θ ]2

〉
, (23)

where in Eq. (23) θ is given by

θ = 1

N

N∑
i=1

θi(t ), (24)

in the linear approximation. In presence of a thermodynam-
ically stable synchronized phase, the average fluctuations of
the phases W 2 should remain bounded. Therefore, if W 2

diverges with the network size N , the synchronized phase
is unstable. By considering networks having a finite spectral
dimension dS we obtain (see Appendix A) that in the large
network limit (N → ∞) W 2 diverges as long as dS � 4.
Specifically we can show that W 2 obeys the scaling

W 2 ∼
⎧⎨
⎩

N4/dS−1 if dS < 4,

ln(N ) if dS = 4,

const if dS > 4.

(25)

It follows from this derivation that the synchronized state
cannot be thermodynamically stable in networks with spectral
dimension dS � 4.

The linear approximation is valid only if the coupling term
of each oscillator with the phases of the linked oscillators
is small. Therefore, for the linear approximation to hold
we must require that the vector Lθ has small elements. A
global parameter that can establish the sufficient condition for
the failure of the linear approximation is the correlation C
defined as

C = 1

N

〈
θT Lθ

〉
. (26)

In fact, if the correlation C diverges the linear approximation
cannot be valid. In a network with finite spectral dimension dS

we have obtained (see detailed derivation in Appendix B) that
C obeys the following scaling with N ,

C ∼
⎧⎨
⎩

N2/dS−1 if dS < 2,

ln(N ) if dS = 2,

const if dS > 2.

(27)

Therefore, for spectral dimension dS � 2 the correlations
among the phases of nearest neighbor nodes diverge and the
linear approximation fails.

So far we have shown that for spectral dimension dS < 2
the linear approximation fails, while for spectral dimensions
dS ∈ (2, 4] the linear approximation can be valid but the
synchronized phase is not thermodynamically stable. To un-
cover the phenomenology for spectral dimensions dS ∈ (2, 4],
we follow the approach used by [50,51] for regular lattices.
We start by characterizing the fluctuations observed in phase
velocities across the nodes of the network,

V 2 = 1

N

N∑
i=1

〈[ψi − ψ̄]2〉, (28)

where ψi indicates the phase velocity of node i,

ψi = θ̇i, (29)
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and ψ̄ the average of the phase velocities over the network,

ψ̄ = 1

N

N∑
i=0

ψi. (30)

In Appendix C we show that, as long as the linear approxima-
tion is valid, i.e., dS > 2, the fluctuations observed in phase
velocities vanish in the large network limit, i.e.,

V 2 → 0 as N → ∞. (31)

This analysis therefore reveals that for spectral dimensions
dS ∈ (2, 4] phase entrainment takes place as long as the linear
approximation is valid.

V. KURAMOTO MODEL ON COMPLEX
NETWORK MANIFOLDS

In this section we present numerical results of the Ku-
ramoto dynamics defined over CNM. As CNM have tun-
able spectral dimension this analysis will provide a solid
benchmark where we can test our theoretical predictions. The
macroscopic state of synchronization of the system at each
time t is characterized by the Kuramoto order parameter,
defined as

Z (t ) = R(t )eiφ(t ) = 1

N

N∑
j=1

eiθ j (t ), (32)

where R(t ) ∈ [0, 1] is a real variable that quantifies the level
of global synchronization, and φ(t ) gives the average global
phase of collective oscillations [38,47]. Therefore, R(t ) ≈
0 corresponds to the noisy or noncoherent state, whereas
R(t ) ≈ 1 corresponds to the coherent or synchronized state.

We simulated the Kuramoto dynamics by integrating the
system of Eqs. (21) in MATLAB using the ode45 function,
which uses a nonstiff fourth-order integration algorithm with
adaptive time steps. Simulations are run for a total time T ,
and for different realizations of the CNM, formed by d-
dimensional simplices, hypercubes, and orthoplexes.

Our numerical analysis reveals that CNM can display a
frustrated synchronization phase with fully entrained phases
in which the global order parameter R(t ) has large temporal
fluctuations. The typical range of values of the coupling
constants where we observe this phase depends both on the
spectral dimension dS and the network size N . In Fig. 3 we
show single instances of the time series R(t ) of the global or-
der parameter defined on CNM of size N = 3200 for represen-
tative values of the coupling σ and for different polytopes and
dimensions. Characteristic states of frustrated synchronization
can be observed for σ = 5.0 and d = 3, 4 for CNM formed
by simplex, hypercubes, and orthoplex [Figs. 3(d), 3(e), 3(f),
3(g), 3(h), and 3(i)], and also for d = 5 for CNM formed by
hypercubes and orthoplex [Figs. 3(k) and 3(l)].

In general, for CNM formed by a finite number of nodes
N , as the coupling constant σ increases we can generally
distinguish between three phases. For very small values of
the coupling constant σ , the order parameter R(t ) ≈ 0, i.e.,
the oscillators are not coherent [as shown, for example, in
Figs. 3(a) and 3(b)]. For large values of the coupling constant
σ we observe a synchronized phase and a stationary time-
series of R(t ) with large values of R(t ) [see, for instance,

curves obtained for σ = 11.0, and σ = 16.0, in Figs. 3(a)
and 3(b)]. In the intermediate range of values of the coupling
constant σ , we observe the frustrated synchronization regime
of phase entrainment where the order parameter R(t ) is not
stationary [see, for instance, curves obtained for σ = 5.0 in
Figs. 3(d), 3(e) and 3(f)].

To investigate the thermodynamical stability of these
phases in the large network limit as a function of the spectral
dimension dS , we have studied the finite-size effects of the
Kuramoto synchronization for CNM formed by simplices,
hypercubes, and orthoplexes for dimensions d = 2, 3, 4, 5.
The spectral dimension of these CNM is shown in Fig. 1.
For d = 2 CNM have spectral dimension dS ≈ 2, whereas
for 2 < d � 5 CNM formed by simplices have spectral di-
mension dS that in first approximation can be assumed to be
dS ≈ d and CNM formed by hypercubes and orthoplexes have
spectral dimension dS ∈ (2, 3). Consequently, our theoretical
expectation is that for d = 2 we cannot observe entrained
phases, and that for 2 < d � 4 we can observe entrained
phases and the synchronized phase cannot be thermodynam-
ically stable. Moreover for d = 5 our predictions are that
CNM formed by simplices can display a thermodynamically
stable synchronized phase while CNM formed by hypercubes
and orthoplexes cannot display a thermodynamically stable
synchronized phase.

To test these predictions we have numerically studied
as functions of the coupling σ the mean value R̄ and the
standard deviation stdR of the order parameter R(t ), averaged
after the transient evolution over different realizations of
CNM. In Figure 4 we display R̄ and stdR for CNM formed
by simplices, hypercubes, and orthoplex of dimension d =
2, 3, 4, 5 and different network sizes N . The decoherent or
unsynchronized phase corresponds to the regime where R̄
is low. The synchronized phase corresponds to the regime
where R̄ is high and the fluctuations stdR are low. Finally,
the frustrated synchronization phase corresponds to values of
the coupling where both R̄ and stdR have significantly high
values. As the network size N increases we observe different
scenarios depending on the value of the spectral dimension
dS . For spectral dimension dS ≈ 2, in the large network limit
the system remains in the decoherent state. This occurs for all
considered CNM of dimension d = 2. For spectral dimension
dS ∈ (2, 4], we observe that the synchronized phase is not
thermodynamically stable as the values of coupling constant
where the onset of this phase is observed increase with the
network size and do not converge to a finite value. It occurs
for CNM formed by simplices of dimension d = 3, 4 and for
CNM formed by hypercubes and orthoplexes of dimension
d = 3, 4, 5. Finally, for spectral dimension dS > 4 we observe
that the synchronized phase is thermodynamically stable as
the onset of this phase occurs at a finite value of σ in the large
network limit.

In summary, our numerical study of the synchronization
properties of CNM indicates that the phase diagram of the
model depends critically on the spectral dimension dS as
predicted by our theoretical investigation.

The properties of the frustrated synchronization phase ob-
served in CNM are here furthermore investigated by means of
the orbit diagrams [48] (see Fig. 5). These are measured as
the extrema R∗ (maximum and minimum) of the time series
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FIG. 3. Time series of the global order parameter calculated for different values of σ = 5, 11 and 16, as indicated in the legend, and for
CNM formed by simplices [panels (a), (d), (g), (j)], hypercubes [panels (b), (e), (h), (k)], and orthoplex [panels (c), (f), (i), (l)] of dimensions
d = 2 [panels (a), (b), (c)], d = 3 [panels (d), (e), (f)], d = 4 [panels (g), (h), (i)], and d = 5 [panels (j), (k), (l)].

R(t ) for each coupling σ . Therefore, a fixed stationary state is
represented by one point corresponding to the mean value, as
it appears in the synchronized state observed for high values
of σ provided that d > 2. This situation corresponds to one
of full synchronization if R∗ = 1 or to partial synchronization
if R∗ < 1, in which some nodes remain unsynchronized. For
spectral dimensions dS ∈ (2, 4], however, we observe that,
as the value of the coupling constant σ is lowered and we
enter in the frustrated synchronization phase, oscillatory states
appear with a given number of extrema that depends on
the network and frequency realization. These typically cor-
respond to interference among different locally synchronized
regions, whose sizes scale as N [25], which gives rise to
a chaotic behavior as the coupling constant σ is decreased.

Finally, in the case dS ≈ d = 2 the synchronized state is never
reached.

VI. CONCLUSIONS

This work investigates the role of the spectral dimen-
sion dS on the synchronization properties of the Kuramoto
model. Using a linear approximation we have shown that the
synchronized phase cannot be thermodynamically stable for
spectral dimension dS � 4. Therefore, a necessary condition
to observe a synchronized regime in the thermodynamic limit
is that dS > 4. We have also shown that the considered linear
approximations cannot be valid for dS � 2, since the corre-
lations C diverge. Finally, we have shown that, for spectral
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FIG. 4. The average order parameter R̄ and the standard deviation of the order parameter (stdR) are plotted versus the coupling constant
σ for CNM formed by simplices [panels (a), (b), (c), (d)], hypercubes [panels (e), (f), (g), (h)], and orthoplexes [panels (i), (j), (k), (l)], and
for dimension d = 2 [panels (a), (e), (i)], d = 3 [panels (b), (f), (j)], d = 4 [panels (c), (g), (k)], and d = 5 [panels (d), (h), (l)]. Results are
shown for different network sizes N = 100, 200, 400, 800, 1600, and 3200 as indicated in the legend. Results are for T = 1000 and have
been averaged after equilibration for 20 realizations of the networks and internal frequencies.

dimension dS ∈ (2, 4], phase entrainment takes place in the
large network limit as long as the linear approximation is
valid, i.e., the fluctuations in phase velocities, V 2, vanish
asymptotically in time, so that the phases of the nodes are
totally entrained.

To consider a concrete example where to test these theo-
retical derivations, we have characterized the synchronization
dynamics of the normalized Kuramoto model taking place on
complex network manifolds which have a tunable spectral
dimension. These networks define discrete manifolds with
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FIG. 5. Orbit diagrams of the system dynamics for CNM formed
by simplices (left panels), hypercubes (center panels) and ortho-
plexes (right panel) for d = 2, 3, 4 and 5 from top to bottom. The
orbit diagrams are represented by the extremes (maxima and minima)
R∗ taken by R(t ) for t > 0.8T . Results are for N = 3200, T = 1000
and a given realization of the networks structure.

the small-world property (infinite Hausdorf dimension) and
highly modular structure, and they provide an ideal theoretical
setting to explore the interplay between network geometry and
synchronization dynamics [25].

CNM have significant spectral properties and display a
finite spectral dimension. In particular, we have found that
CNM based on simplicial complexes have a spectral dimen-
sion dS increasing almost linearly with the dimension d of
the simplices, whereas CNM formed by d-dimensional hyper-
cubes and orthoplexes have a spectral dimension dS that satu-
rates for large values of d . Having a tunable spectral dimen-
sion, CNM can be compared to Euclidean lattices that have
a spectral dimension dS equal to their Hausdorff dimension,
i.e., dS = dH . However, CNM have a hyperbolic structure with
dH = ∞ and we always observe dS < dH . Moreover, a closer
look at the localization properties of the eigenvectors CNM
reveals more significant differences with respect to Euclidean
lattices. In fact, contrarily to the Fourier eigenvector of Eu-
clidean lattices, a large fraction of eigenmodes of CNM are
highly localized on few nodes of the network, reflecting the
symmetries of the building block structure.

We have studied numerically the Kuramoto dynamics on
CNM testing our theoretical predictions on the nature of
the synchronization dynamics as a function of the spectral
dimension dS . We show that a frustrated synchronization
regime with entrained phases emerges for spectral dimensions
dS ∈ (2, 4] and that, for this range of values of the spectral di-
mension, finite CNM with high coupling constant σ reach also
a synchronized phase but this phase is not thermodynamically
stable. Moreover, we show that for spectral dimension dS = 5
the synchronized phase is thermodynamically stable.

In conclusion, our work reveals that nontrivial synchro-
nization states can emerge even in small-world networks, with
an infinite Hausdorff dimension, provided that the spectral
dimension is finite. These results reveal deep connections

between geometry and synchronization dynamics and are po-
tentially very useful to further investigate the relation between
structural and functional brain networks.
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APPENDIX A: STABILITY OF THE
SYNCHRONIZED PHASE

In this Appendix we will investigate the stability of the
synchronized phase by considering the linearized dynamical
system given by Eq. (22). The normalized Laplacian L ap-
pearing in Eq. (22) and defined in Eq. (1) is diagonalizable
with eigenvalues {λi}i=1,2,...,N , numbered in increasing order,
0 = λ1 < λ2 � λ3, . . . ,� λN , and therefore can be written as

P−1LP = D, (A1)

where P is the matrix whose columns are the right eigenvec-
tors vλ and and P−1 is the matrix whose rows are the left
eigenvectors uλ of L. Notice that we always have P−1P = I,
where I indicates the identity matrix, due to the normalization
condition of the eigenvectors given by Eq. (9).

The vector θ = (θ1, θ2, . . . , θN )T can be projected in the
base of the right and left eigenvectors, so θi can be equiva-
lently expressed as

θi =
∑

λ

θR
λ vλ

i , θi =
∑

λ

θL
λ uλ

i , (A2)

or, equivalently,

θ = PθR, θ = [P−1]T θL, (A3)

where we have indicated with θR and θL the column vector of
elements θR

λ and θL
λ , respectively. Inverting these relations we

have that θR and θL are given by

θR = P−1θ, θL = PT θ. (A4)

Similarly we can also consider the vector ω of elements ωi and
project it along the bases of the right and the left eigenvectors,

ω = PωR, ω = [P−1]T ωL. (A5)

Inverting these relations we obtain

ωR = P−1ω, ωL = PT ω. (A6)

The linearized Eq. (22) can also be projected along the bases
of right and left eigenvectors getting

dθR
λ

dt
= ωR

λ − σλθR
λ ,

dθL
λ

dt
= ωL

λ − σλθL
λ . (A7)
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This equations can be solved obtaining, for λ �= 0,

θ
R/L
λ (t ) = e−σλtθ

R/L
λ (0) + ω

R/L
λ

σλ
(1 − e−σλt ), (A8)

and, for λ = 0,

θ
R/L
λ (t ) = θ

R/L
λ=0(0) + ω

R/L
λ=0t . (A9)

Finally, let us note that ωR,L have the following averages:

〈
ωR,L

λ

〉 = 0,
〈
ωR

λωL
λ′
〉 =

N∑
i=1

N∑
j=1

〈ωiω j〉uλ
i v

λ′
j = δλ,λ′ . (A10)

As mentioned in the main text, to evaluate the stability of the
synchronized state, we use an approach already established for
finite lattices [50,51] and we calculate the average fluctuation
of the phases over the entire network. These fluctuations are
quantified by W 2 given by

W 2 = 1

N

〈
N∑

i=1

[θi(t ) − θ ]2

〉
, (A11)

where

θ = 1

N

N∑
i=1

θi(t ). (A12)

The divergence of W 2 with the network size N will indicate
that the synchronized phase is unstable.

Since θ can be expressed equivalently in the base of right
and left eigenvectors as expressed in Eq. (A3), and the right
eigenvector is given by the first of Eqs. (5), we can calculate
θ in terms of θL and θR as

θ =
√

〈k〉
N

θL
λ=0(t ), θ =

∑
λ

θR
λ (t )

1

N

∑
i

vλ
i . (A13)

Using the explicit solution of θL
λ (t ) and θR

λ (t ) given by
Eq. (A8) and Eq. (A9) and using Eqs. (A10) we can express

〈θ2〉 as

〈θ2〉 = 1

N

〈
θL
λ=0(t )θR

λ=0(t )
〉 +

√
〈k〉
N

θL
λ=0(0)θR

λ=0(0)

×
∑
λ �=0

e−σλt 1

N

N∑
i=1

vλ
i . (A14)

Therefore, asymptotically in time, for t → ∞, we obtain

〈θ2〉 = 1

N

〈
θL
λ=0(t )θR

λ=0(t )
〉
. (A15)

The fluctuations of the phases of the Kuramoto dynamics
can be evaluated by considering that W 2 can be equivalently
expressed as

W 2 = 1

N
〈θT θ〉 − 〈θ2〉. (A16)

Using Eq. (A4) we note that 〈θT θ〉 has a simple expression in
terms of θL and θR, i.e.,

〈θT θ〉 = 〈[θL]T P−1P[θR]〉 = 〈[θL]T θR〉. (A17)

Using the solution of the Kuramoto dynamics Eq. (A8) and
Eqs. (A10) we get

〈[θL]T θR〉 = 〈
θL
λ=0(t )θR

λ=0(t )
〉

+
∑

{λ}|λ �=0

[
e−2σλtθR

λ (0)θL
λ (0) + 1

(σλ)2
(1 − e−σλt )2

]
.

(A18)

Finally using Eq. (A16) together with Eqs. (A15)–(A18), it
results that asymptotically in time for t → ∞,

W 2 =
∫ λmax

λ2

dλρ(λ)
1

(σλ)2
. (A19)

Since the Fidler eigenvalue λ2 satisfies the scaling expressed
in Eq. (15) and goes to zero in the infinite network limit, using
the scaling in Eq. (11) for the density of eigenvalues ρ(λ) we
obtain the following results.

(1) For spectral dimension dS < 4 the average fluctuation
of the phases W 2 diverges as

W 2 � O
(
λ

dS/2−2
2

)
. (A20)

(2) For spectral dimension dS = 4 the average fluctuation
of the phases W 2 diverges as

W 2 � O(− ln λ2). (A21)

(3) Only for spectral dimension d > 4 the average fluctu-
ation of the phases W 2 converges.

Specifically, by inserting the scaling of the Fidler eigen-
value Eq. (15) with the network size N we obtain

W 2 ∼
⎧⎨
⎩

N4/dS−1 if dS < 4,

ln(N ) if dS = 4,

const if dS > 4.

(A22)

It follows from this derivation that the synchronized state
cannot be thermodynamically stable in networks with spectral
dimension dS � 4.

APPENDIX B: CORRELATIONS BETWEEN PHASES
AND VALIDITY OF THE LINEAR APPROXIMATION

In this Appendix we will evaluate the scaling of the corre-
lation C defined as

C = 1

N
〈θT Lθ〉 (B1)

in the linear approximation. The divergence of the correlation
C in the large network limit indicates that the linear approx-
imation fails to be valid. The correlation can be expressed in
the basis of eigenvalues of the normalized Laplacian getting
the simple expression

C = 1

N

∑
λ

〈
θL
λ λθR

λ

〉
. (B2)

By using the explicit expression for θ
L/R
λ given by Eq. (A8) it

is easy to show that

C = 1

N

∑
{λ}|λ �=0

λ

[
e−2σλtθR

λ (0)θL
λ (0) + 1

(σλ)2
(1 − e−σλt )2

]
,
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which gives in the asymptotic limit t → ∞,

C =
∫ λN

λ2

ρ(λ)
1

σ 2λ
dλ. (B3)

By inserting the scaling of the Fidler eigenvalue with the
network size N given by Eq. (15) we obtain

C ∼
⎧⎨
⎩

N2/dS−1 if dS < 2,

ln(N ) if dS = 2,

const if dS > 2.

(B4)

Therefore, for spectral dimension dS � 2 the correlations
among the phases of nearest neighbor nodes diverge and the
linear approximation fails.

APPENDIX C: ENTRAINED PHASES

In this Appendix we will characterize the fluctuations
observed in phase velocities across the nodes of the network
quantified by the global parameter V 2 given by

V 2 = 1

N

N∑
i=1

〈[ψi − ψ̄]2〉, (C1)

where ψi indicates the phase velocity of node i

ψi = θ̇i, (C2)

and ψ̄ the average of the phase velocities over the network

ψ̄ = 1

N

N∑
i=0

ψi. (C3)

The phase velocities ψ = (ψ1, ψ2, . . . , ψN )T can be projected
into the basis of right and left eigenvectors of the normalized
Laplacian getting

ψR = P−1ψ, ψL = PT ψ. (C4)

By using the solution of the linearized dynamics, Eqs. (A8)
and (A9), it is easy to show that with the linear approximation
we have

ψ
R/L
λ (t ) = θ̇λ

R/L = −σλe−σλtθ
R/L
λ (0) + ω

R/L
λ e−σλt , (C5)

and for λ = 0,

ψ
R/L
λ (t ) = ω

R/L
λ=0. (C6)

Using the same procedure used previously for the derivation
of θ̄ , it is easy to show that the average phase velocity ψ̄ can
be expressed equivalently as

ψ̄ =
√

〈k〉
N

ψL
λ=0(t ), ψ̄ =

∑
λ

ψR
λ (t )

1

N

∑
i

vλ
i . (C7)

From these expressions, and using Eqs. (A10), it follows that

〈ψ̄2〉 = 1

N

〈
ψL

λ=0(t )ψ r
λ=0(t )

〉
. (C8)

Finally, using again Eqs. (A10) we get that

V 2 = 1

N
〈[ψL]T ψR〉 − 〈ψ̄2〉 (C9)

scales in the asymptotic limit t → ∞ as

V 2 ∼
∫ λmax

λ2

dλρ(λ)e−2σλt

∼ t−dS/2. (C10)

This result implies that asymptotically in time the fluctuations
in the phase velocities vanish, i.e.,

V 2 → 0 (C11)

as t → ∞. This result implies that the phases of the oscillators
are totally entrained as long as the linear approximation is
valid.

[1] G. Bianconi, Interdisciplinary and physics challenges of net-
work theory, Europhys. Lett. 111, 56001 (2015).

[2] C. Giusti, R. Ghrist and D. S. Bassett, Two’s company, three (or
more) is a simplex, J. Comput. Neurosci. 41, 1 (2016).

[3] V. Salnikov, D. Cassese, and R. Lambiotte, Simplicial com-
plexes and complex systems, Eur. J. Phys. 40, 014001 (2018).

[4] Z. Wu, G. Menichetti, C. Rahmede, and G. Bianconi, Emergent
complex network geometry, Sci. Rep. 5, 10073 (2014).

[5] G. Bianconi and C. Rahmede, Complex quantum network man-
ifolds in dimension d > 2 are scale-free, Sci. Rep. 5, 13979
(2015).

[6] G. Bianconi and C. Rahmede, Network geometry with flavor:
from complexity to quantum geometry, Phys. Rev. E 93, 032315
(2016).

[7] G. Bianconi and C. Rahmede, Emergent hyperbolic network
geometry, Sci. Rep. 7, 41974 (2017).

[8] D. Mulder and G. Bianconi, Network geometry and complexity,
J. Stat. Phys. 173, 783 (2018).

[9] D. C. da Silva, G. Bianconi, R. A. da Costa, S. N. Dorogovtsev,
and J. F. F. Mendes, Complex network view of evolving mani-
folds, Phys. Rev. E 97, 032316 (2018).

[10] M. Boguñá, F. Papadopoulos, and D. Krioukov, Sustaining
the internet with hyperbolic mapping, Nat. Commun. 1, 62
(2010).

[11] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M.
Boguñá., Hyperbolic geometry of complex networks, Phys.
Rev. E 82, 036106 (2010).

[12] J. Jost and S. Liu, Ollivier’s Ricci curvature, local clustering and
curvature-dimension inequalities on graphs, Discrete Comput.
Geom. 51, 300 (2014).

[13] A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, and C. V.
Cannistraci, Machine learning meets complex networks via
coalescent embedding in the hyperbolic space, Nat. Commun.
8, 1615 (2017).

[14] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and
P. Vandergheynst, Geometric deep learning: going be-
yond euclidean data, IEEE Signal Process. Mag. 34, 18
(2017).

[15] G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt,
P. J. Hellyer, and F. Vaccarino, Homological scaffolds of
brain functional networks, J. Roy. Soc. Interface 11, 20140873
(2014).

022307-11

https://doi.org/10.1209/0295-5075/111/56001
https://doi.org/10.1209/0295-5075/111/56001
https://doi.org/10.1209/0295-5075/111/56001
https://doi.org/10.1209/0295-5075/111/56001
https://doi.org/10.1007/s10827-016-0608-6
https://doi.org/10.1007/s10827-016-0608-6
https://doi.org/10.1007/s10827-016-0608-6
https://doi.org/10.1007/s10827-016-0608-6
https://doi.org/10.1088/1361-6404/aae790
https://doi.org/10.1088/1361-6404/aae790
https://doi.org/10.1088/1361-6404/aae790
https://doi.org/10.1088/1361-6404/aae790
https://doi.org/10.1038/srep10073
https://doi.org/10.1038/srep10073
https://doi.org/10.1038/srep10073
https://doi.org/10.1038/srep10073
https://doi.org/10.1038/srep13979
https://doi.org/10.1038/srep13979
https://doi.org/10.1038/srep13979
https://doi.org/10.1038/srep13979
https://doi.org/10.1103/PhysRevE.93.032315
https://doi.org/10.1103/PhysRevE.93.032315
https://doi.org/10.1103/PhysRevE.93.032315
https://doi.org/10.1103/PhysRevE.93.032315
https://doi.org/10.1038/srep41974
https://doi.org/10.1038/srep41974
https://doi.org/10.1038/srep41974
https://doi.org/10.1038/srep41974
https://doi.org/10.1007/s10955-018-2115-9
https://doi.org/10.1007/s10955-018-2115-9
https://doi.org/10.1007/s10955-018-2115-9
https://doi.org/10.1007/s10955-018-2115-9
https://doi.org/10.1103/PhysRevE.97.032316
https://doi.org/10.1103/PhysRevE.97.032316
https://doi.org/10.1103/PhysRevE.97.032316
https://doi.org/10.1103/PhysRevE.97.032316
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1007/s00454-013-9558-1
https://doi.org/10.1007/s00454-013-9558-1
https://doi.org/10.1007/s00454-013-9558-1
https://doi.org/10.1007/s00454-013-9558-1
https://doi.org/10.1038/s41467-017-01825-5
https://doi.org/10.1038/s41467-017-01825-5
https://doi.org/10.1038/s41467-017-01825-5
https://doi.org/10.1038/s41467-017-01825-5
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1098/rsif.2014.0873
https://doi.org/10.1098/rsif.2014.0873
https://doi.org/10.1098/rsif.2014.0873
https://doi.org/10.1098/rsif.2014.0873


MILLÁN, TORRES, AND BIANCONI PHYSICAL REVIEW E 99, 022307 (2019)

[16] M. W. Reimann, M. Nolte, and M. Scolamiero et al., Cliques
of neurons bound into cavities provide a missing link between
structure and function, Front. Comput. Neuro. 11, 48 (2017).

[17] V. Salnikov, D. Cassese, R. Lambiotte, and N. S. Jones,
Co-occurrence simplicial complexes in mathematics: Identify-
ing the holes of knowledge, arXiv preprint arXiv:1803.04410
(2018).
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