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Rotational motion of a camphor disk in a circular region
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In a two-dimensional axisymmetric system, the system symmetry allows rotational or oscillatory motion as
stable stationary motion for a symmetric self-propelled particle. In the present paper, we studied the motion of
a camphor disk confined in a two-dimensional circular region. By reducing the mathematical model describing
the dynamics of the motion of a camphor disk and the concentration field of camphor molecules on a water
surface, we analyzed the reduced equations around a bifurcation point where the rest state at the center of the
system becomes unstable. As a result, we found that rotational motion is stably realized through the double-Hopf
bifurcation from the rest state. The theoretical results were confirmed by numerical calculation and corresponded
well to the experimental results.
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I. INTRODUCTION

There are many systems that show self-propelled motion
[1–4]. In such self-propelled systems, particles move consum-
ing and dissipating free energy, where the symmetric property
is one of the classificatory criteria. First of all, self-propelled
systems are classified into symmetric and asymmetric sys-
tems. A symmetric self-propelled particle moves through
spontaneous symmetry breaking, while an asymmetric one
moves in the direction predetermined by the asymmetry. Here
we focus on a symmetric self-propelled system.

In a two-dimensional axisymmetric system, a rotational or
oscillatory motion is often observed [5–11]. Here we define
a rotational motion as the motion where the particle moves
at a constant distance from the system center with a nonzero
constant speed, while an oscillatory motion is a motion where
the particle reciprocally moves back and forth along a line
through the system center. Bacteria confined in a quasi-two-
dimensional circular chamber exhibit rotational motion [5]. A
laser-heated oil droplet exhibits oscillatory or rotational mo-
tion depending on the laser intensity [6]. Phenomenological
models that can reproduce rotational or oscillatory motion
have been proposed [11–14]. To understand which motion,
rotation or oscillation, is realized in a two-dimensional ax-
isymmetric system, we have discussed criteria by a theoretical
approach based on a weakly nonlinear analysis [15]. In the
analysis, only two assumptions are imposed. One is that a
self-propelled particle is confined by a harmonic potential.
The other is that the system is near the bifurcation point
where the rest state at the minimum of the harmonic potential
becomes unstable. However, our proposed criteria have not
been applied to actual systems. A camphor-water system is
one of the candidates to which our criteria can be applied.
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In a camphor-water system [16–20], self-propulsion of a
camphor particle is induced in the physicochemical processes;
when a camphor particle is placed onto the water surface, it
releases camphor molecules. The released camphor molecules
are distributed at the water surface and reduce the surface ten-
sion. In other words, a camphor particle releases its repellants
(camphor molecules) and moves to the region with less re-
pellent concentration. The camphor-water system is so simple
that various geometries can be realized [21–33]. For example,
the size of the water chamber can be one of the parameters
that can affect the motion of the camphor disk [21,22]. The
shape of the particle can also be changed, e.g., an elliptic
camphor disk [23–25] and a string-shaped camphor [26]. The
mathematical model reflecting the elemental processes is also
available [20,34,35]. The model consists of two equations:
one is the equation of motion describing the dynamics of
the position of the camphor particle, and the other is the
reaction-diffusion equation describing the concentration field
of camphor molecules distributed at the water surface. From
the viewpoint of the theoretical analysis, the model for the
camphor-water system is easy to analyze since the reaction-
diffusion equation for the concentration field of camphor
molecules at the water surface has a reaction term described
by a piecewise linear function. The advantage of the camphor-
water system is thus that the theoretical and experimental
approaches are both available [20,21,25,27–29,34]. Besides, a
camphor-water system is considered to be one of the simplest
negative-chemotactic systems [9,10,12,36–40], and it can be
applied to other systems [41,42].

In the present paper, we consider the dynamics of a cam-
phor disk confined in a two-dimensional circular water phase
as a good example of a symmetric self-propelled particle
in a two-dimensional axisymmetric system. We apply our
previously proposed criteria [15] to it in order to discuss which
motion, rotation or oscillation, is selected. First, we introduce
the mathematical model constructed based on the elemental
physicochemical processes in Sec. II. Then we reduce it into a
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FIG. 1. Schematic illustration of the considered system. The
position of the camphor disk and an arbitrary position are denoted as
ρ = (ρ, φ) and r = (r, θ ), respectively, in the two-dimensional polar
coordinates.

dynamical system described by a single ordinary differential
equation and apply the result of the weakly nonlinear analysis
in Sec. III. The theoretical result has been compared with
the numerical and experimental results in Secs. IV and V,
respectively.

II. MATHEMATICAL MODEL

We consider the motion of a camphor disk confined in a
two-dimensional circular region with a radius of R. Here we
introduce a mathematical model, which is almost the same as
that in Ref. [21] except for the boundary condition of the sys-
tem. The center position of the camphor disk is represented by
ρ(t ) = (ρ(t ), φ(t )) in the two-dimensional polar coordinates.
Here, ρ and φ are in domains [0, R] and [0, 2π ), respectively.
The configuration of the system is illustrated in Fig. 1.

The equation of motion with regard to the center position
of a camphor disk is described as

σS
d2ρ

dt2
= −ξS

dρ

dt
+ Fd (c; ρ), (1)

where σ and ξ are the mass and resistant coefficient per unit
area, S(=πε2) is the surface area of the camphor disk, and Fd

denotes the driving force originating from the surface tension
difference. Here, we set the radius of the camphor disk to be ε.
The resistant force proportional to the velocity was confirmed
in the previous study [43].

The driving force Fd is modeled by summing up the
driving force working on the periphery of the camphor disk.
To avoid the dependence of ε, we divide both sides of Eq. (1)
by S, and then we take the limit that ε goes to +0 as follows:

σ
d2ρ

dt2
= −ξ

dρ

dt
+ F(c; ρ). (2)

The driving force per unit area of the camphor disk is
given by

F(c; ρ(t )) = lim
ε→+0

1

S
Fd = lim

ε→+0

1

S

∫
∂


γ (c(ρ + εn))nd�,

(3)

where ∂
 is the periphery of the region 
 = {r||r − ρ| � ε},
which is a circular region corresponding to the camphor disk
with a radius of ε, and n = n(θ ) is a unit vector represented
as n(θ ) = (cos θ, sin θ ) in the Cartesian coordinates. When
the concentration field can be expanded around r = ρ, the
definition of driving force in Eq. (3) is expressed as

F(c; ρ(t )) = lim
ε→+0

−k

πε2

∫ 2π

0
[c(ρ) + εn(θ ) · ∇c(ρ)]n(θ )εdθ

(4)

= −k∇c|r=ρ. (5)

The dependence of surface tension on the camphor concentra-
tion field was experimentally measured (20 mN/m decrease
in surface tension for the saturated camphor aqueous solution)
[44]. The surface tension decrease around a moving camphor
disk was also measured as 4 mN/m [45]. Here, we assume that
the surface tension γ is a linearly decreasing function with
regard to the camphor concentration c, i.e., γ = −kc + γ0,
where k and γ0 are positive constants. γ0 gives the surface
tension of pure water. Hereafter, we consider Eq. (2) as for
the motion of a camphor disk.

The time evolution for concentration field c = c(r, t ) at the
water surface is described by the following equation:

∂c

∂t
= D

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

)
c − αc + f , (6)

where r = (r, θ ) is an arbitrary position in the circular region
in polar coordinates, D is the effective diffusion constant, α

is the sublimation rate, and f denotes the release of cam-
phor molecules from the camphor disk. Here we consider a
two-dimensional system corresponding to the water surface
since camphor molecules hardly dissolve in water. Actu-
ally, the saturated concentration of camphor aqueous solution
was reported as around 10 mM [44]. The source term f is
given by

f (r; ρ) = c0

πε2
�(ε − |r − ρ|) =

{
c0

πε2 (|r − ρ| � ε),

0 (|r − ρ| > ε),

(7)

where �(·) denotes the Heaviside step function and c0 is the
total amount of the release of camphor molecules from the
camphor disk per unit time. By taking the limit that ε goes to
+0, the source term is expressed as

f (r; ρ) = c0δ(r − ρ) =
{

c0
r δ(r − ρ)δ(θ − φ) (ρ > 0),
c0
πr δ(r − ρ) (ρ = 0),

(8)

where δ(·) denotes Dirac’s delta function. Here we assume
that the camphor molecules are released constantly at the posi-
tion of the camphor disk ρ = (ρ(t ), φ(t )) in polar coordinates.
The Neumann boundary condition,

∂c

∂r

∣∣∣∣
r=R

= 0, (9)

is imposed to Eq. (6).
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In the following analysis, dimensionless forms of Eqs. (2),
(3), (6), (8), and (9),

σ̃
d2ρ̃

dt̃2
= −ξ̃

d ρ̃

dt̃
+ F̃(c̃; ρ̃), (10)

F̃(c̃; ρ̃(t̃ )) = lim
ε̃→+0

1

S̃

∫
∂
̃

γ̃ (c̃(ρ̃ + ε̃n))nd �̃ (11)

= −∇̃c̃|r̃=ρ̃, (12)

∂ c̃

∂ t̃
=

(
∂2

∂ r̃2
+ 1

r̃

∂

∂ r̃
+ 1

r̃2

∂2

∂θ2

)
c̃ − c̃ + f̃ , (13)

f̃ (r̃; ρ̃) = δ(r̃ − ρ̃), (14)

∂ c̃

∂ r̃

∣∣∣∣
r̃=R̃

= 0, (15)

are used. The details of nondimensionalization are shown in
Appendix A. Hereafter, we omit tildes.

It should be noted that the hydrodynamic effect is ne-
glected in the present model. In this system, the inhomo-
geneities of surface tension are brought about by the camphor
concentration gradient, and then the Marangoni flow occurs
[28,43,46,47]. The profile of the concentration field of cam-
phor molecules becomes broader due to the Marangoni flow,
which can be included as the effective diffusion constant in
Eq. (6) [43,47].

III. THEORETICAL ANALYSIS

The equations are reduced around the rest state where the
camphor disk rests at the center position of the circular region.
First, the concentration field c is expanded with the Bessel
function and Fourier series for radial and angular directions,
respectively, as

c(r, θ, t ) = 1

2π

∞∑
m=−∞

∞∑
n=0

a|m|ncmn(t )J|m|(k|m|nr)eimθ , (16)

where Jm is the first-kind Bessel function of mth order. Here
kmn and amn are the wave number and the normalization
constant, respectively. We adopt wave numbers kmn such that
the bases satisfy the Neumann boundary condition in Eq. (15).
The explicit representations of kmn and amn are provided in
Appendix B. The source term in Eq. (14) is also expanded as

f (r, θ ; ρ, φ) = 1

2π

∞∑
m=−∞

∞∑
n=0

a|m|nJ|m|(k|m|nρ(t ))

× J|m|(k|m|nr)eim(θ−φ(t )). (17)

Thus we have the equation for concentration in wave-number
space:

dcmn

dt
= −(k|m|n2 + 1)cmn + J|m|(k|m|nρ(t ))e−imφ(t ). (18)

Then, the Green’s function gmn(t ) is calculated. Here, the
Green’s function is defined as a function that satisfies the
following equation:

dgmn

dt
= −(k|m|n2 + 1)gmn + δ(t ). (19)

By solving the above equation, we have

gmn(t ) = e−(k|m|n2+1)t�(t ) =
{

e−(k|m|n2+1)t (t � 0),
0 (t < 0),

(20)

where �(t ) is the Heaviside step function.
Using the Green’s function gmn, the concentration field cmn

in wave-number space is described as

cmn(ρ(t )) =
∫ t

−∞
J|m|(k|m|nρ(t ′))e−imφ(t ′ )e−(k|m|n2+1)(t−t ′ )dt ′.

(21)

By expanding the above integration with regard to the time
using partial integration, we have the concentration field in
the wave-number space expanded with regard to the current
position, velocity, acceleration, and so on [21,27,48]. Then the
expanded concentration field is converted into real space. The
detailed calculations are presented in Appendix C. Using the
definition of the driving force in Eq. (11), the driving force F
is calculated as follows:

F(ρ, ρ̇, ρ̈) = a(R)ρ + b(R)ρ̇ + c(R)|ρ|2ρ + g(R)ρ̈

+ h(R)|ρ̇|2ρ + j(R)(ρ · ρ̇)ρ + k(R)|ρ̇|2ρ̇
+ n(R)|ρ|2ρ̇ + p(R)(ρ · ρ̇)ρ̇, (22)

where F is now the function of ρ, ρ̇, and ρ̈. The coefficient of
each term in Eq. (22) is explicitly obtained as

a(R) = 1

4π

(K′
0(R)

I ′
0(R)

+ K′
1(R)

I ′
1(R)

)
, (23)

b(R) = 1

4π

(
−γEuler + log

2

ε

)

+ 1

8π

[
2
K′

1(R)

I ′
1(R)

+
(

1 + 1

R2

)
1

[I ′
1(R)]2

]
, (24)

c(R) = 1

32π

(
3
K′

0(R)

I ′
0(R)

+ 4
K′

1(R)

I ′
1(R)

+ K′
2(R)

I ′
2(R)

)
, (25)

g(R) = − 1

16π

[
1 +

(
R + 1

R

) I ′′
1 (R)

[I ′
1(R)]3

− 1

[I ′
1(R)]2

]
, (26)

h(R) = 1

64π

[
8
K′

0(R)

I ′
0(R)

+ 4
K′

1(R)

I ′
1(R)

− 4
K′

2(R)

I ′
2(R)

− 2R
I ′′

0 (R)

[I ′
0(R)]3

−
(

R + 1

R

) I ′′
1 (R)

[I ′
1(R)]3

+
(

R + 4

R

) I ′′
2 (R)

[I ′
2(R)]3

+ 6

[I ′
0(R)]2

+
(

2

R2
+ 3

)
1

[I ′
1(R)]2

−
(

8

R2
+ 3

)
1

[I ′
2(R)]2

]
, (27)

j(R) = 1

16π

[
4
K′

0(R)

I ′
0(R)

+ 4
K′

1(R)

I ′
1(R)

+ 1

[I ′
0(R)]2

+
(

1 + 1

R2

)
1

[I ′
1(R)]2

]
, (28)
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k(R) = 1

128π

[
−4 + 3(1 + R2)

[I ′′
1 (R)]2

[I ′
1(R)]4

+ 4

[I ′
1(R)]2

−
(

3

R
+ 7R

) I ′′
1 (R)

[I ′
1(R)]3

− (1 + R2)
I ′′′

1 (R)

[I ′
1(R)]3

]
, (29)

n(R) = 1

32π

[(
1 + 1

R2

)
1

[I ′
1(R)]2

+
(

1 + 4

R2

)
1

[I ′
2(R)]2

+ 4
K′

2(R)

I ′
2(R)

+ 4
K′

1(R)

I ′
1(R)

]
, (30)

p(R) = 1

32π

[
4
K′

1(R)

I ′
1(R)

+ 4
K′

2(R)

I ′
2(R)

−
(

1

R
+ R

) I ′′
1 (R)

[I ′
1(R)]3

−
(

4

R
+ R

) I ′′
2 (R)

[I ′
2(R)]3

+
(

2

R2
+ 3

)
1

[I ′
1(R)]2

+
(

8

R2
+ 3

)
1

[I ′
2(R)]2

]
, (31)

where Im and Km are the first- and second-kind modi-
fied Bessel functions of mth order, and γEuler is the Euler-
Mascheroni constant (γEuler � 0.577). The coefficients a(R)
and g(R) are both negative independent of R(�0). Thus the
terms a(R)ρ and g(R)ρ̈ denote harmonic potential force and
inertia, respectively. The plots of Eqs. (23)–(31) against R are
shown in the Supplemental Material [49].

We confirmed that, when R goes to infinity, a(R), c(R),
h(R), j(R), n(R), and p(R) go to zero, and b(R), g(R), and k(R)
go to [−γEuler + log(2/ε)]/(4π ), −1/(16π ), and −1/(32π ),
respectively. The coefficients for R → ∞ are consistent with
the results for the case in which a camphor disk is in an infinite
two-dimensional region [27].

As the result of the reduction, we have the following
dynamical system as

[σ − g(R)]ρ̈

= a(R)ρ + [b(R) − ξ ]ρ̇ + c(R)|ρ|2ρ + h(R)|ρ̇|2ρ
+ j(R)(ρ · ρ̇)ρ + k(R)|ρ̇|2ρ̇ + n(R)|ρ|2ρ̇
+ p(R)(ρ · ρ̇)ρ̇. (32)

In this dynamical system, a double-Hopf bifurcation occurs at
b(R) = ξ , where the coefficient of ρ̇ is zero. When ξ is greater
than b(R), the rest state where the camphor disk rests at the
center position of the circular region is stable. On the other
hand, the rest state becomes unstable for ξ < b(R). The profile
of b(R) has a single peak as shown in Fig. 2, which is similar
to the case for the one-dimensional finite system [21].

To clarify what motion occurs when the rest state becomes
unstable through the double-Hopf bifurcation, we apply the
results obtained by weakly nonlinear analysis reported in our
previous paper [15]. Here we assume that the terms [σ −
g(R)]ρ̈ and a(R)ρ, which cause harmonic oscillation, are the
main terms, and the other terms are the perturbative terms.
Such an assumption is valid when the bifurcation parameters
are close to the bifurcation point. We convert time t to τ =
ω(R, σ )t , where ω(R, σ ) = √−a(R)/[σ − g(R)], in order to
rescale the time with regard to the period of the harmonic

Radius of circular region R

b(
R)

0 1 3 4 520

0.1

0.2

0.3

FIG. 2. Profile of b(R). Here we set ε = 0.1.

oscillation. Then we have

ρ̈ = −ρ + [B(R, σ ) − �]ρ̇ + C(R, σ )|ρ|2ρ + H (R)|ρ̇|2ρ
+ J (R, σ )(ρ · ρ̇)ρ + K (R, σ )|ρ̇|2ρ̇ + N (R, σ )|ρ|2ρ̇
+ P(R)(ρ · ρ̇)ρ̇, (33)

where B(R, σ ) = b(R)/ω(R, σ ), � = ξ/ω(R, σ ), C(R, σ ) =
c(R)/ω(R, σ )2, H (R) = h(R), J (R, σ ) = j(R)/ω(R, σ ),
K (R, σ ) = k(R)ω(R, σ ), N (R, σ ) = n(R)/ω(R, σ ), and
P(R) = p(R).

In our previous paper [15], we have derived the conditions
for stable rotation:

Frot (R, σ ) < 0,

Fcrt (R, σ ) < 0,
(34)

and for stable oscillation:

Fosc(R, σ ) < 0,

Fcrt (R, σ ) > 0,
(35)

where we define the following functions:

Frot (R, σ ) = K (R, σ ) + N (R, σ ), (36)

Fcrt (R, σ ) = K (R, σ ) − N (R, σ ) + J (R, σ ), (37)

Fosc(R, σ ) = 3K (R, σ ) + N (R, σ ) + J (R, σ ). (38)

Based on the conditions in Eqs. (34) and (35), we can learn
which motion appears, rotational or oscillatory, when the
rest state becomes unstable, i.e., ξ < b(R). The conditions
include the radius of the system R and the mass density σ

as parameters. When Frot (R, σ ) and Fosc(R, σ ) are negative,
the solution corresponding to a small-amplitude rotational
and oscillatory motion exists, respectively. As for Fcrt (R, σ ),
the rotational motion is stable if it is negative, while the
oscillatory motion is stable if it is positive.

In Fig. 3, the functions that are important to check the con-
ditions are plotted for σ = 0. It is suggested that the rotational
motion is stably observed when the radius of the circular
region is smaller than ∼2, when σ = 0. If σ > 0, the region
where the rotational motion is stable, i.e., the region of R that
gives Frot (R, σ ) < 0, is smaller than that for σ = 0, though
the oscillatory motion never becomes stable. Figure 4 shows
the curve, Frot (R, σ ) = 0, on the R-σ plane separating the
parameter regions where the stable rotational motion through
the supercritical double-Hopf bifurcation can be seen or not.
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FIG. 3. Plots of Frot (R, 0), Fosc(R, 0), and Fcrt (R, 0) against the
radius of the circular region R. When the rest state is unstable,
i.e., ξ < b(R), rotational motion is linearly stable in the range of R
indicated by coloring with magenta.

By increasing σ , the region of R that gives Frot (R, σ ) < 0
becomes smaller and smaller, and finally disappears.

IV. NUMERICAL CALCULATION

To confirm the validity of the theoretical results, we per-
formed numerical calculations based on the original model
before the reduction. For the concentration field, we used
Eq. (13) with the source term:

f (r; ρ) = 1

2πεR
2

[
1 + tanh

(
εR − |r − ρ|

δ

)]
, (39)

instead of Eq. (14). Here the size of the camphor disk was
considered to be finite (εR = 0.1) in order to avoid the diffi-
culty originating from the treatment of Dirac’s delta function
in numerical calculation. The smoothing parameter δ was
set to be 0.02. The explicit method was used for Eq. (13).
The time and spatial steps were �t = 10−5 and �x = 10−2,
respectively.

The potential force originating from the confinement by
the Neumann boundary condition decays exponentially as a
function of the distance from the boundary. Since the potential
force toward the center is too small near the center of the

Radius of circular region R

M
as

s d
en

si
ty

 σ

Supercritical

0 1 32
0

0.05

0.1

0.15

FIG. 4. Boundary between the regions on the R-σ plane. The
region with “supercritical” indicates the parameter region where the
stable rotational motion through the supercritical double-Hopf bifur-
cation at ξ = b(R) can be seen. The curve is given by Frot (R, σ ) = 0.

circular region for the system with larger R, the camphor disk
was sometimes stuck to the asymmetric position due to the
spatial mesh for the concentration field. The noise term can
be considered to be originating from the fluctuation due to the
nonuniformity of the actual experimental system such as the
camphor disk shape. Thus we adopted the equation of motion
(10) with a random noise:

σ
d2ρ

dt2
= −ξ

dρ

dt
+ F(c; ρ) + η(t ), (40)

where η(t ) describes the small noise. The noise satisfies the
relations 〈η(t )〉 = 0 and 〈ηi(t )η j (s)〉 = 2Y δi jδ(t − s), where
the brackets 〈· · · 〉 indicate an average over time. The noise
intensity Y was set to be 10−5. The mass per unit area σ

was fixed to be σ = 0 to avoid the camphor disk from going
out of the circular region due to the inertia. It is noted that
the inertia-like effect coming from the concentration field [cf.
−g(R)ρ̈ in Eq. (32)] remains. The Euler method was used for
Eq. (40). For the discretization, the driving force in Eq. (11)
was replaced with

F(c; ρ(t )) = 1

S

∫
∂


γ (c(ρ + εn))nd�. (41)

For the integration in Eq. (41), we adopted the summation
over 40 arc elements.

Here we show the numerical results for the radius of the
circular region R = 1. The results for the resistance coeffi-
cient per unit area ξ = 0.15 and 0.2 are shown in Fig. 5. A
camphor disk was initially located at the system center, and
the concentration field c was initially zero at every point in the
circular region. We obtained the trajectory toward the circular
orbit around the center of the circular region for ξ = 0.15 and
that staying near the center of the circular region for ξ = 0.2.
To clarify the transition between rotational motion and rest
at the center, we introduce the averaged distance 〈|ρ(t )|〉
over the time from 200 to 300. Here we call it a rotational
radius. In an ideal condition, i.e., averaging sufficiently long
time trajectories without noise, rotational motion gives a finite
rotation radius, while rest at the origin gives zero. Here we
calculated the rotation radii from the finite time series with
noise, and thus larger and smaller rotation radii indicated ro-
tation and rest at the origin, respectively. We obtained rotation
radii as 0.54 ± 0.02 for ξ = 0.15 and 0.05 ± 0.02 for ξ =
0.2. Therefore, it is expected that the bifurcation point exists
between ξ = 0.15 and 0.2 from the numerical results. On the
other hand, the expected bifurcation point ξ0 by the theoretical
analysis is ∼0.218, which is given by ξ0 = b(1). It is noted
that ε in b(R) is set to be ε = εR exp(1/4) = 0.1 exp(1/4) (cf.
footnote 36 in Ref. [27]). The order of the bifurcation point is
the same as that obtained by the numerical results, although
there remains some discrepancy between them. We guess the
dominant reason for the discrepancy between theoretical and
numerical results in the value of the bifurcation point is the
difference in the size of the camphor disk; in the theoretical
analysis, the size of the camphor disk is assumed to be εR →
+0, but in the numerical calculation, εR has a finite value
εR = 0.1.

The bifurcation structure is seen more clearly in Fig. 6,
which shows the rotation radii depending on the resistance
coefficient per unit area ξ . By decreasing the resistance
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FIG. 5. Numerical results on the trajectories of a camphor disk
in a circular region for the resistance coefficient per unit area (i) ξ =
0.15 and (ii) 0.2. The camphor disk exhibited rotational motion or
staying near the center of the circular region. (a) The trajectory on
the x-y plane. (b) Time evolutions of x(t ) and y(t ) shown in red-
and blue-colored curves (solid and broken curves), respectively. The
initial condition for the position of the camphor disk was set to be the
origin; x = 0 and y = 0. The initial concentration field c was zero at
every point in the region.

coefficient per unit area ξ , the rest state became unstable,
and the stable rotational motion appeared. Such bifurcation
structure is consistent with the linear stability analysis of the
rest state as shown in Fig. 2, and the linear stability analysis
of rotational motion for ξ < b(R) as shown in Fig. 3. Because
the stability of the rest state is close to neutral and the motion
is sensitive to the noise, the standard deviation of rotation radii
becomes larger around the bifurcation point ξ = b(R).

As shown in the phase diagram in Fig. 2, the radius of the
circular region R can also be a bifurcation parameter. Figure 7
shows a bifurcation diagram where the bifurcation parameter
is the radius of the circular region R. By increasing the system
size, the rest state became unstable, and the stable rotational
motion appeared. Again, the bifurcation structure is consistent
with the linear stability analysis of the rest state, and the
linear stability analysis of rotational motion for ξ < b(R).

1.0

0.1 0.250.05
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0.0
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R
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n 
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di
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0.20.15

FIG. 6. Rotation radius depending on the resistance coefficient
per unit area ξ . The red (dark gray) and green (light gray) plots show
the rotation radius for R = 0.5 and 1, respectively. The rest state at
the origin became unstable around ξ � 0.15 and 0.18 for R = 0.5
and 1, respectively, which correspond to the theoretical result on
the double-Hopf bifurcation point ξ = b(R). The error bars show
standard deviation. The initial conditions were the same as those in
Fig. 5.

The rotation radii increased linearly when the radius of the
circular region was sufficiently larger than the bifurcation
point.

V. EXPERIMENTS

We also formulate experiments to confirm the theoretical
results. Here we observed the motion of a camphor disk
in a circular water phase whose radius was continuously
controlled.

A camphor gel disk, whose diameter was 4.0 mm and
thickness was 0.5 mm, was made of agar gel in which wa-
ter was replaced with camphor methanol solution. After the
methanol dried up, the camphor disk was floated on a water
phase (15 mm in depth) [28]. To achieve a variable-sized water
phase, an optical focus (diaphragm) was put on the large
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FIG. 7. Rotation radius depending on the radius of the circular
region R. The green (light gray) and red (dark gray) plots show the
rotation radius for ξ = 0.1 and 0.15, respectively. The rest state at
the origin became unstable around R � 0.25 and 0.5 for ξ = 0.1
and 0.15, respectively, which correspond to the theoretical result ξ =
b(R). The error bars show standard deviation. The initial conditions
were the same as those in Fig. 5.
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FIG. 8. Experimental results on the motion of a camphor disk in
a circular water phase. (a) Trajectory of the moving camphor disk.
(b) Time series of speed v, the distance between the camphor disk
and the circular water phase center r, and the radius of the circular
water phase R. The radius of the circular water phase was gradually
changed from 5.0 mm to (i) 16.1 mm and (ii) 13.0 mm. The camphor
disks rotated for (i) 10 times and (ii) 15 times. The corresponding
movies for (i) and (ii) are provided in the Supplemental Material [49].

water surface. The camphor disk was placed in the open
area of the diaphragm to gradually increase or decrease the
radius R of the circular open area. The camphor molecules
are blocked at the edge of the diaphragm consistently with
the Neumann boundary condition employed in the theoretical
analysis. The details of the experimental setup are shown in
Appendix E.

At the initial stage with the small radius of a water phase
(R ∼ 5.0 mm), the disk was in the rest state at the center of
the water phase. With an increase in the radius of the circular
water phase R, the disk started to move and finally showed
rotational motion as shown in Fig. 8(a). For rotational motion,
both the moving speed v and the position of the disk r were
almost constant in time, as shown in Fig. 8(b). The theoretical
and numerical results qualitatively match the transition from

the rest state at the center position of the circular water phase
to the rotational motion with an increase in the radius of the
circular water phase R.

VI. DISCUSSION

In the present study, the mathematical model for the motion
of a camphor disk in a two-dimensional circular region was
reduced into the ordinary differential equation of the second
order. The reduction is valid when the distance between the
camphor disk and the center of the system is infinitesimally
small. This assumption is justified when the system is close
to the bifurcation point. We also assume that the higher-order
time derivative can be neglected. This assumption cannot be
justified theoretically. For a one-dimensional case, we have
checked the validity of the truncation numerically in Ref. [21].
Therefore, we assumed that the truncation of the higher-order
time derivative is valid also in the present two-dimensional
case. The reduced equation has the same form with the
dynamical system proposed in Ref. [15], so the bifurcation
structure of it was analyzed using the results in Ref. [15]. By
changing the radius of the circular region or the resistance
coefficient, the rest state at the center of the circular region
becomes unstable through the double-Hopf bifurcation [51].

When the rest state becomes unstable, the camphor disk
moves toward the boundary in a certain direction to avoid
the region with a higher concentration of camphor molecules.
Then the camphor disk is reflected by interaction with the
boundary through the concentration field, and moves toward
the opposite side about the center of the circular region. Thus
the camphor disk first moves back and forth, which is transient
due to the instability of the oscillatory motion. Finally, a rota-
tional motion is realized. Such transient behaviors were seen
in both numerical calculations and experiments in Figs. 5(a-i)
and 8(a-ii). The mass of the camphor disk was measured to
be 4.9 ± 0.2 mg in the experiments, though it is neglected in
the numerical calculations. The characteristic timescale where
the inertia is dominant is estimated by the ratio m/η, where m
and η are mass and resistance coefficients, respectively. Here
the characteristic timescale is estimated as m/η = 5 × 10−2 s.
Thus, we can neglect the inertia term mρ̈ as far as we focus
on the motion whose characteristic timescale is longer than
5 × 10−2 s.

In Fig. 4, the parameter region where the rotational motion
with a small radius is stable is shown. Outside of the region,
i.e., the circular region with a larger radius or the heavier
mass of the camphor disk, the camphor disk might rotate with
a large radius through a discontinuous transition. To clarify
this, we should discuss the higher-order terms appearing in
Eq. (32), which is left for future work. It should be noted
that for a camphor disk motion in such a larger chamber, the
discussion based on the interaction with the wall may work
[31,33].

VII. CONCLUSION

In the present paper, we discussed the motion of a camphor
disk confined in a two-dimensional circular water phase.
We reduced the mathematical model for the camphor disk
motion and applied our previous results based on the weakly
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nonlinear analysis to the reduced equation. The theoretical
results suggest that the rotational motion occurs when the rest
state becomes unstable. The stability of the rest state is deter-
mined by the resistance coefficient, which affects the mobility
of the camphor disk, and the radius of the circular region,
which determines the intensity of the confinement. The the-
oretical results were confirmed by numerical calculation and
experiments.
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APPENDIX A: DIMENSIONLESS FORM OF THE
MATHEMATICAL MODEL

We consider the nondimensionalization of Eq. (6). The di-
mensions of α, D, and c0 are [1/T], [L2/T], and [C L2/T], re-
spectively. Here, T, L, and C represent the dimensions of time,
length, and concentration, respectively. Thus, we introduce
the dimensionless time, position, and concentration as t̃ = αt ,
r̃ = √

α/D r, and c̃ = cD/c0, respectively. By substituting the
three dimensionless variables into Eq. (6) and dividing both
sides of it with c0α/D, we obtain

∂ c̃(r̃, θ, ρ̃, φ)

∂ t̃
=

(
∂2

∂ r̃2
+ 1

r̃

∂

∂ r̃
+ 1

r̃2

∂2

∂θ2

)
c̃(r̃, θ, ρ̃, φ)

− c̃(r̃, θ, ρ̃, φ) + D

c0α
f

(√
D

α
r̃, θ ;

√
D

α
ρ̃(t̃ ), φ(t̃ )

)
.

(A1)

The source term is considered as follows:

D

c0α
f

(√
D

α
r̃, θ ;

√
D

α
ρ(t̃ ), φ(t̃ )

)

= 1

r̃
δ(r̃ − ρ̃(t̃ ))δ(θ − φ(t̃ )) ≡ f̃ (r̃, θ ; ρ̃, φ). (A2)

Here we use δ(ax) = δ(x)/|a|. Then, we have

∂ c̃(r̃, θ, ρ̃, φ)

∂ t̃
=

(
∂2

∂ r̃2
+ 1

r̃

∂

∂ r̃
+ 1

r̃2

∂2

∂θ2

)
c̃(r̃, θ, ρ̃, φ)

− c̃(r̃, θ, ρ̃, φ) + f̃ (r̃, θ ; ρ̃, φ), (A3)

where ρ̃ = √
α/Dρ.

Next, Eq. (2) is nondimensionalized. The variables t , r, ρ,
and c are replaced with t̃ , r̃(=√

α/Dr), ρ̃(=√
α/Dρ), and c̃,

and then we have

σ
√

Dα3
d2ρ̃(t̃ )

dt̃2
= −ξ

√
Dα

d ρ̃(t̃ )

dt̃
+ F

(√
D

α
ρ̃;

c0

D
c̃

)
. (A4)

In Eq. (A4), we can eliminate all coefficients but one. Here,
the driving force is nondimensionalized as

F(c; ρ) = c0

√
α

D3
lim

ε̃→+0

−k

πε̃2

×
∫ 2π

0
c̃

(√
D

α
[ρ̃ + ε̃n(θ )];

√
D

α
ρ̃

)
ε̃dθ

≡ kc0

√
α

D3
F̃(ρ̃; c̃). (A5)

Here, F̃ is a dimensionless driving force, and ε̃ = √
α/D ε.

Then we obtain

σD2α

kc0

d2ρ̃

dt̃2
= −ξD2

kc0

d ρ̃

dt̃
+ F̃(c̃; ρ̃). (A6)

Thus we define the dimensionless mass and resistance coeffi-
cient per unit area as

σ̃ ≡ σD2α

kc0
, ξ̃ ≡ ξD2

kc0
. (A7)

The dimensionless forms in Eqs. (10)–(15) are obtained.

APPENDIX B: DISCRETE HANKEL TRANSFORM

Here, we provide some notes on “discrete Hankel trans-
form” for a function that satisfies the Neumann boundary
condition [50,52,53]. It is noted that the discrete Hankel
transform with the Neumann boundary condition corresponds
to the special case of Dini’s expansion, which is the expansion
for a function satisfying the following boundary condition:
z−m[zJ ′

m(z) + HJm(z)] = 0 (cf. Chap. XVIII in Ref. [54]).
When the constant H is zero, then Dini’s expansion is a
discrete Hankel transform for a function that satisfies the
Neumann boundary condition. In the book by Bowman [50],
the discrete Hankel transform for a function that satisfies the
Dirichlet boundary condition is denoted, and as for the case
with the Neumann boundary condition, the calculation can be
performed in almost a parallel manner.

The Bessel differential equation is given as[
d2

dr2
+ 1

r

d

dr
+

(
1 − m2

r2

)]
Jm(r) = 0. (B1)

By replacing r with kr, we have[
d2

dr2
+ 1

r

d

dr
+

(
k2 − m2

r2

)]
Jm(kr) = 0. (B2)

Equation (B2) is transformed into the following form:

d

dr

(
r

dJm(kr)

dr

)
− m2

r
Jm(kr) + k2rJm(kr) = 0. (B3)

Here we consider the subtraction between equations in
Eq. (B3) with different k. We have

Jm(hr)
d

dr

(
r

dJm(kr)

dr

)
− Jm(kr)

d

dr

(
r

dJm(hr)

dr

)

+ (k2 − h2)rJm(kr)Jm(hr) = 0. (B4)
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Using Eq. (B4), we have

− (k2 − h2)
∫ R

0
rJm(kr)Jm(hr)dr

=
[
Jm(hr)

(
r

dJm(kr)

dr

)
− Jm(kr)

(
r

dJm(hr)

dr

)]R

0

.

(B5)

Hereafter, we consider the non-negative integer m.
For m � 1, we set kmn ≡ ζmn/R > 0 instead of arbitrary k

and h, where ζmn > 0 is the element of the zero set of J ′
m.

Here J ′
m(r) means ∂Jm(r)/∂r. The second index of ζmn is set

to be n = 0, 1, 2, . . . so that ζmi < ζm j for i < j.
Since J ′

m(kmnR) = 0 holds from the definition of kmn, we
have

(kml
2 − kmn

2)
∫ R

0
rJm(kml r)Jm(kmnr)dr = 0 (B6)

from Eq. (B5). For l �= n, we have∫ R

0
rJm(kml r)Jm(kmnr)dr = 0, (B7)

and thus Jm(kml r) and Jm(kmnr) whose domains are [0, R] are
orthogonal to each other for l �= n.

To obtain the norm of Jm(kmnr), we calculate the following
integration using Eq. (B5):∫ R

0
rJm(kmnr)Jm(kmnr)dr

= lim
k→kmn

∫ R

0
rJm(kr)Jm(kmnr)dr

= lim
k→kmn

R[kmnJm(kR)J ′
m(kmnR) − kJm(kmnR)J ′

m(kR)]

k2 − kmn
2 .

(B8)

By applying L’Hôpital’s rule, we have∫ R

0
rJm(kmnr)Jm(kmnr)dr

= R2

2

[
J ′

m(kmnR)J ′
m(kmnR)

−
(

1

kmnR
J ′

m(kmnR) + J ′′
m (kmnR)

)
Jm(kmnR)

]
. (B9)

Since J ′
m(kmnR) = 0 holds, we have∫ R

0
rJm(kmnr)Jm(kmnr)dr

= −R2

2
J ′′

m (kmnR)Jm(kmnR)

= −R2

2
J ′′

m (ζmn)Jm(ζmn) ≡ 1

amn
. (B10)

For m = 0, we set k0n ≡ ζ0n/R � 0, where ζ0n � 0 is the
element of the zero set of J ′

0. The second index of ζ0n is set
to be n = 0, 1, 2, . . . so that ζ0i < ζ0 j for i < j. The only
difference from the case for m � 1 is that k00 = ζ00/R is
exceptionally set to be 0. This is because J0(0) �= 0 while
Jm(0) = 0 for m � 1, and

√
a00J0(0) is a linearly indepen-

dent component in the basis. In the case of k00 = 0, Eq. (B9)
is not valid. By setting k00 = 0 and then applying L’Hôpital’s
rule, we have∫ R

0
rJ0(k00r)J0(k00r)dr = R2

2
≡ 1

a00
. (B11)

Thus, for every integer m � 0, the functions
{√amnJm(kmnr)} are the basis of the function space for
[0, R]. An arbitrary function f (r) that satisfies the Neumann
condition at r = R is expressed in the discrete Hankel
transform as

f (r) =
∞∑

n=0

amn fmnJm(kmnr), (B12)

where

fmn ≡
∫ R

0
f (r)Jm(kmnr)rdr. (B13)

Before closing this appendix, we note the comments on
the application of the discrete Hankel transform with the Neu-
mann condition to some actual problem. Previously, the dis-
crete Hankel transform with the Neumann condition was ap-
plied to the Helmholtz equation as in Eq. (5.3.34) in Ref. [52].
In the present study, the discrete Hankel transform with the
Neumann condition was applied to the reaction-diffusion
equation in Eq. (13), the modified Helmholtz equation, and
we succeeded in the expansion of the concentration field with
respect to the source position and its time derivatives.

APPENDIX C: REDUCTION OF THE MATHEMATICAL
MODEL

Equation (21) is expanded using the partial integration as
follows [48]:

c(r, ρ(t )) = 1

2π

∞∑
m=−∞

∞∑
n=0

a|m|n
k2
|m|n + 1

J|m|(k|m|nρ(t ))J|m|(k|m|nr)eim(θ−φ(t ))

+ 1

2π

∞∑
m=−∞

∞∑
n=0

a|m|n
(k2

|m|n + 1)2
{−k|m|nρ̇(t )J ′

|m|(k|m|nρ(t )) + imφ̇(t )J|m|(k|m|nρ(t ))}J|m|(k|m|nr)eim(θ−φ(t ))

+ 1

2π

∞∑
m=−∞

∞∑
n=0

a|m|n(
k2
|m|n + 1

)3 {k|m|nρ̈(t )J ′
|m|(k|m|nρ(t )) + k|m|n2(ρ̇(t ))2J ′′

|m|(kρ(t ))
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− 2ik|m|nmρ̇(t )φ̇(t )J ′
|m|(k|m|nρ(t )) − imφ̈(t )J|m|(k|m|nρ(t )) − m2(φ̇(t ))2J|m|(k|m|nρ(t ))}J|m|(k|m|nr)eim(θ−φ(t ))

+ 1

2π

∞∑
m=−∞

∞∑
n=0

a|m|n(
k2
|m|n + 1

)4

{−k|m|n
...
ρ (t )J ′

|m|(k|m|nρ(t )) − 3k2
|m|nρ̇(t )ρ̈(t )J ′′

|m|(k|m|nρ(t ))

+ 3ik|m|nmρ̈(t )φ̇(t )J ′
|m|(k|m|nρ(t )) − k3

|m|n(ρ̇(t ))3J ′′′
|m|(k|m|nρ(t )) + 3ik2

|m|nm(ρ̇(t ))2φ̇(t )J ′′
|m|(k|m|nρ(t ))

+ 3ik|m|nmρ̇(t )φ̈(t )J ′
|m|(k|m|nρ(t )) + 3k|m|nm2ρ̇(t )(φ̇(t ))2J ′

|m|(k|m|nρ(t )) + im
...
φ (t )J|m|(k|m|nρ(t ))

+ 3m2φ̇(t )φ̈(t )J|m|(k|m|nρ(t )) − im3(φ̇(t ))3J|m|(k|m|nρ(t ))
}
J|m|(k|m|nr)eim(θ−φ(t ))

+ · · · . (C1)

The first term,

c0(r, ρ(t )) = 1

2π

∞∑
m=−∞

∞∑
n=0

a|m|n
k2
|m|n + 1

J|m|(k|m|nρ(t ))J|m|(k|m|nr)eim(θ−φ(t )), (C2)

only depends on the current position of the camphor disk, and corresponds to the steady concentration field when the camphor
disk is fixed at the current position for a long time. The explicit form of the steady state is obtained as

c0(r, θ, ρ(t ), φ(t )) = 1

2π
K0(

√
r2 + ρ2 − 2rρ cos(θ − φ)) − 1

2π

K0
′(R)

I0
′(R)

I0(ρ)I0(r) − 1

π

∞∑
m=1

Km
′(R)

Im
′(R)

Im(ρ)Im(r) cos m(θ − φ).

(C3)

The detailed calculation is presented in Appendix D. First, the length scale that appeared in Eqs. (C2) and (C3) is rescaled with
λ as r → λr, ρ → λρ, R → λR, and kmn → kmn/λ. Then both sides of the rescaled Eqs. (C2) and (C3) are differentiated with
regard to λ, ρ, and φ. By setting λ = 1, the expressions with modified Bessel functions for the other terms in Eq. (C1) are
obtained,

c(r; ρ) = cinfinite(r; ρ) + ccorrection(r; ρ), (C4)

cinfinite(r; ρ) = c00(|r − ρ|) + c10(|r − ρ|)(r − ρ) · ρ̇ + c20(|r − ρ|)(r − ρ) · ρ̈ + c21(|r − ρ|)|ρ̇|2 + c22(|r − ρ|)[(r − ρ) · ρ̇]2

+ c30(|r − ρ|)(r − ρ) · ...
ρ + c31(|r − ρ|)|ρ̇|2(r − ρ) · ρ̇ + c33(|r − ρ|)ρ̇ · ρ̈ + c32(|r − ρ|)[(r − ρ) · ρ̇]3

+ c34(|r − ρ|)[(r − ρ) · ρ̇][(r − ρ) · ρ̈], (C5)

ccorrection(r; ρ) = c00
0 (R, r) + c10

0 (R, r)(r · ρ) + c20
0 (R, r)(r · ρ)2 + c20

1 (R, r)|ρ|2 + c11
0 (R, r)(r · ρ̇) + c30

0 (R, r)(r · ρ)3

+ c30
1 (R, r)|ρ|2(r · ρ) + c21

0 (R, r)(ρ · ρ̇) + c21
1 (R, r)(r · ρ)(r · ρ̇) + c12

0 (R, r)(r · ρ̈) + c31
0 (R, r)|ρ|2(r · ρ̇)

+ c31
1 (R, r)(r · ρ)(ρ · ρ̇) + c31

2 (R, r)(r · ρ)2(r · ρ̇) + c22
0 (R, r)(ρ · ρ̈) + c22

1 (R, r)|ρ̇|2 + c22
2 (R, r)(r · ρ)(r · ρ̈)

+ c22
3 (R, r)(r · ρ̇)2 + c13

0 (R, r)(r · ...
ρ ) + c32

0 (R, r)|ρ̇|2(r · ρ) + c32
1 (R, r)(r · ρ̇)(ρ · ρ̇) + c32

2 (R, r)(r · ρ)(r · ρ̇)2

+ c32
3 (R, r)(r · ρ)(ρ · ρ̈) + c32

4 (R, r)|ρ|2(r · ρ̈) + c32
5 (R, r)(r · ρ)2(r · ρ̈) + c23

0 (R, r)(ρ · ...
ρ ) + c23

1 (R, r)(ρ̇ · ρ̈)

+ c23
2 (R, r)(r · ρ̇)(r · ρ̈) + c23

3 (R, r)(r · ρ)(r · ...
ρ ) + c33

0 (R, r)|ρ|2(r · ...
ρ ) + c33

1 (R, r)|ρ̇|2(r · ρ̇)

+ c33
2 (R, r)(r · ρ)(ρ · ...

ρ ) + c33
3 (R, r)(r · ρ̇)3 + c33

4 (R, r)(r · ρ)(ρ̇ · ρ̈) + c33
5 (R, r)(r · ρ)2(r · ...

ρ )

+ c33
6 (R, r)(r · ρ̇)(ρ · ρ̈) + c33

7 (R, r)(r · ρ̈)(ρ · ρ̇) + c33
8 (R, r)(r · ρ)(r · ρ̇)(r · ρ̈) + O(ρ4). (C6)

The coefficients c∗∗(R, r) and c∗∗
∗ (R, r) are analytically obtained, whose explicit forms are shown in Sec. 1 in the Supplemental

Material [49]. From Eq. (C6) and the definition of the driving force in Eq. (11), the driving force is calculated as

F = F infinite + Fcorrection, (C7)

F infinite = 1

4π

(
−γEuler + log

2

ε

)
ρ̇ − 1

16π
ρ̈ − 1

32π
|ρ̇|2ρ̇ + 1

48π

...
ρ , (C8)

Fcorrection = −∇rc(r; ρ)|r=ρ

= −
[

1

ρ
c′00

0 (R, ρ) + c′10
0 (R, ρ)ρ + c10

0 (R, ρ) + c′20
0 (R, ρ)ρ3 + 2c20

0 (R, ρ)ρ2 + c′20
1 (R, ρ)ρ + c′30

0 (R, ρ)ρ5 + 3c30
0 (R, ρ)ρ4
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+ c′30
1 (R, ρ)ρ3 + c30

1 (R, ρ)ρ2

]
ρ −

[
1

ρ
c′11

0 (R, ρ) + 1

ρ
c′21

0 (R, ρ) + c′21
1 (R, ρ)ρ + c21

1 (R, ρ) + c′31
0 (R, ρ)ρ + c′31

1 (R, ρ)ρ

+ c31
1 (R, ρ) + c′31

2 (R, ρ)ρ3 + 2c31
2 (R, ρ)ρ2

]
(ρ · ρ̇)ρ − [

c11
0 (R, ρ) + c21

1 (R, ρ)ρ2 + c31
0 (R, ρ)ρ2 + c31

2 (R, ρ)ρ4
]
ρ̇

−
[

1

ρ
c′12

0 (R, ρ) + 1

ρ
c′22

0 (R, ρ) + c′22
2 (R, ρ)ρ + c22

2 (R, ρ) + c′32
3 (R, ρ)ρ + c32

3 (R, ρ) + c′32
4 (R, ρ)ρ + c′32

5 (R, ρ)ρ3

+ 2c32
5 (R, ρ)ρ2

]
(ρ · ρ̈)ρ − [

c12
0 (R, ρ) + c22

2 (R, ρ)ρ2 + c32
4 (R, ρ)ρ2 + c32

5 (R, ρ)ρ4
]
ρ̈ −

[
1

ρ
c′22

1 (R, ρ) + c′32
0 (R, ρ)ρ

+ c32
0 (R, ρ)

]
|ρ̇|2ρ −

[
1

ρ
c′22

3 (R, ρ) + 1

ρ
c′32

1 (R, ρ) + c′32
2 (R, ρ)ρ + c32

2 (R, ρ)

]
(ρ · ρ̇)2ρ − [

2c22
3 (R, ρ) + c32

1 (R, ρ)

+ 2c32
2 (R, ρ)ρ2

]
(ρ · ρ̇)ρ̇ −

[
1

ρ
c′13

0 (R, ρ) + 1

ρ
c′23

0 (R, ρ) + c′23
3 (R, ρ)ρ + c23

3 (R, ρ) + c′33
0 (R, ρ)ρ + c′33

2 (R, ρ)ρ

+ c33
2 (R, ρ) + c′33

5 (R, ρ)ρ3 + 2c33
5 (R, ρ)ρ2

]
(ρ · ...

ρ )ρ − [
c13

0 (R, ρ) + c23
3 (R, ρ)ρ2 + c33

0 (R, ρ)ρ2 + c33
5 (R, ρ)ρ4]...ρ

+
[

1

ρ
c′23

1 (R, ρ) + c′33
4 (R, ρ)ρ + c33

4 (R, ρ)

]
(ρ̇ · ρ̈)ρ −

[
1

ρ
c′23

2 (R, ρ) + 1

ρ
c′33

6 (R, ρ) + 1

ρ
c′33

7 (R, ρ) + c′33
8 (R, ρ)ρ

+ c33
8 (R, ρ)

]
(ρ · ρ̇)(ρ · ρ̈)ρ − [

c23
2 (R, ρ) + c33

6 (R, ρ) + c33
8 (R, ρ)ρ2

]
(ρ · ρ̈)ρ̇ − [

c23
2 (R, ρ) + c33

7 (R, ρ)

+ c33
8 (R, ρ)ρ2

]
(ρ · ρ̇)ρ̈ − 1

ρ
c′33

1 (R, ρ)|ρ̇|2(ρ · ρ̇)ρ − c33
1 (R, ρ)|ρ̇|2ρ̇ − 1

ρ
c′33

3 (R, ρ)(ρ · ρ̇)3ρ − 3c33
3 (R, ρ)(ρ · ρ̇)2ρ̇

+ O(ρ4). (C9)

By taking the terms up to the third order of ρ and ρ̇, and the first order of ρ̈, the driving force as a function of the trajectory of
the camphor disk and the radius of the circular region is obtained as in Eq. (22).

APPENDIX D: DERIVATION OF THE STEADY CONCENTRATION FIELD

In this appendix, the derivation of the steady concentration field for a fixed camphor disk at an arbitrary position in the circular
region is obtained. The steady state in an infinite region is obtained as follows:

c(r, θ ) = 1

2π
K0(

√
r2 + ρ2 − 2rρ cos(θ − φ)). (D1)

The detailed derivation is referred to in Ref. [27]. To satisfy the Neumann boundary condition, we adequately add the general
solution for Eq. (13) without the source term, i.e., the homogeneous form of Eq. (13):(

∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

)
c(r, θ ) − c(r, θ ) = 0. (D2)

From the definition of the modified Bessel functions, the general solution of Eq. (D2) is expressed as

c(r, θ ) = A0K0(r) + B0I0(r) +
∞∑

m=1

[AmKm(r) + BmIm(r)] cos m(θ − φ) +
∞∑

m=1

[CmKm(r) + DmIm(r)] sin m(θ − φ). (D3)

By considering the symmetric property of the system, the mth mode term should be expressed only by cos m(θ − φ), i.e., Cm

and Dm should be zero. Furthermore, Kn(r) (n � 1) is not suitable for representing the concentration field of camphor since
the integration,

∫ 2π

0

∫ R
0 Kn(r)r dr dθ , diverges for n � 1. K0(r) diverges at r = 0 and is not suitable when a camphor disk is

off the origin. When a camphor disk is located at the origin, K0(r) is already included as the steady state without the Neumann
boundary. Thus, the concentration field with the correction terms should be given by the following form:

c(r, θ ) = 1

2π
K0(

√
r2 + ρ2 − 2rρ cos(θ − φ)) +

∞∑
m=0

BmIm(r) cos m(θ − φ). (D4)

Then, the coefficients Bm are determined by the boundary condition in Eq. (15), that is,

1

2π

∂

∂r
K0(

√
r2 + ρ2 − 2rρ cos(θ − φ))|r=R = −

∞∑
m=0

Bm
∂Im(r)

∂r
cos m(θ − φ)|r=R. (D5)
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If ∂K0(
√

r2 + ρ2 − 2rρ cos(θ − φ))/∂r at r = R is expanded with regard to cos m(θ − φ), Bm is explicitly obtained. By using
the formula for R > r which is represented in Eq. (8) on p. 361 of Ref. [54],

K0(
√

R2 + r2 − 2Rr cos θ ) =
∞∑

n=−∞
Kn(R)In(r) cos nθ, (D6)

we have

∂

∂R

∫ 2π

0
K0(

√
R2 + ρ2 − 2Rρ cos(θ − φ)) cos n(θ − φ)dθ = 2π

∂Kn(R)

∂R
In(ρ) (n = 0, 1, 2, . . . ). (D7)

Here we use K−m(r) = Km(r) and I−m(r) = Im(r). As a consequence, we have

B0 = 1

2π

K′
0(R)

I ′
0(R)

I0(ρ), (D8)

Bn = 1

π

K′
n(R)

I ′
n(R)

In(ρ) (n = 1, 2, . . . ). (D9)

Thus we have Eq. (C3). It should be noted that the conservation of integration of concentration over the circular region,∫ R

0

∫ 2π

0
c(r, θ )r dr dθ = 1, (D10)

is satisfied.

APPENDIX E: DETAILED EXPERIMENTAL CONDITIONS

Milli-Q water (360 mL) was poured into a plastic container (150 mm in width, 150 mm in length, and 30 mm in depth) and
the optical focus (Sigma-koki, IDC-025) was placed on the water surface with a silicone sheet as a spacer (15 mm in depth).
The optical focus has a circular hole, whose radius R was able to be changed from 0.5 to 20.0 mm. For the preparation of
the camphor disk [28], an agar gel sheet was soaked into methanol (MeOH) at first, and then into a camphor MeOH solution
(1.0 g mL−1) for more than 12 h. After the MeOH in an agar gel was completely replaced with camphor MeOH solution, the
gel sheet was rinsed with water and was cut into a circular shape. A camphor gel disk was floated on the water phase, and its
dynamic behavior was observed with a video camera (Handycam, Sony, video rate: 30 fps). The radius of the water phase R was
about 5.0 mm at first, and then increased to 13.0 or 16.1 mm with a constant speed (4.0 mm s−1).
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