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Analysis of the parametrically periodically driven classical and quantum linear oscillator
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We study theoretically and computationally the behavior of the classical and quantum parametrically
periodically driven linear oscillator. As a basic paradigm of such a Floquet system we consider the case of the
harmonic oscillation of the oscillator frequency, which is convenient to handle theoretically and computationally,
while keeping the general features. We derive an explicit analytic formula for the quantum propagator in terms
of the classical propagator. Using this, we derive the explicit exact formula for the evolution of the expectation
value of the energy starting from an arbitrary normalizable initial state. In the case of the starting pure stationary
eigenstate the evolution is exactly the same as for the classical microcanonical ensemble of initial conditions
of the same starting energy. We perform a rather complete computational analysis of the system’s behavior
inside the instability regions (lacunae), where the energy of the oscillator increases exponentially, as well as in
the stability regions, and in particular in the vicinity of the (in)stability borders. We confirm also numerically
with absolute certainty that the borders of (in)stability regions classically and quantally coincide exactly, in
accordance with the theory, which is an important check of the numerical accuracy of computations, and we
find a number of important empirical results, especially an equation of the elliptic type describing the rate of
exponential energy growth inside the lacunae in terms of other systems’ quantities. We believe that our approach
and findings are of generic linear type, i.e., applicable in most such linear Floquet systems, and we present a
strong motivation for a general theory, classically and quantally.
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I. INTRODUCTION

Time-dependent Hamilton systems [1–5] are important
when the interaction of a given Hamilton system with the
environment is modeled and analyzed. Formally, they can
be reduced to an autonomous (time-independent) system by
introducing one more dimension in phase space (so-called
extended phase space) or one more degree of freedom, but
technically they are more easily studied as time-dependent
systems, because we have a number of techniques which lead
directly to deep physical insights and mathematical method-
ological advantages. Such systems have been the subject of
many recent studies, both classically [6–12] and quantally
[13–16]. In particular, we should mention works on one-
dimensional quantum billiards [17–21], in particular the work
by Seba [22] and our recent paper [16], as well as the two-
dimensional quantum billiards [23–26]. Fermi acceleration
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(FA; by definition it means unlimited and unbounded growth
of the particle’s energy, subject to the time-dependent po-
tential) is of central interest [27,28]. While FA is certainly
possible in two-dimensional or higher-dimensional classical
Hamilton systems, like billiards [13], even in the case of a
smooth periodic driving (motion of the boundary), it cannot
occur in one-dimensional box so long as the oscillation is
smooth and the KAM theorem applies, as it predicts existence
of invariant curves acting as perfect barriers in the classical
phase space [29]. However, if the periodic oscillation of
the wall is not smooth enough, like the sawtooth type of
oscillation, the KAM theorem does not apply and the route
to FA is open, which indeed has been studied in references
[22,30,31]. The quantum mechanical FA indeed can take place
[16], and it turns out that the energy grows quadratically with
time in very narrow quantum resonant gaps.

In this paper we study the periodically parametrically
driven linear oscillator, both classically and quantally. While
the classical problem is a text book example (see, e.g.,
Ref. [1]), which, however, is difficult to study analytically
and rigorously [32], the quantum problem is entirely unsolved
analytically, although a special case of such a Floquet system
has been analyzed rigorously by Weigert [33].
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In our case the frequency (not the square of the frequency)
of the linear oscillator is assumed to vary harmonically,
ω(t ) = 2π (1 + ε cos � t ), which greatly simplifies the quan-
tum computations while keeping the general aspects of the
parametric resonance. The control parameter space has two
dimensions, the frequency of the parametric driving � and
its amplitude ε. Our main result is to precisely describe the
instability regions (lacunae), showing that inside the lacunae
the energy growth at large times is exponential with time,
while it oscillates and is bounded outside the lacunae. The
(in)stability border in the parameter space (�, ε) is shown
to coincide exactly classically and quantally, which we ex-
plain theoretically (see below). This is certainly an important
ultimate confirmation of numerical accuracy. Moreover, we
derive explicit analytic formula for the quantum propagator
in terms of the classical propagator. Using this, we derive
the explicit exact formula for the evolution of the expectation
value of the energy starting from an arbitrary normalizable
initial state. In the case of the pure stationary eigenstate
as initial state, the evolution is exactly the same as for the
classical microcanonical ensemble of initial conditions of
the same starting energy. Furthermore, we obtain a number
of important empirical results, such as an equation of the
elliptic type describing the rate of exponential energy growth
inside the lacunae in terms of other system’s quantities. The
analysis of the detailed structure of the lacunae is typically
very difficult, both theoretically and numerically; therefore,
we believe that our approach and results contribute to the
literature on this subject.

Here, some historical comments are in place. There is a
vast literature on the classical and quantum Floquet systems.
On the classical side we refer to Refs. [34–36], where the
Hill’s equation, and the Mathieu equation as its special case,
are treated, and our system is a special case of the Hill’s
equation. The analysis there is in the configuration space,
while we perform the analysis in the phase space (x, p),
which certainly is a more direct approach. When classical
and quantum mechanics of our system are compared one
must bear in mind that the concept of an orbit emanating
from a single initial condition (x, p) does not exist in the
quantum mechanics. When we compare the propagation of
classical and quantum states with a certain average energy
we must consider a certain ensemble of classical orbits to be
compared with the quantum state and its average energy. Thus
the description is necessarily statistical. It is nontrivial to find
such a correspondence.

In the literature (see, e.g., Ref. [37] and the references
therein) it is known that the semiclassical motion and spread-
ing of quantum wave packets follow the classical flow at
least for some time (Ehrenfest time), where the spreading
is exponential in the case of unstable orbits. In the bound
Hamilton systems with quadratic momenta and coordinates
(linear oscillators), there is no spreading and the center of the
wave packet precisely follows the classical orbit in the phase
space for all times. However, physically more interesting is
the question how the energy of an initial stationary state
(with prepared sharp energy) develops in time. We express
the quantum propagator in terms of the classical propagator,
and present an explicit formula in closed form for the energy
[see Eqs. (16), (27), and (29)], as explained above, although

the classical propagator cannot be calculated analytically in
the general case. The analogy of a quantum stationary state
is the classical microcanonical distribution of initial con-
ditions with the same energy, and their developments are
identical. To calculate the boundary of the stable and unstable
regions in the parameter space (�, ε) we have to resort to nu-
merical calculations, both classically and quantally, which we
do in this paper with unprecedented accuracy, and confirm that
they are identical, which is another confirmation of the accu-
racy of numerical calculations. In addition, we study also the
dependence of the classical motion on the initial conditions.

The paper is organized as follows. In Sec. II we define
the underlying quantum and classical system, and prepare the
tools to describe its evolution in time. We derive the quantum
propagator in terms of the classical propagator. In Sec. III we
present the numerical method and carefully check the numer-
ical routines to warrant the sufficient numerical accuracy. In
Sec. IV we present the main results for the quantum case,
by investigating the borders of lacunae, which are shown to
coincide exactly with the borders of the classical lacunae, as
explained theoretically. In Sec. V we analyze further details
of the classical system. In Sec. VI we study the comparison
between the classical and quantum system, and in Sec. VII
we present some most important empirical (computational)
results on the relations among the parameters characterizing
the structure of the lacunae. In Sec. VIII we summarize our
results, discuss open problems, and conclude.

II. DEFINITION OF THE SYSTEM AND THE PROBLEM

A. The quantum problem

We study a point particle of mass m moving in a time-
dependent quadratic potential well (which is time-dependent
linear oscillator), described by the Hamilton operator

Ĥ = −1

2

∂2

∂x2
+ 1

2
ω2(t )x2, (1)

where we always use the units such that m = 1, h̄ = 1. The
classical analog is the Hamilton function

H = p2

2
+ 1

2
ω2(t )x2, (2)

where the frequency ω(t ) is a periodic function of time t .
More specifically, in the entire paper we consider the follow-
ing model:

ω = ω(t ) = 2π (1 + ε cos �t ), (3)

which is more convenient to deal with than the usual Mathieu
model ω2(t ) = (2π )2(1 + ε cos �t ), as we shall see. The con-
trol parameter space is thus (�, ε). We use units of time such
that the period of the unperturbed oscillator (ε = 0) is equal to
1. We are seeking the solution ψ (x, t ) of the time-dependent
Schrödinger equation (h̄ = 1),

Ĥψ = i
∂ψ

∂t
. (4)

To find it we use the expansion of the solution

ψ (x, t ) =
∞∑

n=0

bn(t )un(x, t ) exp

[
−i

∫ t

0
En(τ )dτ

]
(5)
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in terms of the adiabatic basis, namely, in terms of the
instantaneous eigenbasis

un(x, t ) = 1√
2nn!

(
ω(t )

π

) 1
4

exp

(
− ω(t )x2

2

)
Hn[x

√
ω(t )].

(6)

Here Hn(s) is the nth Hermite polynomial of s and we have
the orthonormality of the (for any time t) complete basis
〈um|un〉 = δm,n (Kronecker δ function), where

Ĥun = Enun, En = (
n + 1

2

)
ω(t ) = En(t ),

n = 0, 1, 2, 3, . . . . (7)

Inserting the ansatz Eqs. (5) into (4) and taking the scalar
product with um we get

ḃm = −
∞∑

n=0

bn〈um|u̇n〉 exp

{
−i

∫ t

0
[En(τ ) − Em(τ )]dτ

}
,

(8)

where the dot denotes the time derivative. Using the well
known properties of the Hermite polynomials we find

u̇n = 1

4ω
ω̇un − x2

2
ω̇un +

√
n

2ω
ω̇xun−1. (9)

Now inserting this into Eq. (8) and then using the matrix
elements, which are easy to verify,

〈m|x|n − 1〉 = 1√
2ω

(
√

m + 1δm,n−2 + √
mδm,n), (10)

and

〈m|x2|n〉 = 1

2ω
(
√

(m + 1)(m + 2)δm,n−2 + (2m + 1)δm,n

+
√

m(m − 1)δm,n+2), (11)

we arrive at the final equations of motion for the expansion
coefficients bm(t ), namely,

ḃm = − ω̇

4ω

{
bm+2

√
(m + 1)(m + 2) exp

[
−2i

∫ t

0
ω(τ )dτ

]

− bm−2

√
m(m − 1) exp

[
+2i

∫ t

0
ω(τ )dτ

]}
. (12)

Here ω(t ) is still of general form. By writing the evolu-
tion of b in operator (or matrix) form b = Bbi, using the
evolution equation Ḃ = AB, and bi being an arbitrary initial
state vector bi = {bn(t = 0)}, and assuming that the matrix
A is antihermitian, A† = −A, we can see that the probability
〈b|b〉 = ∑M

m=0 |bn|2 is conserved for any dimension M of A
and B, that is also for truncated systems of any size. Indeed,
we can see that our Eqs. (12) are exactly of this type.

In continuation, we see now that the integral
∫ t

0 ω(τ )dτ can
be evaluated analytically in elementary form for our model
Eq. (3), which leads then to the final equations specific of our

model

ḃm = ε � sin �t

4(1 + ε cos �t )

{
bm+2

√
(m + 1)(m + 2)

× exp

[
− 4π i

(
t + ε

�
sin �t

)]
− bm−2

√
m(m − 1)

× exp

[
+ 4π i

(
t + ε

�
sin �t

)]}
. (13)

We are primarily interested in the development of the mean
(expected) energy E (t ) as a function of time,

E (t ) = 2π (1 + ε cos �t )
∞∑

m=0

|bm|2
(

m + 1

2

)
. (14)

Moreover, in all numerical quantum calculations in the paper
we shall start from the initial condition that at time t = 0 the
system is in the ground state m = 0, that is b0 = 1 and bm = 0
for all m > 0, and E (0) = π (1 + ε). This is certainly enough,
as the probability always moves to higher excited states, so
that asymptotic behavior of the system and its energy E (t ) is
the same for any starting initial state m.

B. The classical problem

On the basis of classical parametric resonance at ε = 0 [38]
we expect the corresponding quantum parametric resonance
also at � = �n = 4π/n, where n = 1, 2, 3, . . . , and the en-
ergy E (t ) is expected to grow exponentially. This is indeed
confirmed in our computations, as we shall see in the detailed
analysis of Sec. IV. The theoretical explanation is given below
in Sec. II C.

Let us write down the classical equations of motion, using
Eq. (2),

ṗ = −∂H

∂x
= −ω2(t )x, ẋ = ∂H

∂ p
= p, (15)

where a solution of ẍ + ω2(t )x = 0 will be denoted by w(t ).
The phase flow map 
 is linear and area preserving,(

x(t )

p(t )

)
=

(
a, b

c, d

)(
x(0)

p(0)

)
= 


(
x(0)

p(0)

)
, (16)

which means Det
 = ad − bc = 1. If w1(t ) and w2(t ) are
two linearly independent solutions of the Eq. (15), then we
can define the Wronskian matrix � as

�(t ) =
(

w1(t ), w2(t )

ẇ1(t ), ẇ2(t )

)
(17)

and we easily see that


(t ) = �(t )�−1(0) (18)

and verify Det
 = 1, because the Wronskian determinant
Det�(t ) is constant as is well known. Let us denote the
Floquet propagator by 
1 = 
(T ), where T = 2π/� is the
period of parametric driving. Then 
(NT ), N being an integer
number, is equal to 
N

1 . Thus, the stability of our system is
entirely determined by the eigenvalues λ of 
1, namely,

λ2 − λ Tr
1 + 1 = 0, (19)
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where Tr
1 = a + d , with the solution

λ = 1
2 (Tr
1 ±

√
(Tr
1)2 − 4). (20)

If |Tr
1| � 2 we have instability, and exponential growth of
the solution and of the energy, while for |Tr
1| < 2 we have
stability, a bounded oscillatory motion.

To study the stability properties of the system for the given
values of the control parameters (�, ε) we use the following
procedure. Set the initial conditions (x0 = 1, p0 = 0) and inte-
grate numerically up to time T , and denote (w1(T ), ẇ1(T )) =
(x(T ), p(T )). Then set the initial conditions (x0 = 0, p0 =
1) and integrate numerically up to time T , and denote
(w2(T ), ẇ2(T )) = (x(T ), p(T )). Then we see that �(0) is
identity matrix

�(0) =
(

1, 0

0, 1

)
(21)

and therefore 
1 = 
(T ) = �(T ), and Tr
1 = Tr�(T ) =
w1(T ) + ẇ2(T ). Thus, finally the instability criterion is

|Tr
1| = |w1(T ) + ẇ2(T )| � 2, T = 2π

�
. (22)

This is the method that we use to numerically solve the classi-
cal problem, which should be compared with the approach by
McLachlan [34].

C. The relation between the quantum and the classical problem

In this subsection we show the relationship between the
classical and quantum evolution of the energy, namely, that
the instability criterion is exactly the same in both cases,
and moreover, that the evolution of the expectation value
of the quantum energy starting from initial pure stationary
eigenstate is the same as the evolution of the classical energy
when averaged over a microcanonical ensemble of the initial
conditions at the same energy.

The key insight is the observation that the quantization
commutes with linear canonical transformations. Time evolu-
tion of a Hamilton system is a canonical transformation, and
it is linear for the linear oscillator. Therefore, the Eqs. (16)
apply also to the quantum operators.

We are interested in the expectation value of the energy,
denoted by E (t ), at time t as described by the current state
(wavefunction) ψ (t ) at time t ,

E (t ) = 〈ψ (t )|Ĥ (t )|ψ (t )〉, (23)

where Ĥ (t ) is the operator Eq. (1). The current state ψ (t )
is evolved from the initial state denoted by ψ0 by a unitary
propagator Û (t ), namely, ψ (t ) = Û (t )ψ0. Then, we can write

E (t ) = 〈ψ0|Û −1(t )Ĥ (t )Û (t )|ψ0〉 (24)

and we identify the operator

Ĥ0 = Û −1(t )Ĥ (t )Û (t ) (25)

where Ĥ0 is now determined by the linear canonical trans-
formation Eq. (16), and x̂0 and p̂0 are operators act-
ing on ψ0 = ψ (0) as a function of x0 = x(0). Explicitly,

we find

Ĥ0 = 1
2 (d2 + ω2b2) p̂2

0 + 1
2 (x̂0 p̂0 + p̂0x̂0)(cd + ω2ab)

+ 1
2 (c2 + ω2a2)x̂2

0 . (26)

For the initial state ψ0(x0), which can be expanded in the basis
Eq. (6) with real expansion coefficients, we get [because the
mixed type terms emanating from the operator (x̂0 p̂0 + p̂0x̂0)
must vanish then, if ψ0(x0) is real]

E (t ) = 1

2
(d2 + ω2(t )b2)

∫ ∞

−∞

∣∣∣∣dψ0

dx0

∣∣∣∣
2

dx0 + 1

2
(c2 + ω2(t )a2)

×
∫ ∞

−∞
x2

0 |ψ0|2dx0. (27)

We shall always choose a pure eigenstate Eq. (6) as initial
condition at time t = 0, thus ψ (t = 0) = ψ0(x0) = un(x0),
namely,

un(x0) = 1√
2nn!

[
ω(0)

π

] 1
4

exp

[
−ω(0)x2

0

2

]
Hn[x0

√
ω(0)].

(28)

Taking this into account it is straightforward to evaluate
E (t ) = 〈un|Ĥ0|un〉 in Eq. (27) with the result

E (t ) = ω0
(
n + 1

2

)
2

[
c2

ω2
0

+ a2 ω2(t )

ω2
0

+ d2 + ω2(t )b2

]
, (29)

where ω0 = ω(0). This result is identical to the classical
result if we identify E (0) = (n + 1

2 )ω0 with the energy
of the classical microcanonical ensemble of initial
conditions, over which we average, as calculated
for time dependent linear oscillators by Robnik and
Romanovski [39–41]. We remark that in the case of no time
dependence ω(t ) = ω0 = const. we have a = cos(ω0t ), b =
ω−1

0 sin(ω0t ), c = −ω0 sin(ω0t ), d = a = cos(ω0t ) and
therefore E (t ) = E (0) = (n + 1

2 )ω0. In the adiabatic case
of very slow variation of ω(t ) we find [39–41] E (t ) =
ω(t )(n + 1

2 ), in agreement with the quantum and classical
adiabatic theorem.

Therefore, in the time periodic case of our Floquet prob-
lem, it is clear from Eq. (29) that the instability of classical
motion, giving rise to the exponential increase of the energy,
will exactly coincide with the quantum instability, where
any of the classical flow map 
 coefficients a, b, c, d grows
exponentially. Moreover, it is clearly seen from Eq. (27) that
the same conclusion is true for any normalizable initial state
ψ0(x0), if the two integrals exist: The quantum evolution is
unstable exactly when the classical motion is unstable.

To identify the stability and instability regions and the
boundary between them, numerical calculations are necessary,
as analytically we cannot solve exactly for the classical prop-
agator 
, its matrix elements a, b, c, d , and also the quantum
formalism does not allow us to solve the problem analytically.
This is typical for the Floquet-type problems. To have more
complete understanding of the system, we have performed
both the quantum and the classical calculations and compared
them.
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FIG. 1. The energy E (t ) in units of the initial energy E (t = 0) =
E0 as a function of time in units of T = 2π/� = 1/2 (the main
resonance � = 4π ), for various values of ε = 0.1, . . . , 0.8 in steps
of ε equal to 0.1 for M = 45 000 (gray), and for M = 1000 for
ε = 0.5, 0.6, 0.7, 0.8 (black), in both cases with the integration step
h = 2 × 10−6.

III. NUMERICAL METHOD AND
PRELIMINARY RESULTS

Since our results and conclusions are based on the numer-
ical calculations, it is necessary to implement and justify the
appropriate method. In fact, we have used the same method
as in our previous paper [16]. This section is devoted to the
aspects of numerical technique.

To have a very good control over the numerical integration
we have decided to use the fixed-step method rather than the
methods with an adaptive stepsize.

We have implemented the Runge-Kutta integration method
of 4th order in integrating the differential Eqs. (13) and
(15). Of course, we had to cut off the vector bm at certain
maximal m = M. When we do that, we must verify that the
contribution of the Mth term bM (t ) to the energy equal to
2π (1 + cos �t )|bM |2(M + 1

2 ) is sufficiently small to neglect

it, as well as for all higher terms m > M, which justifies the
truncation of the system at m = M. Also, the integration step
must be carefully adapted to secure the numerical accuracy
and at the same time to allow us to go to the large time scales
of up to several hundreds or even thousands of periods of
length T = 2π/�. One of the necessary conditions to verify
the numerical accuracy is the preservation of the total proba-
bility 〈b|b〉 = ∑M

m=0 |bm|2. This has always been satisfied up
to an error of at least the order 10−6 or better/smaller. The
calculations have been performed even up to M = 45 000 in
which case the total probability decreased only by 10−7 after
integration time 4T .

We have also performed the reversibility test. Our initial
condition is the fully occupied ground state m = 0, i.e.,
b0(0) = 1 and bm(0) = 0 for m > 0, as explained in the end of
the Sec. II A. For ε = 0.4 and M = 1000 we have integrated
the Eqs. (13) from t = 0 to t = T , and then back to t = −T
with the integration step h = 2 × 10−4. The results for the
energy E (t ) at t = 0 as well as at t = −T were reproduced
within a numerical error of order 10−10.

Finally, we did the convergence test, by increasing the
truncation index M and making sure that the results of smaller
M for the energy are sufficiently accurately reproduced. This
is shown in Fig. 1 where we plot the energy E (t ) = H (t ) in
units of the initial energy E (t = 0) = E0 as a function of time
in units of T . The main resonance frequency � = �1 = 4π

is chosen. We have done the integrations for various values of
ε = 0.1, . . . , 0.8 in steps of 0.1 for M = 45 000 (gray), and
for M = 1000 for ε = 0.5, 0.6, 0.7, 0.8 (black), in both cases
with the integration step h = 2 × 10−6. We can conclude that
the results are numerically, and thus physically reliable, for
E/E0 up to several 1000. In this plot of log10(E/E0) versus
time t/T we clearly see the exponential increase of E (t ).

IV. THE BORDERS OF THE INSTABILITY
REGIONS (LACUNAE)

The main result of this paper is the analysis and description
of the dynamical instability regions (lacunae) in the control
parameter space (�, ε). Inside lacunae we have exponential

FIG. 2. The energy E (t )/E0 vs. time t/T at fixed ε = 0.01, M = 200, and n = 1, for k from below k < k− = 0.99501889 ± 10−8 in (a):
(A) k=0.9900, (B) 0.9940, (C) 0.9948; and from above k > k+ = 1.00501862 ± 10−8 in (b): (A) 1.0100, (B) 1.0060, (C) 1.0052.
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FIG. 3. The energy oscillation amplitude Emax/E0 vs. k for the first lacuna n = 1 in (a) and the oscillation period TE in (b) for ε =
0.01, . . . , 0.05. M < 5000.

growth of E (t ) quantally [Eq. (14)] (for any initial condition)
and classically (for all initial conditions except when (x0, p0)
is exactly in the direction of the stable eigenvector of 
),
while outside the lacunae the energy oscillates with time (cf.
Ref. [35]). Moreover, we shall demonstrate that the borders
of the lacunae in (�, ε) classically and quantally exactly
coincide, as explained in the Sec. II C. Therefore, for ε = 0 we
expect [38] that the (parametric) resonance occurs for �n =
4π/n, where n = 1, 2, 3, . . . , as is well known classically
[1], and entirely confirmed below. For ε �= 0 we must solve
numerically the dynamical Eqs. (13), and (15), as analytic
results so far are impossible, although the WKB analysis
might be a successful approach in the future [32].

The method of detecting the instability region rests upon
the observation that the energy E (t ) oscillates outside lacunae
and is characterized by the fact that both the amplitude of
oscillations and the oscillation period increase and diverge as
we approach the instability border in (�, ε). Such a behavior
is demonstrated in Fig. 2. By k we denote k = �/�n,

k = �

�n
, �n = 4π

n
. (30)

Thus, at ε = 0, k = 1 is the border for all lacunae (n =
1, 2, . . . ). For a given ε > 0 we shall find a lower border k− <

1 and the upper border k+ > k− of the lacuna of nth order.
The lacunae do not overlap, according to our experience. In
Fig. 2 we show for the first lacuna n = 1, how the quantum
energy E (t )/E0 (14) oscillates with time t/T as we approach
the border with k from below k < k− and from above k > k+,
at fixed ε = 0.01.

In Fig. 3 we show how the oscillation amplitude of the
energy Emax/E0 and the oscillation period TE diverge as we
approach the border of the first lacuna (n = 1) for various
ε = 0.01, . . . , 0.05.

As announced above, the borders of lacunae coincide
classically and quantally, exactly. Classically, the border of
lacunae is determined by the equality in Eq. (22), |Tr
1| = 2.
The results are presented graphically for the first four lacunae
in Fig. 4, where the abscissa is (4π/�)2, which means that
at ε = 0 and at the resonance frequency �n = 4π/n we have

(4π/�)2 = n2, for n = 1, 2, 3, 4. The structure of the insta-
bility diagram is qualitatively in agreement with the general
theory of the Hill’s equation as exposed in Theorems 2.1
and 2.11–2.13 in Ref. [35]. It should be observed that on the
borders of the odd n lacunae we have Tr
1 = −2, while for
even n we have Tr
1 = 2. The more precise structure of each
lacuna for ε � 0.8 on a smaller frequency interval around
�n, n = 1, 2, 3, 4 is shown in Fig. 5. Some more interesting
details of the structure of the (in)stability borders are shown
by zooming-in in Fig. 6 on much smaller frequency intervals
of k = �/�n and for smaller values of ε.

Our finding is that inside lacunae we have for classical
and quantal system the exponential growth of the energy
both classically and quantally, and the bounded oscillatory
behavior outside lacunae, in both cases very similar. To
demonstrate that, we show in Fig. 7 for the first lacuna n = 1
the amplitude of the energy oscillation Emax/E0 as a function
of k = �/�1 for k < k− and k > k+, both for the classical

FIG. 4. The first four lacunae. The abscissa is (4π/�)2, which
means that for ε = 0 at the resonance frequency �n = 4π/n its value
is n2, for n = 1, 2, 3, 4.
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FIG. 5. The four lacunae n = 1, 2, 3, 4 in (a), (b), (c), and (d), respectively.

energy and the quantum energy, for ε = 0.2. As explained in
the introduction we have to consider an ensemble of initial
conditions to compare their average energy with the quantal
average energy. In the case of the classical dynamics and to
perform the statistical analysis, we have taken an ensemble
of microcanonical initial conditions at E0 = I0ω0 (I0 is the
classical canonical action), where ω0 = 2π (1 + ε), and

x0 =
√

2I0/ω0 sin θ, p0 =
√

2I0ω0 cos θ, θ ∈ [0, 2π ],

(31)

where θ is assumed uniformly distributed over the interval
[0, 2π ].

As is clearly seen, the lower and upper borders of the
lacuna are very sharply determined, and the classical and

quantum curves perfectly coincide, and thus have exactly
identical boundary values k−, k+. In fact, we have used these
observations to calculate the borders of lacunae for any ε and
n = 1, 2, 3, 4, yielding the lacunae diagrams as presented in
Figs. 4, 5, 6. To show the extreme accuracy of our proce-
dure and the identity of the numerical classical and quantum
borders of lacunae, we show in Table I the values for k−, k+
for ε = 0.2, 0.4, 0.6, 0.8.

V. MORE DETAILS ABOUT THE CLASSICAL DYNAMICS

It is interesting to study the dependence of the classi-
cal behavior on the initial conditions within the oscillatory
(stable) regime, close to the instability border where k < k−

TABLE I. The values for k−, k+ for ε = 0.2, 0.4, 0.6, 0.8.

k ε = 0.2 ε = 0.4 ε = 0.6 ε = 0.8

k− Classical 0.90864958 ± 10−8 0.83958033 ± 10−8 0.79914257 ± 10−8 0.78833642 ± 10−8

Quantum 0.90865 ± 10−5 0.8396 ± 10−4 0.7990 ± 10−4 0.788 ± 10−3

k+ Classical 1.10653374 ± 10−8 1.22299522 ± 10−8 1.34602683 ± 10−8 1.47354984 ± 10−8

Quantum 1.10653 ± 10−5 1.2230 ± 10−4 1.3462 ± 2 · 10−4 1.474 ± 10−3
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FIG. 6. The four lacunae n = 1, 2, 3, 4 in (a), (b), (c), and (d), respectively.

or k > k+. This is shown in Fig. 8 for the first lacuna n = 1
and for fixed ε = 0.2.

The sensitive dependence of the oscillation on k is
demonstrated in Fig. 9, where we fix n = 1, ε = 0.2,
x0 = 0, p0 arbitrary, and for three values of k = �/�1 =

�/(4π ). As is clearly seen, a minor deviation of k from
k− = 0.9086496 drastically changes the behavior of the
system.

The border of lacuna is determined by the condi-
tion |Tr
1| = 2, which at the given ε yields k = k− and

FIG. 7. The energy oscillation amplitude Emax/E0 vs. k > k+ in (a) and k < k− in (b) for ε = 0.2 and n = 1. We have verified that the
classical and quantum curves perfectly coincide, which is another check of the accuracy of our numerical integrations.
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FIG. 8. Dependence of the oscillatory regime close to the border of the first lacuna n = 1 for ε = 0.2 on the initial conditions. In (a) and
(c), x0 is arbitrary and p0 = 0. In (b) and (d), x0 = 0 and p0 arbitrary. In (a) and (b), k− = 0.90864958 ± 10−8, and k = 0.906 in (A) and
k = 0.908 in (B). In (c) and (d), k+ = 1.10653374 ± 10−8, and k = 1.109 in (A) and k = 1.107 in (B).

k = k+. Then calculating Tr
 as a function of time t gives an
interesting behavior shown in Fig. 10 for the first lacuna n = 1

FIG. 9. Dependence of the oscillatory regime close to the border
of the first lacuna n = 1 for ε = 0.2, for fixed initial conditions
x0 = 0, p0 arbitrary: (A) k = 0.9086497 > k− = 0.9086496, (B)
k = k− = 0.9086496, and (C) k = 0.9086495 < 0.9086496.

and various values of ε. Clearly, the curves are changing with
t , but go through ±2 at each integer multiple of T = 2π/�.

FIG. 10. Tr
 as a function of time t/T for n = 1 at various
values of ε and corresponding values of k+ and k−. Tr
(T ) = −2
for any single initial condition.
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FIG. 11. Tr
 as a function of time t/T at fixed ε = 0.6 and k = k−, for odd order lacunae n = 1, 3, 5 in (a) and even order lacunae
n = 2, 4, 6 in (b). Tr
(T ) = −2 for odd n and Tr
(T ) = 2 for even n.

The same analysis has been done also for lacunae n =
1, 2, . . . , 6 at fixed ε = 0.6 and corresponding k = k−. The
behavior is different for the odd and even n, as shown in
Fig. 11. It is known [34] that the solution for certain single
initial condition (x, p) is periodic with period T for Tr
1 = 2,
and periodic with period 2T when Tr
1 = −2.

VI. COMPARISON OF THE UNSTABLE CLASSICAL AND
QUANTUM DYNAMICS

From the stable and oscillatory regime we now turn to
the unstable regime in lacunae and look more closely into
the exponential growth of the energy. Here the numerical
effort is extreme, because due to the exponential growth the
coefficients bm(t ) from Eq. (12) grow quickly, and therefore
to warrant the necessary numerical accuracy, it is necessary
to take very large truncation order M. In Fig. 12 we show

FIG. 12. Exponential growth of the energy E (t ) starting at E0,
quantally and classically (they coincide perfectly), for n = 1, k =
1, M = 45 000 and integration step size h = 2 × 10−6, for ε =
0.1, 0.2, 0.3, 0.4, and 0.5. The classical curve is for the mean value
over the microcanonical ensemble of initial conditions with E0.

the results for the first lacuna n = 1, both classically and
quantally, for k = 1, which means � = �1 = 4π , and for
various ε. The two curves coincide exactly. The growth of the
energy, starting from the initial energy E0, is oscillatory, but in
the mean exponential. The same analysis has been performed
also for the second lacuna n = 2, presented in Fig. 13. In both
cases the classical curve is obtained as the average over the
microcanonical ensemble of initial conditions. The fact that
the quantum and classical curves perfectly coincide is another,
the crucial test of the numerical accuracy.

VII. EMPIRICAL RESULTS CHARACTERIZING THE
STRUCTURE OF INSTABILITY REGIONS (LACUNAE)

As described in Secs. II C and IV we have established
the identity of the classical and quantal borders of lacunae.
Inside the lacunae the energy E (t ) grows exponentially, in the

FIG. 13. Exponential growth of the energy E (t ) starting at
E0, quantally and classically (they coincide perfectly), for n = 2,
k = 1, M = 10 000 and integration step size h = 10−5, for ε =
0.1, 0.2, 0.3, 0.4, and 0.5. The classical curve is for the mean value
over the microcanonical ensemble of initial conditions with E0.
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FIG. 14. Plot of the exponent f (n, ε, k) from the elliptic Eq. (33)
for the first lacuna n = 1.

classical case as follows:

E (t )

E0
= F (n, ε, k, x0, p0) exp [2π f (n, ε, k) t], (32)

which is valid for sufficiently large time t , as demonstrated
in the previous Sec. VI. Of course, the values of E (t ) in
Eq. (32) are taken for the tangent of the curve as seen, e.g., in
Figs. 12 and 13, thereby eliminating the oscillations of E (t )
around the mean straight line. It turns out that the energy
growth exponent f (n, ε, k) as defined above is empirically
well approximated with high (maximal) accuracy by the em-
pirical value fe(n, ε, k) satisfying the following equation of
the elliptic type,

(k − k0)2

k2
a

+ f 2
e

f 2
max

= 1, (33)

where we define

k0 = 1
2 (k+ + k−), ka = 1

2 (k+ − k−), fmax = f (k0).

(34)

FIG. 15. Plot of the exponent f (n, ε, k) from the elliptic Eq. (33)
for the second lacuna n = 2.

FIG. 16. Plot of the exponent f (n, ε, k) from the elliptic Eq. (33)
for the third lacuna n = 3.

Thus the solution of Eq. (33) gives an excellent approximation
for f (n, ε, k), namely,

fe(n, ε, k) = fmax(n, ε)

√
1 − (k − k0)2

k2
a

. (35)

Within the accuracy of plots in Figs. 14, 15, and 16, for
the lacunae n = 1, 2, 3, respectively, the empirical formula
Eq. (33) is fully obeyed. Moreover, since we believe that this
empirical finding is very important, we want to present the
accuracy, the errors fe(n, ε, k) − f (n, ε, k), quantitatively in
Table II. We see that the error is within the range 2 × 10−5 and
10−4, which indicates that probably the Eq. (33) is an exact
law, and therefore it is a challenge to derive it theoretically,
using, e.g., WKB method [32,38], convenient to tackle the
problem of parametric resonance.

We have also tried to find a simple law for fmax(n, ε) as
a function of ε, for various n = 1, 2, 3 . . . , but no simple
analytic expression could be found to fit the data so far.

FIG. 17. The width of the lacunae k+ − k− at fixed ε =
0.2, 0.4, 0.6 decays exponentially with the order n of the lacunae.

022209-11



GRUBELNIK, LOGAR, ROBNIK, AND XIA PHYSICAL REVIEW E 99, 022209 (2019)

TABLE II. The accuracy of the empirical Eq. (33). See text.

ε = 0.2 ε = 0.4

k− = 0.90864958 ± 10−8 k− = 0.83958033 ± 10−8

k+ = 1.10653374 ± 10−8 k+ = 1.22299522 ± 10−8

fmax = 0.19767 ± 2 × 10−5 fmax = 0.38269 ± 2 × 10−5

k fe(n, ε, k) f (n, ε, k) fe − f k fe(n, ε, k) f (n, ε, k) fe − f

±2 × 10−5 ±2 × 10−5 ±2 × 10−5 ±5 × 10−5 ±5 × 10−5 ±5 × 10−5

0.92 0.09193 0.09194 −0.00001 0.85 0.12445 0.12457 −0.00012
0.94 0.14436 0.14437 −0.00001 0.86 0.17186 0.17201 −0.00015
0.96 0.17330 0.17331 −0.00001 0.88 0.23504 0.23521 −0.00017
0.98 0.18983 0.18984 −0.00001 0.90 0.27887 0.27902 −0.00015
1.00 0.19709 0.19710 −0.00001 0.95 0.34658 0.34668 −0.00010
k0 0.19767 0.19767 0.00000 1.00 0.37756 0.37759 −0.00003
1.02 0.19611 0.19611 0.00000 k0 0.38269 0.38269 0.00000
1.04 0.18677 0.18677 0.00000 1.05 0.38086 0.38085 0.00001
1.06 0.16766 0.16766 0.00000 1.10 0.35726 0.35722 0.00004
1.08 0.13471 0.13471 0.00000 1.15 0.30049 0.30041 0.00008
1.10 0.07064 0.07063 0.00001 1.20 0.18173 0.18167 0.00006

1.22 0.06738 0.06736 0.00002
ε = 0.6 ε = 0.8
k− = 0.79914257 ± 10−8 k− = 0.78833642 ± 10−8

k+ = 1.34602683 ± 10−8 k+ = 1.47354984 ± 10−8

fmax = 0.54720 ± 2 × 10−5 fmax = 0.68919 ± 2 × 10−5

k fe(n, ε, k) f (n, ε, k) fe − f k fe(n, ε, k) f (n, ε, k) fe − f

±5 × 10−5 ±10−4 ±10−4 ±5 × 10−5 ±10−4 ±10−4

0.81 0.15266 0.1537 −0.0011 0.79 0.06783 0.0693 −0.0014
0.85 0.31784 0.3195 −0.0016 0.80 0.17830 0.1818 −0.0035
0.90 0.42444 0.4259 −0.0015 0.90 0.50908 0.5140 −0.0049
0.95 0.48913 0.4902 −0.0011 1.00 0.63687 0.6396 −0.0027
1.00 0.52757 0.5281 −0.0006 1.10 0.68637 0.6869 −0.0005
k0 0.54720 0.5472 0.0000 k0 0.68919 0.6892 0.0000
1.10 0.54444 0.5443 0.0001 1.20 0.67504 0.6740 0.0010
1.15 0.52481 0.5245 0.0004 1.30 0.59944 0.5976 0.0019
1.20 0.48416 0.4836 0.0006 1.40 0.42667 0.4248 0.0019
1.25 0.41639 0.4157 0.0006 1.47 0.09895 0.0985 0.0005
1.30 0.30384 0.3033 0.0006
1.34 0.11425 0.1140 0.0002

Finally, we have investigated how the width of the lacuna
k+ − k− changes with the order n of the lacuna, at fixed ε.
The result is shown in Fig. 17 for three different values of ε =
0.2, 0.4, 0.6. It is clearly seen that the width of the lacunae
(at fixed ε) decreases exponentially with n, in agreement with
some asymptotic results [32], valid if ω(t ) is an analytic
periodic function of time t . More results based on the WKB
method are expected [38]. The results are consistent with the
theorems 2.2. and 2.13 in Ref. [35].

VIII. DISCUSSION AND CONCLUSIONS

We have studied the parametric resonance of the quantum
and classical linear oscillator with the specific periodic driving
law, where the oscillation frequency (rather than its square)
changes harmonically with time as ω(t ) = 2π (1 + ε cos �t ).
This enables certain technical simplifications. Our analysis is
classical and quantal, theoretical and numerical. We are using
the Runge-Kutta method of fourth order, with a number of

careful checks of the necessary and sufficient accuracy. We
have investigated the regions of exponential instability (called
lacunae) in the control parameter space (�, ε) and determined
the borders of lacunae, and we have studied in detail the stable
oscillatory dynamical regime outside lacunae, as well as the
exponential growth inside the lacunae. The most important
finding is the fact, explained in Secs. II C and IV, that the
borders of lacunae classically and quantally exactly coincide.
This is due to the fact that the quantum propagator can be
exactly and explicitly expressed in terms of the classical prop-
agator. As a consequence of that the evolution of the quantum
energy expectation value can be calculated for an arbitrary
normalizable initial state, and for the special case of an initial
pure stationary eigenstate the evolution is exactly equal to
the evolution of the energy of the classical microcanonical
ensemble of initial conditions of the same starting energy. In
nonlinear systems such correspondence can be expected only
at large energies and quantum numbers (short wavelength
approximation). We have also found an important empirical
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relationship, an equation of elliptic type, which determines
the exponent of the energy growth in terms of other system’s
parameters, and seems to be an exact law, still open as a
challenge for a theoretical derivation (proof). We believe that
our approach is suitable for other similar Floquet systems,
where we expect qualitatively similar conclusions. As for the
quantum mechanics of our system, it is clear that the Floquet
operator (
1) (see Sec. II) must have continuous spectrum
inside the lacunae, and discrete spectrum outside the lacunae,
but it is difficult to calculate the spectrum in general, although
one remarkable exact result has been obtained by Weigert
[33] for a quite special but nevertheless representative system.
For more related comments see [42] and the review paper by
Casati and Molinari [43].

We think that more numerical and analytical studies should
be initiated in this direction, to study the linear Floquet
systems, probably using the WKB method [32]. Parametric

periodic driving of nonlinear systems shows an even more
complicated structure, including the chaotic behavior, such
as exemplified by, e.g., quantum and classical kicked rotator
[14,43,44] or quartic oscillator [6], etc.
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[15] B. Batistić, T. Manos, and M. Robnik, Europhys. Lett. 102,

50008 (2013).
[16] V. Grubelnik, M. Logar, and M. Robnik, J. Phys. A: Math.

Theor. 47, 355103 (2014).
[17] J. V. Jose and R. Cordery, Phys. Rev. Lett. 56, 290 (1986).

[18] V. V. Dodonov, A. B. Klimov, and D. E. Nikonov, J. Math.
Phys. 34, 3391 (1993).

[19] A. J. Makowski and S. T. Dembinski, Phys. Lett. A 154, 217
(1991).

[20] A. J. Makowski, J. Phys. A: Math. Gen. 25, 3419 (1992).
[21] C. Li, Chinese Phys. Lett. 25, 1545 (2008).
[22] P. Seba, Phys. Rev. A 41, 2306 (1990).
[23] F. Lenz, B. Liebchen, F. K. Diakonos, and P. Schmelcher,

New J. Phys. 13, 103019 (2011).
[24] J. Liss, B. Liebchen, and P. Schmelcher, Phys. Rev. E 87,

012912 (2013).
[25] S. Gehler, T. Tudorovskiy, Schindler, U. Kuhl, and H.-J.

Stockmann, New J. Phys. 15, 083030 (2013).
[26] S. D. Martino, F. Anza, P. Facchi, A. Kossakowski, G. Marmo,

A. Messina, B. Militello, and S. Pascazio, J. Phys. A: Math.
Theor. 46, 365301 (2013).

[27] E. Fermi, Phys. Rev. 75, 1169 (1949).
[28] S. M. Ulam, Proceedings of the Fourth Berkeley Symposium on

Mathematical Statistics and Probability (University of Califor-
nia, Berkeley, 1961).

[29] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic
Dynamics (Springer, New York, 2010).

[30] C. Scheininger and M. Kleber, Physica D 50, 391
(1991).

[31] G. Karner, J. Statisical Phys. 77, 867 (1994).
[32] M. V. Fedoryuk, Asymptotic Analysis (Springer-Verlag, Berlin,

1993).
[33] S. Weigert, J. Phys. A: Math. Theor. 35, 4169 (2002).
[34] N. W. McLachlan, Theory and Applications of Mathieu Func-

tions (Dover Publications, New York, 1964).
[35] W. Magnus and S. Winkler, Hill’s Equation (Interscience Pub-

lishers, New York, 1966).
[36] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (John

Wiley, New York, 1979).
[37] M. Combescure and D. Robert, Asymptot. Anal. 14, 377

(1997).

022209-13

https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1088/1751-8113/44/31/315102
https://doi.org/10.1088/1751-8113/44/31/315102
https://doi.org/10.1088/1751-8113/44/31/315102
https://doi.org/10.1088/1751-8113/44/31/315102
https://doi.org/10.1088/1751-8113/44/36/365101
https://doi.org/10.1088/1751-8113/44/36/365101
https://doi.org/10.1088/1751-8113/44/36/365101
https://doi.org/10.1088/1751-8113/44/36/365101
https://doi.org/10.1088/1367-2630/13/9/093039
https://doi.org/10.1088/1367-2630/13/9/093039
https://doi.org/10.1088/1367-2630/13/9/093039
https://doi.org/10.1088/1367-2630/13/9/093039
https://doi.org/10.1088/1751-8113/47/35/355102
https://doi.org/10.1088/1751-8113/47/35/355102
https://doi.org/10.1088/1751-8113/47/35/355102
https://doi.org/10.1088/1751-8113/47/35/355102
https://doi.org/10.1103/PhysRevE.89.062927
https://doi.org/10.1103/PhysRevE.89.062927
https://doi.org/10.1103/PhysRevE.89.062927
https://doi.org/10.1103/PhysRevE.89.062927
https://doi.org/10.1103/PhysRevE.87.062905
https://doi.org/10.1103/PhysRevE.87.062905
https://doi.org/10.1103/PhysRevE.87.062905
https://doi.org/10.1103/PhysRevE.87.062905
https://doi.org/10.1209/0295-5075/102/50008
https://doi.org/10.1209/0295-5075/102/50008
https://doi.org/10.1209/0295-5075/102/50008
https://doi.org/10.1209/0295-5075/102/50008
https://doi.org/10.1088/1751-8113/47/35/355103
https://doi.org/10.1088/1751-8113/47/35/355103
https://doi.org/10.1088/1751-8113/47/35/355103
https://doi.org/10.1088/1751-8113/47/35/355103
https://doi.org/10.1103/PhysRevLett.56.290
https://doi.org/10.1103/PhysRevLett.56.290
https://doi.org/10.1103/PhysRevLett.56.290
https://doi.org/10.1103/PhysRevLett.56.290
https://doi.org/10.1063/1.530083
https://doi.org/10.1063/1.530083
https://doi.org/10.1063/1.530083
https://doi.org/10.1063/1.530083
https://doi.org/10.1016/0375-9601(91)90809-M
https://doi.org/10.1016/0375-9601(91)90809-M
https://doi.org/10.1016/0375-9601(91)90809-M
https://doi.org/10.1016/0375-9601(91)90809-M
https://doi.org/10.1088/0305-4470/25/11/040
https://doi.org/10.1088/0305-4470/25/11/040
https://doi.org/10.1088/0305-4470/25/11/040
https://doi.org/10.1088/0305-4470/25/11/040
https://doi.org/10.1088/0256-307X/25/5/007
https://doi.org/10.1088/0256-307X/25/5/007
https://doi.org/10.1088/0256-307X/25/5/007
https://doi.org/10.1088/0256-307X/25/5/007
https://doi.org/10.1103/PhysRevA.41.2306
https://doi.org/10.1103/PhysRevA.41.2306
https://doi.org/10.1103/PhysRevA.41.2306
https://doi.org/10.1103/PhysRevA.41.2306
https://doi.org/10.1088/1367-2630/13/10/103019
https://doi.org/10.1088/1367-2630/13/10/103019
https://doi.org/10.1088/1367-2630/13/10/103019
https://doi.org/10.1088/1367-2630/13/10/103019
https://doi.org/10.1103/PhysRevE.87.012912
https://doi.org/10.1103/PhysRevE.87.012912
https://doi.org/10.1103/PhysRevE.87.012912
https://doi.org/10.1103/PhysRevE.87.012912
https://doi.org/10.1088/1367-2630/15/8/083030
https://doi.org/10.1088/1367-2630/15/8/083030
https://doi.org/10.1088/1367-2630/15/8/083030
https://doi.org/10.1088/1367-2630/15/8/083030
https://doi.org/10.1088/1751-8113/46/36/365301
https://doi.org/10.1088/1751-8113/46/36/365301
https://doi.org/10.1088/1751-8113/46/36/365301
https://doi.org/10.1088/1751-8113/46/36/365301
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1016/0167-2789(91)90006-U
https://doi.org/10.1016/0167-2789(91)90006-U
https://doi.org/10.1016/0167-2789(91)90006-U
https://doi.org/10.1016/0167-2789(91)90006-U
https://doi.org/10.1007/BF02179464
https://doi.org/10.1007/BF02179464
https://doi.org/10.1007/BF02179464
https://doi.org/10.1007/BF02179464
https://doi.org/10.1088/0305-4470/35/18/312
https://doi.org/10.1088/0305-4470/35/18/312
https://doi.org/10.1088/0305-4470/35/18/312
https://doi.org/10.1088/0305-4470/35/18/312


GRUBELNIK, LOGAR, ROBNIK, AND XIA PHYSICAL REVIEW E 99, 022209 (2019)

[38] M. Robnik (unpublished).
[39] M. Robnik and V. G. Romanovski, J. Phys. A: Math. Theor. 39,

L35 (2006).
[40] M. Robnik and V. G. Romanovski, Open Syst. Info. Dynam. 13,

197 (2006).
[41] Seventh International Summer School/Conference on Let’s Face

Chaos Through Nonlinear Dynamics, edited by M. Robnik and

V. G. Romanovski, AIP Conf. Proc. No. 1076 (AIP, Melville,
NY, 2008).

[42] K. Yajima and H. Kitada, Ann. l’Inst. Henri Poincare 39, 145
(1983).

[43] G. Casati and L. Molinari, Prog. Theor. Phys. Suppl. 98, 287
(1989).

[44] F. M. Izrailev, Phys. Rep. 196, 299 (1990).

022209-14

https://doi.org/10.1088/0305-4470/39/1/L05
https://doi.org/10.1088/0305-4470/39/1/L05
https://doi.org/10.1088/0305-4470/39/1/L05
https://doi.org/10.1088/0305-4470/39/1/L05
https://doi.org/10.1007/s11080-006-8222-0
https://doi.org/10.1007/s11080-006-8222-0
https://doi.org/10.1007/s11080-006-8222-0
https://doi.org/10.1007/s11080-006-8222-0
https://doi.org/10.1143/PTPS.98.287
https://doi.org/10.1143/PTPS.98.287
https://doi.org/10.1143/PTPS.98.287
https://doi.org/10.1143/PTPS.98.287
https://doi.org/10.1016/0370-1573(90)90067-C
https://doi.org/10.1016/0370-1573(90)90067-C
https://doi.org/10.1016/0370-1573(90)90067-C
https://doi.org/10.1016/0370-1573(90)90067-C



