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Interactions of solitons with positive and negative masses: Shuttle motion and coacceleration
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We consider a possibility to realize self-accelerating motion of interacting states with effective positive and
negative masses in the form of pairs of solitons in two-component BEC loaded in an optical-lattice (OL)
potential. A crucial role is played by the fact that gap solitons may feature a negative dynamical mass, keeping
their mobility in the OL. First, the respective system of coupled Gross-Pitaevskii equations (GPE) is reduced to
a system of equations for envelopes of the lattice wave functions. Two generic dynamical regimes are revealed
by simulations of the reduced system, viz., shuttle oscillations of pairs of solitons with positive and negative
masses, and splitting of the pair. The coaccelerating motion of the interacting solitons, which keeps constant
separation between them, occurs at the boundary between the shuttle motion and splitting. The position of the
coacceleration regime in the system’s parameter space can be adjusted with the help of an additional gravity
potential, which induces its own acceleration, that may offset the relative acceleration of the two solitons,
while gravity masses of both solitons remain positive. The numerical findings are accurately reproduced by a
variational approximation. Collisions between shuttling or coaccelerating soliton pairs do not alter the character
of the dynamical regime. Finally, regimes of the shuttle motion, coacceleration, and splitting are corroborated by
simulations of the original GPE system, with the explicitly present OL potential.
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I. INTRODUCTION

Search for robust self-accelerating pulses in various phys-
ical settings has drawn much interest, starting from the
discovery of Airy-wave modes in quantum mechanics [1].
Experimentally, this propagation mode was demonstrated
in quantum matter represented by electron beams (under
conditions which make interactions between electrons neg-
ligible) [2]. Using the similarity of the linear Schrödinger
equation for the wave function of quantum particles to the
paraxial wave-propagation equation in classical-field systems,
the realization of Airy waves was elaborated in optics [3],
plasmonics [4], gas discharge [5], acoustics [6], and hydro-
dynamics [7]. Further, the commonly known similarity of the
Schrödinger equation to the Gross-Pitaevskii equation (GPE)
for the mean-field wave function of atomic Bose-Einstein
condensates (BECs) makes it possible to predict Airy-wave
modes in atomic BEC as well [8].

Full Airy waves carry an infinite norm (alias diverging inte-
gral power, in terms of optics); therefore truncated waves with
a finite norm were used in the theory and experiments [3,9],
although the truncation leads to gradual destruction of the
self-accelerating wave pattern. The medium’s nonlinearity
may also be detrimental to the evolution of the Airy waves,
which are introduced as eigenmodes of the linear propaga-
tion [9–11].

For these reasons, a relevant objective is to design physi-
cal models that would allow self-accelerated propagation of
well-localized modes with a finite norm, which would be
maintained by the nonlinearity rather than being damaged

by it. Actually, this objective implies looking for models
that should support stable self-acceleration of quasisoliton
states. In particular, this possibility was recently predicted for
one- and two-dimensional hybrid (matter wave–microwave)
solitons produced by the interplay of a two-component BEC
and a resonant electromagnetic field which couples the com-
ponents [12]. Another approach relies on the well-known
idea that a pair of objects with positive and negative masses
may develop constant self-acceleration under the action of
interaction forces [13]. While real bodies with a negative mass
do not exist, quasiparticles and wave pulses may acquire an
effective negative mass in various settings. In this direction,
as essential result was the prediction [14] and experimental
realization [15] of bound pulses in nonlinear photonic crystals
with opposite signs of the dispersion (effective mass) of their
two components. Theoretically, a similar result was predicted
for a pair of correlated quantum particles coupled by long-
range interaction, which perform hopping in a Bose-Hubbard
lattice, as one of the particles may also acquire an effective
negative mass in the lattice [16].

The objective of the present work is to explore a pos-
sibility of forming bound states of solitons with opposite
signs of the effective masses, which implies that they should
also have opposite signs of the self-interaction coefficients
(otherwise, bright solitons cannot exist in both components;
for this reason, only one component was a soliton in the
above-mentioned photonic setting [14], while the other one
was treated as a Thomas-Fermi mode). This situation is pos-
sible in a two-component atomic BEC loaded in an optical-
lattice (OL) potential, which may induce the effective mass of
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either sign (positive for regular solitons, and negative for gap
solitons in a finite bandgap [17–25]), while the sign of the
self-interaction in any component may be switched by means
of the Feshbach resonance [26]. It is relevant to mention that
the dynamics of a pair of matter-wave solitons with effective
masses of opposite signs, loaded in a harmonic-oscillator
trapping potential, was studied in recent work [25]. As a
result, the soliton with the positive mass remains trapped,
while its counterpart with the negative mass can escape, as
the potential is effectively expulsive for it [20].

The model is introduced in Sec. II, first in the form of the
nonlinearly coupled GPEs with spatially periodic potentials
representing the OL [23]. Then, we apply the approximation
of slowly varying envelope amplitudes to derive a free-space
GPE system with opposite effective masses and opposite
signs of the self-interaction. In Sec. III, simulations of the
latter system demonstrate that it gives rise to two generic
dynamical regimes: spontaneous shuttle oscillations of pairs
of interacting solitons, with the separation between them also
oscillating (so that the solitons periodically pass through each
other), and splitting of the pair. The coacceleration of the
positive- and negative-mass solitons, which keep a constant
distance between themselves, takes place at the boundary
between the two regimes (a similar observation suggesting
the non-generic character of the coaccelerating motion of the
pair of interacting pulses, one of which was not a soliton,
was reported in Ref. [14]; however, the generic regime of the
shuttle motion was not reported in that work). Note that the
shuttle regime also implies that the two soliton stay paired
and spontaneously develop common acceleration, but with
a periodically reversing sign. Also in Sec. III, we develop
a variational approximation (VA), which accurately predicts
the shuttle, coacceleration, and splitting regimes. Further, in
the same section we consider the system which additionally
includes a gravity potential (it is important to note that,
while the effective dynamical mass of one soliton is negative,
its gravity mass remains normal positive). Using the fact
that the gravity also imparts acceleration to the solitons, we
demonstrate, both numerically and by means of the VA, that
the gravity-induced acceleration can offset the splitting force,
and thus adjust the location of the coacceleration regime in
the system’s parameter space. In addition, we report results
of simulation of collisions between soliton pairs, in both the
shuttle and coacceleration regimes, the result being that the
collisions may change the separation between the paired soli-
tons, but not the character of the dynamical regime. Finally, in
Sec. IV we return to the underlying system of GPEs which
explicitly includes the OL potential, and demonstrate, by
means of systematic simulations, that the same regimes, viz.,
the shuttle motion, coacceleration, and splitting, are produced
by that system, including its extended version with the gravity
potential. The paper is concluded by Sec. V.

II. MODELS: THE OPTICAL LATTICE AND SLOWLY
VARYING ENVELOPES

We start with the system of scaled GPEs for a binary BEC,
with equal atomic masses of its two components, φ and ψ ,
loaded in the OL potential, whose period is scaled to be 1,

with amplitudes −U1,2 [23]:

i
∂φ

∂t
= −1

2

∂2φ

∂x2
− [g1|φ|2 + γ |ψ |2 + U1 cos(2πx)]φ,

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
− [γ |φ|2 − g2|ψ |2 + U2 cos(2πx)]ψ. (1)

Here g1 > 0 and −g2 < 0 are coefficients of the self-
interaction of the components, implying that, as stated above,
their signs are made opposite by means of the Feshbach
resonance applied to one of the components, and γ > 0 is the
coefficient of the cross-attraction. It is well known that the
GPEs, based on the mean-field approximation, provide a very
accurate model of the atomic BEC. The only exception occurs
in the case of a binary atomic BEC, when the self-repulsion
in both components almost exactly cancels with attraction be-
tween them, making the beyond-mean-field terms, generated
by quantum fluctuations, important corrections to the GPE
system [18]. This is definitely not the case in the present
setting.

To focus on the case of opposite signs of the effective
mass for solitons in the interacting components, φ and ψ ,
we consider the case when quasi–wave numbers of wave
functions φ and ψ are set to be close, respectively, to the
center and edge of the first OL’s Brillouin zone, in terms
of Eq. (1). Near the center, which corresponds to the zero
quasi–wave number, the effective mass, calculated by means
of the known methods [19,20,23], is

M1 =
2π3 + U 2

1 + π2
√

4π4 + 2U 2
1

10π4 + U 2
1 − 3π2

√
4π4 + 2U 2

1

, (2)

and the wave function itself is approximated as

φ(x) = �(x)
1 + 2a cos (2πx)√

1 + 2a2
, (3)

a ≡
√(

π2

U1

)2

+ 1

2
− π2

U1
, (4)

where �(x) is the slowly varying envelope amplitude. Near
the edge of the Brillouin zone, which corresponds to quasi-
wave number π , the effective mass is

−M2 = U2

U2 − 2π2
(5)

(it is defined with sign minus, to focus below on the relevant
case of the negative mass, M2 > 0), with the respective wave
function

ψ (x) =
√

2�(x) cos (πx) (6)

and slowly varying envelope amplitude �(x). The slow vari-
ation implies that solitons represented by � and � may be
relevant solutions if their width l is much larger than periods
of spatial oscillations of the carrier wave functions (3) and (6),
i.e.,

l � 1. (7)

The substitution of expressions (3) and (6) into original
equations (1) leads, by means of the procedure of averaging
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with respect to rapid oscillations of the carrier wave func-
tions [20,23], to equations governing the slow evolution of
the envelope amplitudes, which do not include an external
potential:

i
∂�

∂t
= − 1

2M1

∂2�

∂x2
− (G1|�|2 + 	|�|2)�, (8)

i
∂�

∂t
= 1

2M2

∂2�

∂x2
− (	|�|2 − G2|�|2)�, (9)

with effective nonlinearity coefficients,

G1 = g1
1 + 12a2 + 6a4

(1 + 2a2)2
, G2 = 3

2
g2,

	 = 1 + 2a2 + 2a

1 + 2a2
. (10)

Numerical results are reported below both for the reduced
system of Eqs. (8) and (9) (in Sec. III) and for the underlying
one, based on Eq. (1) (in Sec. IV).

The minus sign is eliminated in front of the second deriva-
tive in Eq. (9) according to the definition of the respective
effective mass in Eq. (5). Accordingly, it is obvious that
Eqs. (8) and (9) may indeed feature opposite signs of the
effective masses, if M1 and M2 are both positive (or both
negative), and opposite signs of the effective coefficients of
the self-interaction in the two components, if G1 and G2 are
both positive (or both negative), too. These sign combinations
open the way to the creation of pairs of bright solitons with
opposite signs of their dynamical masses, which is the objec-
tive outlined in the Introduction. We also fix 	 > 0, although
the sign of this coefficient can be reversed by a combination of
the complex conjugation and swap � � �. Note that Eqs. (8)
and (9) keep the Galilean invariance, in spite of opposite signs
of the mass parameters in them; therefore, it is easy to find
soliton complexes moving with an arbitrary velocity, as shown
below.

III. DYNAMICS OF PAIRED ENVELOPE SOLITONS:
NUMERICAL AND ANALYTICAL RESULTS

A. Exact solutions for soliton complexes

In the basic case of M1,2 > 0 and G1,2 > 0, Eqs. (8) and (9)
generate, in addition to obvious single-component solitons,
a family of exact steady-state soliton complexes with free
parameter κ (the inverse width) and an arbitrary velocity, v:

� = A exp
[
iM1vx − i

2

(
κ2

M1
+ M1v

2
)
t
]

cosh[κ (x − vt )]
, (11)

� = B exp
[ − iM2vx + i

2

(
κ2

M2
+ M2v

2
)
t
]

cosh [κ (x − vt])
, (12)

A2 = κ2

M1M2

M2G2 − M1	

G1G2 + 	2
, (13)

B2 = κ2

M1M2

M1G1 + M2	

G1G2 + 	2
, (14)

provided that expressions (13) and (14) take positive val-
ues. It is relevant to mention that this solution represents

only a particular case of a more general family of sta-
tionary two-component solitons, as, in the case of v = 0,
the generic soliton solution must feature two independent
parameters, which may be defined as norms of the two
components,

N1,2 =
∫ +∞

−∞
|�(x), �(x)|2dx, (15)

while the exact solution (11) and (12) contains only one
free parameter, κ , at v = 0. If Eqs. (8) and (9) are derived
from the underlying GPEs by means of the above-mentioned
averaging procedure, then the corresponding condition (7)
amounts to restriction κ � 1. However, the scaling invariance
of Eqs. (8) and (9) implies that simulations of the equa-
tions may be actually performed for κ = 1 (as it is done
below), and the results can be then rescaled for any other
value of κ .

In accordance with what is reported below for soliton pairs
with a finite separation between their constituents, the steady-
state complexes are stable under condition β > 0 imposed on
the two components, see Eq. (18) below. In the opposite case
of β < 0, the complexes are unstable against splitting into
separating components.

B. Initial numerical results: Shuttle and self-accelerating
motion of paired solitons

The soliton complexes given by Eqs. (11)–(14) do not
feature self-acceleration, as they are built of two components
which are located at the bottom of the potential of their mutual
attraction, hence no interaction forces act on them. As stated
above, our main objective is to look for self-accelerating
soliton pairs. This may be possible if the constituents are
separated by some distance, which gives rise to opposite
interaction forces applied to them. Acting on the solitons with
opposite signs of the dynamical mass, these forces should
produce accelerations with identical signs.

To realize this possibility, we started simulations of Eqs. (8)
and (9) for the soliton complexes given by Eqs. (11) and (12)
with κ = 1 and v = 0, choosing other parameters as

M1 = 1, G1 = 0.9, 	 = 0.1, G2 = 0.1 + M−1
2 , (16)

while M−1
2 will be varied as a control parameter. In this

case, Eqs. (13) and (14) yield A = B = 1. The separation
between the constituents, x0, which is necessary to introduce
the interaction forces, was introduced by taking the initial
conditions as

�0 = sech x, �0 = sech(x − x0), x0 = 0.1, (17)

whose norms (15) are N1 = N2 = 2. The simulations were
performed with periodic boundary conditions, taking the
period which is much larger than widths of the produced
solitons, as seen in Fig. 1(a).

Figure 1 shows the evolution of the wave functions, in
terms of |�(x, t )| and |�(x, t )| at (a) M−1

2 = 1 and (b) M−1
2 =

0.96. Permanent self-acceleration of the bound soliton pair
is observed in Fig. 1(a). However, this regime of motion
is not a generic one, in terms of varying control param-
eter M−1

2 (a conclusion that such a regime is not generic
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FIG. 1. The evolution of |�(x, t )| and |�(x, t )| (solid and dashed
lines, respectively, which nearly overlap) at M−1

2 = 1 (a) and M−1
2 =

0.96 (b), with other parameters and the input taken as per Eqs. (16)
and (17), respectively.

was also made in Ref. [14]): As shown in Fig. 1(b), the
interacting solitons exhibit shuttle motion, with periodically
sign-changing coacceleration, at M−1

2 < 1. The shuttle period
diverges at M−1

2 → 1, and the solitons separate at M−1
2 > 1.

These conclusions are confirmed by Fig. 2(a), which displays
trajectories of the motion of centers of both constituent soli-
tons at M−1

2 � 1. Collecting results of simulations carried out
at other values of the parameters suggests that, in the general
case, the permanent coacceleration occurs under a balance
condition,

β ≡ N2

M1
− N1

M2
= 0, (18)

which is derived below analytically by means of the VA.
Fixing the parameters as per Eq. (16) and M−1

2 = 0.96,
the initial separation x0 between the constituent solitons in
Eq. (17) is varied in Fig. 2(b). It is observed that the shuttle
motion persists in this case, with the amplitude growing pro-
portionally to x0 (the same result is derived below by means
of the VA). On the other hand, the two solitons separate in the
case of M−1

2 > 1.
Thus, the coacceleration regime plays the role of a

separatrix between two generic regimes of motion, viz.,
the shuttle oscillations and splitting of the soliton pair.
These conclusions, suggested by the systematic simu-
lations, are explained by means of the VA developed
below.

(b)(a)
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FIG. 2. Trajectories of centers of the � and � components (solid
and dashed lines, respectively): (a) at M−1

2 = 0.92, 0.98, and 1 for
x0 = 0.1 in Eq. (17) and (b) at x0 = 0.05, 0.10, and 0.15 for fixed
M−1

2 = 0.96.

C. The variational approximation and comparison
with numerical results

The system of Eqs. (8) and (9) for envelope wave functions
can be derived from the Lagrangian,

L =
∫ +∞

−∞
dx

[
i

2

(
∂�

∂t
�∗ − ∂�∗

∂t
� + ∂�

∂t
�∗ − ∂�∗

∂t
�

)

− 1

2M1

∣∣∣∣∂�

∂x

∣∣∣∣
2

+ 1

2M2

∣∣∣∣∂�

∂x

∣∣∣∣
2

+
(

G1

2
|�|4 − G2

2
|�|4 + 	|�|2|�|2

)]
. (19)

The solitons with amplitudes A1,2, coordinates ξ1,2, momenta
k1,2, and overall phases ϕ1,2 may be approximated by the usual
Gaussian ansatz [27,28]:

{�,�} = A1,2 exp{iϕ1,2(t ) − α1,2[x − ξ1,2(t )]2

+ ik1,2(t )(x − ξ1,2)}. (20)

The substitution of the ansatz in Eq. (19) leads to the effective
Lagrangian,

Leff = −N1ϕ̇1 − N2ϕ̇2 + N1

2M1
α1 + N2

2M2
α2

+ G1

2

√
α1

π
N2

1 − G2

2

√
α2

π
N2

2

+	

√
2α1α2

π (α1 + α2)
N1N2 exp

[
− 2α1α2

α1 + α2
(ξ1 − ξ2)2

]

− N1

2M1
k2

1 + N2

2M2
k2

2 + N1k1ξ̇1 + N2k2ξ̇2, (21)

where the overdot stands for d/dt and amplitudes A1,2 are ex-
pressed in terms of the respective norms, N1 = √

π/(2α1)A2
1

and N2 = √
π/(2α2)A2

2. Being dynamical invariants of the
system, the norms are treated as constants. The Lagrangian
gives rise to the system of the Euler-Lagrange equations,
which, on the elimination of k̇1,2, can be cast in the form of
two coupled second-order equations of motion for coordinates
ξ1,2 (unessential equations for ϕ̇1,2 are not written here):

d2ξ1,2

dt2
= N2,1

M1,2
α exp

[
− 2α1α2

α1 + α2
(ξ1 − ξ2)2

]
(ξ2 − ξ1),

(22)
with

α ≡ 2	√
π

(
2α1α2

α1 + α2

)3/2

. (23)

It is seen that the right-hand sides of Eq. (22) for ξ1 and ξ2

have identical signs in the case of M1M2 > 0 (recall we are
dealing with the case of M1,2 > 0), which indeed implies the
coacceleration of the solitons. That is, the first soliton, denoted
by ξ1, is attracted to the second soliton denoted by ξ2, while
the latter one is repelled from the first soliton. On the other
hand, the total momentum of the soliton pair is as follows from
Lagrangian (21):

P = N1M1
dξ1

dt
− N2M2

dξ2

dt
, (24)
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and it immediately follows from Eq. (22) that P remains a
dynamical invariant, even if the pair as a whole is moving with
acceleration.

It is straightforward to combine Eqs. (22) for ξ1 and ξ2,
deriving an equation for separation �ξ = ξ2 − ξ1 between the
solitons:

d2�ξ

dt2
= −αβ exp

[
− 2α1α2

α1 + α2
(�ξ )2

]
�ξ, (25)

where β is defined as per Eq. (18). In particular, for small |�ξ |
the linearization of Eq. (25) yields

d2�ξ

dt2
= −αβ�ξ . (26)

It follows from Eq. (26) that, in the case of αβ > 0 [i.e.,
	β > 0, as it follows from Eq. (23)], the separation between
the interacting solitons preforms periodic oscillations with
arbitrary amplitude x0,

�ξ = x0 cos(
√

αβt ), (27)

while in the opposite case, αβ < 0, the separation
monotonously grows in time, i.e., the interacting solitons
separate. The latter analytical result provides a direct
explanation to the separation regime revealed above by
the numerical simulations of Eqs. (8) and (9) at β < 0.

Exactly at β = 0, separation �ξ keeps the initial value,
x0, hence Eq. (22) predicts permanent coacceleration of the
paired solitons, with the acceleration itself proportional to the
initial separation, x0. This analytical result explains the most
essential numerical finding reported above: the coaccelerating
motion of the internally stationary soliton pair at β = 0.

To address the shuttle motion revealed by the simulations
in Figs. 1 and 2 at β > 0, we note that the linearized version
of Eq. (22) gives rise to the following equation of motion for
the mean position of the pair, � ≡ (ξ1 + ξ2)/2:

d2�

dt2
= α

2

(
N2

M1
+ N1

M2

)
�ξ

= α

2

(
N2

M1
+ N1

M2

)
x0 cos(

√
βαt ), (28)

where solutions (27) for �ξ is substituted. Then, the solution
to Eq. (28) is

� = Rx0[1 − cos(
√

βαt )], (29)

R ≡ (2β )−1

(
N2

M1
+ N1

M2

)
, (30)

if the initial value of � and overall velocity are zero. This
result explains the shuttle motion of the soliton pair observed
in Figs. 1 and 2, as well as the above-mentioned fact, also
revealed by the direct simulations, that the amplitude of the
shuttle oscillations grows proportionally to x0. Further, in the
limit of β → 0, Eq. (28) precisely reproduces the permanent
coacceleration of the pair, which was revealed by the direct
simulations close to β = 0:

�(β = 0) = 1

2
a0t2, a0 ≡ 1

2

(
N2

M1
+ N1

M2

)
αx0. (31)
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FIG. 3. (a) Rhombuses represent the numerically obtained period
of oscillations of separation �ξ between the interacting solitons, as
a function of norm N2 for N1 = 2, and other parameters taken as per
Eq. (33). The dashed line shows the analytical prediction provided
by Eq. (27), i.e., T = 2π/

√
αβ. (b) Rhombuses: The numerically

evaluated ratio R of the oscillation amplitudes of the mean position
of the soliton pair, �, and separation �ξ between them. The dashed
line shows the respective analytical approximation given by Eq. (30).

If full Eq. (22) is used, without the linearization, the accelera-
tion is

a0 = 1

2

(
N2

M1
+ N1

M2

)
α exp

(
− 2α1α2

α1 + α2
x2

0

)
x0. (32)

The predictions of the VA are compared to numerical find-
ings in Fig. 3, where Fig. 3(a) shows the numerically obtained
period of oscillations of the separation between centers of the
interacting solitons, in the case of β > 0, as a function of
norm N2. The numerical data are obtained using initial condi-
tion �0(x) = sech x, � = √

N2/2sech[
√

N2/2(x − x0)], with
x0 = 0.1, other parameters being

M1 = 1, M−1
2 = 0.8, G1 = G2 = 0.9, 	 = 0.1. (33)

The comparison of the analytically predicted period of the os-
cillations of separation �ξ between the solitons, see Eq. (27),
and ratio R of the amplitude of the shuttle oscillations of the
pair as a whole to the amplitude of the intrinsic oscillations of
�ξ (t ), see Eq. (30), with their numerically found counterparts
attests to good accuracy of the analytical approximation. In
particular, large values of R explain why the two solitons seem
overlapping in Figs. 1(b) and 2.

Systematic results for the coaccelerating motion of the pair
of solitons at β = 0 are displayed in Fig. 4. Figure 4(a) shows
a typical example of numerically generated trajectories of
their centers for parameters

M1 = M−1
2 = 1, G1 = 0.9, G2 = 1.1,

	 = 0.1, N1 = N2 = 2, (34)

and initial separation x0 = 0.5. Further, the dependence of
the numerically identified acceleration on initial separation
x0 and its comparison with the analytical prediction produced
by Eq. (32) are displayed in Fig. 4(b). The presence of the
maximum in the dependence a0(x0) (at point x0 = 1.05) is
explained by the fact that the interaction force vanishes both
at x0 = 0 and at x0 → ∞.
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FIG. 4. (a) The continuous and dashed curves display a typical
example of numerically generated trajectories of centers of the
interacting solitons, in the case of their coaccelerating motion. The
respective parameters are given in Eq. (34), with x0 = 0.5. Both
trajectories are close to parabolas, with acceleration a0 = 0.0234.
(b) Rhombuses represent numerically found values of the coaccel-
eration, a0, as a function of x0, for the same parameters, the dashed
curve showing the analytical approximation given by Eq. (32).

D. The coaccelerating motion of the envelope soliton
pair in the presence of gravity

Because the gravity also imparts acceleration to matter-
wave solitons [29], a natural extension of the above analysis
is to add the gravity potential, − f x, with strength f , to the
system of Eqs. (8) and (9):

i
∂�

∂t
= − 1

2M1

∂2�

∂x2
− (G1|�|2 + 	|�|2 + f x)�, (35)

i
∂�

∂t
= 1

2M2

∂2�

∂x2
− (−G2|�|2 + 	|�|2 + f x)�. (36)

We stress that, while the derivation of Eqs. (8) and (9) and
then (35) and (36) from the underlying GPE system (1),
including the OL potential (and the gravity potential, in the
present context), may generate the negative effective dynam-
ical mass, −M2, gravity masses of the solitons represented
by envelope wave functions � and � remains normal (pos-
itive); therefore, the gravity potentials have the same sign in
Eqs. (35) and (36).

The VA outlined above can be readily extended to in-
clude the gravity, which yields the following modification of
Eq. (22):

d2ξ1

dt2
= N2

M1
α exp

[
− 2α1α2

α1 + α2
(ξ1 − ξ2)2

]
(ξ2 − ξ1) + f

M1
,

(37)

d2ξ2

dt2
= N1

M2
α exp

[
− 2α1α2

α1 + α2
(ξ1 − ξ2)2

]
(ξ2 − ξ1) − f

M2
,

(38)

and respective changes in Eqs. (25) and (28):

d2�ξ

dt2
= −αβ exp

[
− 2α1α2

α1 + α2
(�ξ )2

]
�ξ

−
(

1

M2
+ 1

M1

)
f , (39)

d2�

dt2
= α

2

(
N2

M1
+ N1

M2

)
exp

[
− 2α1α2

α1 + α2
(�ξ )2

]
�ξ

+ 1

2

(
1

M1
− 1

M2

)
f . (40)

The gravity may be used to compensate the splitting force
in the case of β < 0 and thus switch the splitting regime into
the coacceleration. A straightforward analysis demonstrates
that the balance between the interaction and gravity forces
produces a stable coacceleration regime at �ξ > 1.05, where
the slope of the curve in Fig. 4(b) is negative. As a typical
example, Figs. 5(a) and 5(b) show trajectories of centers of
the coaccelerating solitons, and the evolution of the separation
between them at f = 0 and f = 6.1 × 10−5, for parameters

M1 = 1, M−1
2 = 1.01, G1 = 0.9, G2 = 1.11,

	 = 0.1, N1 = N2 = 2, (41)

and initial separation x0 = 2.5. It is seen that the gravity
maintains the stable coacceleration. On the other hand, in the
absence of the gravity, the solitons exhibit, in Fig. 5(b), slow
separation.

Further, Fig. 5(c) shows the gravity strength in the stable
coaccelerating pair as a function of the initial separation, x0,
as found from numerical data, and compared to the analytical
prediction, which is produced by Eq. (39):

f = − M1M2α

M1 + M2
exp

(
− 2α1α2

α1 + α2
x2

0

)
x0β. (42)

Note that the inverse relation, β = −(M1M2αx0)−1(M1 + M2)
exp [2α1α2(α1 + α2)−1x2

0] f , defines the value of β at which
the robust regime of the coacceleration occurs, replacing con-
dition β = 0 [see Eq. (18)], derived above in the absence of
gravity. Thus, the gravity may be used to adjust the occurrence
of the coacceleration regime for given values of other parame-
ters (in particular, β). The necessary value of f can be readily
tuned by varying the angle, θ , between the vertical axis and
direction of the quasi-one-dimensional waveguide into which
the BEC is loaded: f = fmax cos θ , where fmax corresponds to
the waveguide oriented parallel to the gravity force.

E. Collisions between pairs of envelope solitons

Another relevant issue is to consider collisions between
the soliton complexes. Typical examples, produced by sim-
ulations of Eqs. (8) and (9) (in the absence of the gravity), are
displayed in Fig. 6, starting from the corresponding input,

�0(x) = sech(x − L/4) + sech(x − 3L/4),

�0(x) = sech(x − L/4 − x0) + sech(x − 3L/4 + x0),

x0 = 0.1, L = 12π (43)

(this input implies that the integration-domain’s center is
located at point x = L/2).

First, for parameters

M1 = 1, M−1
2 = 0.98, G1 = 0.9,

G2 = 1.06, 	 = 0.1, (44)

at which the pair of interacting solitons perform the shuttle
motion, Fig. 6(a) demonstrates that the two pairs collide
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FIG. 5. (a) Numerically obtained trajectories of centers ξ1 and ξ2 of the interacting solitons in the absence and presence of the gravity, viz.,
at f = 0 and f = 6.1 × 10−5 (the dashed and continuous lines, respectively) for parameter given by Eq. (41). (b) The evolution of the separation
between the solitons, �ξ , in the same cases. (c) Rhombuses represent numerically found values of the gravity strength, f , corresponding to
stable pairs of coaccelerating solitons, as a function of the initial separation between them, x0. The dashed curve is the respective analytical
prediction, produced by Eq. (42).

and bounce back. Detailed analysis of the numerical data
demonstrates that the collision result in an increase of the
separation �ξ in each pair and, respectively, increase of the
amplitude of the shuttle oscillations.

The collision between two soliton pairs which move with
the coacceleration in opposite directions is displayed in
Fig. 6(b) for parameters

M1 = 1, M−1
2 = 1, G1 = 0.9, 	 = 0.1, G2 = 1.1.

(45)
In this case the colliding pairs pass through each other and,
similarly to the case displayed in Fig. 6(a), the collision
results in an increase of the separation between the interacting
solitons in each pair, from �ξ = 0.10 to �ξ ≈ 0.17. This,
in turn, leads to the increase of the coacceleration, as per
Eq. (32) and Fig. 4(b). The enhanced self-acceleration is
clearly observed in Fig. 6(b).

IV. COACCELERATING SOLITON PAIRS IN THE
UNDERLYING SYSTEM WITH

THE OPTICAL-LATTICE POTENTIAL

The above considerations, both numerical and analytical,
were performed for Eqs. (8) and (9), which govern the evo-
lution of envelope wave functions �(x, t ) and �(x, t ). It
is also relevant to verify the possibility of the shuttle and
coaccelerating motion of the soliton pairs in the framework
of the underlying GPEs (1), which explicitly include the OL
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FIG. 6. Collisions of solitons pairs, generated by initial condi-
tions (43). (a) Pairs performing shuttle motion at parameters given by
Eq. (44). (b) Coaccelerating pairs, corresponding to parameters (45).
In both panels, profiles of |�(x, t )| and |�(x, t )| strongly overlap.

potential and original physical coefficients, rather than the ef-
fective ones produced by averaging, as given by Eqs. (2), (5),
and (10). We also consider the version of Eq. (1) which
includes the gravity potential, similarly to Eqs. (35) and (36):

i
∂φ

∂t
= −1

2

∂2φ

∂x2
− [g1|φ|2 + γ |ψ |2 + U1 cos(2πx) + f x]φ,

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
− [γ |φ|2 − g2|ψ |2 + U2 cos(2πx) + f x]ψ.

(46)

Note that gravity strength f in Eq. (46) is the same as in
Eqs. (8) and (9), because the derivation of the latter equations
from the former ones does not involve rescaling of variables t
and x.

Equations (1) and (46) were solved numerically with vari-
ous initial conditions. In particular, input

φ0(x) = A
1 + 2a cos (πx)√

1 + 2a2
sech[A(x − 0.5)],

ψ0(x) =
√

2B cos(πx)sech(Bx), (47)

with a defined as per Eq. (4), is suggested by the above
approximations (3) and (6) for the wave functions.

First, Fig. 7 displays numerical results obtained by simula-
tions of Eq. (1) with initial conditions (47) in the case of U1 =
0 and U2 = 8, that is, assuming that the OL potential acts
only on the ψ component (typical results for the setting with
U1 = U2 are displayed below). Figure 7(a) shows trajectories
of the motion of centers of the two components for parameters

g1 = 0.8, γ = 0.2, g2 = 2

3

(
γ + 2π2 − U2

U2

)
≡ 1.11

(48)
in Eq. (1), and amplitude B = 0.15 in Eq. (47), while ampli-
tude A is varied, taking values A = 0.075, 0.094, and 0.15
[the particular choice of g2 in Eq. (48) is made to facilitate
the prediction of the value of A at which the coaccelerat-
ing regime may be expected, see Eq. (50)]. The choice of
the smallest amplitude, A = 0.075, gives rise to the shuttle
motion, while the largest amplitude, A = 0.15, leads to split-
ting of the soliton pair. The regime of the robust coacceler-
ation of the two solitons, which keep a constant separation
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FIG. 7. (a) The continuous and dashed lines represent trajectories of the motion of centers of components φ and ψ , produced by simulations
of Eq. (1) with U1 = 0, U2 = 8 and input (47), in which B = 0.15 is fixed, while values A = 0.075, 0.094, and 0.150 are adopted for the other
amplitude. (b) The evolution of (virtually coinciding) |φ(x, t )| and |ψ (x, t )| for A = 0.094. (c) The evolution of separation �ξ between the
interacting components at A = 0.110 and x0 = 15 in the absence of the gravity (the dashed line) and in the presence of the gravity potential
with strength f = −6.8 × 10−6 (the solid line), as produced by simulations of Eqs. (46), which include both the OL and gravity potentials.
Other parameters are fixed according to Eq. (48).

between themselves, is found at

A = A(num)
0 ≈ 0.094. (49)

The analytical approximation, based on the above condi-
tion β = 0 [see Eq. (18)], with effective mass and interaction
coefficients calculated as per Eqs. (2), (5), and (10), yields the
value

A0 = BU2/(2π2 − U2) = 0.102, (50)

at which the coaccelerating regime is predicted, the respective
negative effective mass being −M2 = −A0/B = −0.6266. A
difference (�A0/A0 ≈ 0.08) of the predicted value (50) from
its numerical counterpart (49) is explained by deviation of the
analytical approximations (2) and (5) from numerically exact
values, and also by effects of the emission of radiation from
the solitons moving through the periodic potential.

Figure 7(b) shows the evolution of wave functions in
the coaccelerating pair, in terms of |φ(x, t )| and |ψ (x, t )|,
at point (49). The pair of solitons are traveling to the left,
under the action of the attraction between them, because
the positive-mass φ soliton is initially set to the right of
the negative-mass one in the ψ component. If the initial
configuration is reversed, then the pair moves to right. At
A > 0.094, the pair splits because the negative-mass soliton
runs to left with a larger acceleration than the positive-mass
one is able to develop. On the other hand, at A < 0.094 the
positive-mass soliton overtakes the negative-mass one and
passes it, which leads to reversal of the direction of motion,
inducing the shuttle regime.

The effect of the gravity potential, added to Eq. (46), is
displayed in Fig. 7(c). It shows the evolution of separation
�ξ between solitons’ centers for A = 0.11 in input (47), with
initial separation x0 = 15. According to the above findings,
in the absence of the gravity the pair should split in this
case, because amplitude A exceeds the respective critical
value, A0 = 0.094. This is indeed demonstrated by the dashed
curve in Fig. 7(c). On the other hand, the solid curve shows
that the application of gravity with f = −6.8 × 10−6 offsets
the splitting force and creates a coaccelerating pair with a
virtually constant separation, cf. Fig. 5(b).

A typical example of the robust coacceleration regime
found in the system with equal amplitudes of the OL

potential acting on both components, viz., U1 = U2 = 13, is
displayed in Fig. 8. In this case, the amplitudes of input (47)
are A = 0.103 and B = 0.15, and the self-interaction
coefficients are taken as g1 = (1 + 2a2)2/(1 + 12a2 +
6a4)[1/M1 − γ (1 + 2a2)/(1 + 2a2 + 2a)] ≡ 0.348 and g2 =
(2/3)[1/M2 + γ (1 + 2a2)/(1 + 2a2 + 2a)] ≡ 0.368, for γ =
0.05, where a is defined by Eq. (4). In the framework of the
above analytical approximation, these parameters predict the
coaccelerating motion at β = 0 [see Eq. (18)], which amounts
to the value of the amplitude A0 = BM2/M1 = 0.158. It
is essentially larger than the numerically found value,
A(num)

0 ≈ 0.103, at which the coacceleration is observed in
Fig. 8, i.e., in this case, with the strong OL potential, the
simple analytical approximation produces only qualitatively
correct predictions.

Last, while the dynamical regimes of the shuttle motion
and coacceleration produced by Eqs. (8) and (9), or (35)
and (36), may persist indefinitely, the motion of the solitons
across the OL in the framework of Eqs. (1) and (46) is
accompanied by weak radiation losses, which may be seen
as tiny perturbations in Figs. 7 and 8. Eventually, these losses
may essentially damage the solitons, but this will happen on
a timescale essentially exceeding an experimentally relevant
one.
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FIG. 8. The evolution of |φ(x, t )| (a) and |ψ (x, t )| (b), produced
by simulations of Eq. (1) with g1 = 0.348, g2 = 0.368, γ = 0.05,
and U1 = U2 = 13, and initial conditions (47) with A = 0.103 and
B = 0.15. The robust regime of the coacceleration of the interacting
positive- (φ) and negative- (ψ) mass solitons is observed.
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V. CONCLUSION

The objective of this work is to establish the framework
which admits coaccelerating motion of interacting objects
with opposite signs of the effective mass, using pairs of
matter-wave solitons which move against the background of
the OL potential. The effective negative mass of one com-
ponent is provided by the known property of gap solitons.
Reducing the full system of the GPEs, which includes the OL
potential, to equations for slowly varying envelopes, system-
atic simulations and the VA (variational approximation) reveal
two generic dynamical regimes, viz., spontaneous shuttle
oscillations of the mean position of the soliton pair, in the
course of which the solitons periodically pass through each
other, and splitting of the pair. The robust coacceleration of
the soliton pairs, with a permanent separation between the
constituents, is found at the boundary between these two
regimes. The location of the boundary can be adjusted by
dint of the gravity potential added to the system. The VA
accurately predicts all these effects. Finally, the same dynam-
ical regimes, including the robust coacceleration, are directly
demonstrated by simulations of the underlying system, which
includes the OL potential and the gravity potential (if any) as
well. The predicted effects can be realized experimentally in
two-component atomic BEC, loaded in a quasi-one-
dimensional waveguide combined with the OL, and the occur-
rence of the coacceleration regime can be adjusted by choos-
ing the angle between the waveguide and gravity direction.

It may be interesting to consider a modification of the
model which includes linear interconversion (Rabi coupling)

between the components, which may help to additionally bind
them, cf. Ref. [30]. A challenging possibility is to develop
a two-dimensional version of the present system and, ac-
cordingly, to study pairs of two-dimensional solitons in the
regimes of coacceleration and spontaneous shuttle motion.

Finally, it is also relevant to mention that, in addition to the
ultracold atomic gases, exciton-polariton BECs have been ex-
perimentally realized in semiconductor microcavities [31,32],
and predicted in graphene and similar two-dimensional mate-
rials [33,34], at temperatures exceeding those necessary for
the condensation of bosonic gases by eight or nine orders
of magnitude. Polariton solitons have also been created in
microcavities [35], and it is expected that they may exist in
graphene-like settings as well [36]. These findings suggest
a possibility to create coupled positive- and negative-mass
soliton pairs in polariton BEC. However, the necessary anal-
ysis will be completely different from that reported in the
present paper, as media supporting polaritons are essentially
dissipative, and hence a pump must be included, too. The lat-
ter term (unlike the simple dissipation) destroys the Galilean
invariance, thus making the consideration of accelerating
and shuttle dynamical regimes a challenging problem, which
should be considered elsewhere.
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