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Quantifying the degree of locking in weakly forced stochastic systems
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Controlling an stochastic nonlinear system with a small amplitude signal is a fundamental problem with many
practical applications. Quantifying locking is challenging, and current methods, such as spectral or correlation
analysis, do not provide a precise measure of the degree of locking. Here we study locking in an experimental
system, consisting of a semiconductor laser with optical feedback operated in the regime where it randomly emits
abrupt spikes. To quantify the locking of the optical spikes to small electric perturbations, we use two measures,
the success rate (SR) and the false positive rate (FPR). The SR counts the spikes that are emitted shortly after each
perturbation, while the FPR counts the additional extra spikes. We show that the receiver operating characteristic
(ROC) curve (SR versus FPR plot) uncovers parameter regions where the electric perturbations fully control the
laser spikes, such that the laser emits, shortly after each perturbation, one and only one spike. To demonstrate the
general applicability of the ROC analysis we also study a stochastic bistable system under square-wave forcing
and show that the ROC curve allows identifying the parameters that produce best locking.
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I. INTRODUCTION

The entrainment or locking phenomenon, by which an
oscillator adapts its natural rhythm to an external periodic
signal, is well known [1]. It has been observed in lasers [2–7],
chemical systems [8,9], biological oscillators [10–13], circa-
dian cells [14–17], etc. In many situations it is important to
gain full control of the system with a small amplitude signal.
Examples include periodic electrical stimulation of cardiac
tissue for the control of arrhythmias or electrical stimulation
of the brain nervous system for the treatment of disorders such
as epilepsy or Parkinson’s [18–21].

Various control strategies have been proposed in the liter-
ature, and a popular one is based on stabilizing an unstable
periodic orbit of the system [22]; however, this technique is
successful only if the system has an unstable orbit that can be
stabilized.

A technical challenge is to quantify the quality of the
locking obtained (in particular, in stochastic systems), and
precise measures are lacking. The simplest way to identify
locking is to measure the oscillation period (the dominant
peak of the Fourier spectrum) in units of the forcing period.
In this way, when varying the forcing amplitude and period, a
pattern of tongues (known as Arnold tongues) is found. In the
different tongues the oscillator synchronizes to the external
forcing such that the oscillation frequency and the external
frequency are related as p fosc = q fext with p and q being
integer numbers. Between Arnold tongues, the system is un-
locked and shows aperiodic oscillations. Another well-known
tool is the phase-response or phase-resetting curve (PRC),
which describes the effect of a perturbation in the phase of
the oscillator [23–25]. The PRC simplifies the description
of complex, stochastic dynamics to a one-dimensional phase
dynamics, allowing us to determine whether the phase of
the oscillator is locked to the external signal, but it has the
drawback that one needs to estimate the phase, which can be
difficult when the oscillator is inherently noisy and/or when
its dynamics involves different timescales.

Here we demonstrate that receiver operating characteristic
(ROC) curves allow for a precise quantification of the degree
of locking. A ROC curve quantifies the diagnostic ability of
a binary classifier as a function of its classification threshold.
ROC curves (developed during World World II for detecting
enemy objects in battlefields) are nowadays routinely used by
machine learning algorithms for classification but have not
yet been employed, to the best of our knowledge, to quantify
locking.

The experimental system used is a semiconductor laser
with optical feedback, which displays a rich variety of non-
linear behaviors [26–28]. Here we focus on the so-called low-
frequency fluctuations (LFF) regime, where the laser emits
a spiking output: during a spike the intensity drops abruptly
and then recovers gradually [see Fig. 1(a)]. In this regime, we
control the spikes via periodic, small-amplitude electric per-
turbations of the laser pump current. Using the ROC analysis
we find the operation conditions that produce perfect locking:
the laser responds to each electrical perturbation with one
optical pulse, with no single extra pulse, and with no single
missed pulse [Fig. 1(c)]. While the laser with optical feedback
and current modulation has been studied in the literature
[2–7,29–35], to the best of our knowledge, no perfect locking
has yet been reported.

To demonstrate the general applicability of the ROC ap-
proach, we also consider a numerical example: a stochastic
bistable system with square-wave forcing. In addition, in the
Supplemental Material [36] we show that the quantification
of the locking quality obtained from the ROC curve is not
obtained with other, more direct means (such as the analysis
of the interspike-interval distribution, the Fourier spectrum,
the cross-correlation, or the autocorrelation function).

II. EXPERIMENTAL SETUP

The experimental setup [35] uses a 685 nm semicon-
ductor laser (Thorlabs HL6750MG) with solitary threshold
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FIG. 1. Time series of the laser intensity (black line, normalized
to zero mean and unit variance) and the pulse-down waveform
applied to the dc pump current (gray lines, shifted vertically for
clarity). Green dots represent the spikes that occur shortly after a
perturbation, and red dots mark those spikes that are considered
noninduced by a perturbation. The dc pump current is Idc = 27
mA, and the modulation amplitude is 2.3% of Idc. (a) The unforced
dynamics (Amod = 0). For this pump current the natural frequency
of the laser spikes is f0 = 15 MHz. (b) The intensity dynamics when
Amod = 2.3% of Idc the perturbation frequency, fmod = 10 MHz. (c, e)
Locking 1:1 and 2:1 for fmod = 20 MHz and 41 MHz, respectively.
(d) The transition between locking 1:1 and 2:1 observed at fmod =
30 MHz.

Ith,sol = 26.62 mA, which has part of its output fed back to
the laser by a mirror. The feedback produced a 7.2% thresh-
old reduction (Ith = 24.70 mA). The length of the external
cavity is 70 cm, which gives a delay time of 5 ns. The
laser temperature and current were stabilized with 0.01 C and
0.01 mA accuracy, respectively. A 90/10 beam-splitter in the
external cavity sends light to a photodetector (Det10A/M),
an amplifier (Femto HSA-Y-2-40), and a 1 GHz oscilloscope
(Agilent DSO9104A). To modulate the laser current we used
a 500 MHz Bias-T in the laser mount. The waveform used
is a pulse-down periodic signal, as it produces locking for a
wide range of parameters [35]. The signal was generated by a
function generator (Agilent 81150A), and the duration of the
pulse was the shortest available: 5 ns with raising and falling
times of 2.5 ns each.

The control parameters are the dc value of the laser current,
Idc, which controls the natural frequency of the spikes, f0,
the peak to peak perturbation amplitude, Amod, and frequency,
fmod. Idc was varied in the range 25 mA to 28 mA, fmod, in the
range 1 MHz to 80 MHz, and Amod, in the range 0.2 mA to
0.62 mA. Therefore, for the lowest Idc value, Amod represents
a variation between 0.75% and 2.5% of the dc level, while
for the highest dc value, Amod represents a variation between
0.7% and 2.2%. For each set of parameters a time series of the
laser intensity with N = 107 data points was recorded with 2
GS/s sampling rate, which allowed to capture the intensity
dynamics during 5 ms.

FIG. 2. Interspike interval (ISI) distribution as a function of the
perturbation frequency for Idc = 27 mA and Amod = 0.62 mA (2.3%
with respect to Idc). In order to enhance the plot contrast, the color
scale indicates the logarithmic of the number of intervals (the white
color stands for zero counts). (a) The vertical axis is the ISI (b) it is
normalized by the perturbation period. The insets display typical ISI
histograms when the laser is mainly driven by its natural dynamics
(black line for fmod = 10 MHz) and when it is driven by the external
perturbations (red line for fmod = 20 MHz).

III. EXPERIMENTAL RESULTS

Figure 1 displays typical examples of the intensity dynam-
ics when the laser is not perturbed [Fig. 1(a)] and when it is
periodically perturbed [Figs. 1(b) and 1(c)] with Amod = 2.3%
of Idc = 27 mA and different frequencies.

The spikes which occur shortly after a current perturba-
tion are considered to be induced by the perturbation and
are indicated with green dots (in the following, they will
be referred to as true positives). The other spikes will be
referred to as false positives and are indicated with red dots.
In Fig. 1(b) the frequency of the perturbations is lower than
the natural frequency of the spikes ( fmod = 10 MHz and
f0 = 15 MHz). It is observed that after each perturbation
the laser emits a spike, but between perturbations the natural
dynamics prevails, and thus, many spikes are spontaneous
(false positives). For a higher frequency [Fig. 1(c)] locking
1:1 is observed since every perturbation triggers a spike. For
a higher frequency [Fig. 1(d)], there is a transition between
locking 1:1 and 2:1. In this region the spikes cannot follow
the fast external perturbations, and some spikes are delayed
with respect to the perturbations. By further increasing the
perturbation frequency, the spike rate adjusts such that there
is one spike every two perturbations [Fig. 1(e)].

The variation of the spike rate with the frequency of the
external signal is typical of the locking phenomenon. To ana-
lyze the locking degree we study the distribution of the time
intervals between consecutive spikes [the interspike intervals
(ISIs)]. We present in Fig. 2 the ISI distribution (in color code)
versus the perturbation frequency, keeping fixed Amod and Idc.
The ISI distribution is presented in two ways: in Fig. 2(a)
the vertical axis is the time interval between spikes (ISI),
while in Fig. 2(b), it is normalized to Tmod = 1/ fmod (here the
histograms are computed with bins centered at nTmod).

In Fig. 2(a), as fmod increases we observe the transition
from no locking to 1:1 locking. At low frequencies (from 0
to 15 MHz) the laser behaves as if it is not driven by the
external signal and the natural noisy dynamics dominates.
This is revealed by a broad ISI distribution, which has only
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a small narrow peak at fmod (an example is presented in the
inset, black line).

As the frequency increases, the spikes lock to the external
signal, and the ISI distribution becomes very narrow, as seen
in the insets in Fig. 2 (red lines). In the locking regions the
spikes are mainly controlled by the external perturbations,
and the ISI distribution peaks at nTmod, where n is an integer
number.

A large transition region, characterized by a broad ISI
distribution, is observed between locking 1:1 and 2:1. In this
region the dynamics is characterized by a reorganization of
the spikes, which no longer fit in one period (as in the 1:1
region), but an interval of two periods is too long for a single
spike (as in the 2:1 region); see Fig. 1(d). Therefore, after a
perturbation, some spikes occur before the next perturbation,
while others occur after the next perturbation.

Another feature that can be observed in Fig. 2(a) is that the
spike rate cannot be too fast (the smallest ISI is about 0.03 μs).
When fmod increases and the most probable ISI reaches this
minimum time, the transition to the next locking regime starts.
The minimum ISI (referred to as refractory time) is due to
the fact that after each spike, a steplike recovery occurs, and
during the recovery process, another spike is unlikely to be
emitted.

In Fig. 2(b) the nTmod = 〈ISI〉 curves are converted into
horizontal plateaus due to the normalization by Tmod. In
this plot it is clearly observed that, as fmod increases, the
ISIs become larger multiples of Tmod as the laser spikes are
spaced by an increasing number of perturbation cycles. At
frequencies above 50 MHz the ISI distribution is not unimodal
but has several peaks centered at nTmod. This normalized
representation of the ISI distribution has the advantage that
the locking regions are easy to identify, but the refractory time
is not. Due to the normalization, the distribution of the natural
spikes (which is independent of fmod in the non-normalized
representation of the ISI distribution) is converted in a narrow
tilted line, and the broad nature of the ISI distribution at low
frequencies is not visible.

In order to quantify the degree of locking we use ROC
curves, which are obtained by plotting the true positive rate
[TPR, also referred to as success rate (SR)] as a function
of the false positive rate (FPR), for different values of the
control parameters. The SR measures the response of the laser
per perturbation cycle: if the laser emits one spike after each
perturbation, SR = 1, if it emits one spike every two perturba-
tions, SR = 1/2, etc. Only spikes emitted within a detection
window of duration τ are considered as spikes induced by the
perturbation. The length of the window, τ = 15 ns, is such
that only one spike can be emitted within this interval of
time [35]. The FPR measures the spikes which are emitted
outside this window. FPR = 0 indicates that the spikes are
always emitted within the interval τ after a perturbation, while
FPR = 1 indicates that no spike is emitted within this time
interval.

The SR versus FPR plots (ROC curves) allow identifying
the optimal combination of experimental parameters (Amod,
fmod, and Idc) that produce the best locking: if we want to
generate an optical spike for each electric perturbation, the
optimal parameters are those that give points in the curve that
are closest to the top-left corner (i.e., SR = 1 and FPR = 0).

FIG. 3. ROC curve to track transition to locking when (a) the
perturbation amplitude increases (in color scale) while keeping con-
stant the frequency ( fmod = 14 MHz) and when (b) the perturbation
frequency increases (in color scale) while keeping constant the
amplitude (Amod = 2.4%). The dc value of the pump current is Idc =
26 mA. To represent in logarithmic scale the value FPR = 0, we have
set it to 3 × 10−5 (labeled as 0 in the x axis).

Figure 3(a) displays the transition to locking 1:1 when the
perturbation amplitude is increased while the frequency is
kept constant (iso-frequency line with fmod = 14 MHz). We
note that we reach perfect 1:1 locking (SR = 1 and FPR =
0) for Amod = 2.4%. Figure 3(b) displays the transition as
fmod increases (iso-amplitude line with Amod = 2.4%). Here
the transitions from SR = 1 and FPR = 0 to SR = 1/2 and
FPR = 0, and from SR = 1/2 and FPR = 0 to SR = 1/3
and FPR = 0, are observed. During these transitions there
is an increase of the number of false positives, followed
by a decrease, which are due, as discussed before, to the
reorganization of the spikes: the spikes cannot follow the
external signal as it becomes faster.

Figure 4 displays the ROC curves for four dc values of
the pump current. In each panel we plot the SR and FPR
values obtained for all the amplitudes and frequencies studied.
For easy visualization we join the points with iso-frequency

FIG. 4. ROC curves for (a) Idc = 25 mA, (b) 26 mA, (c) 27 mA,
and (d) 28 mA. The lines join points with the same perturbation
frequency, while the color scale represents the amplitude in percent
of Idc. To represent in the logarithmic scale the value FPR = 0, we
have set it to 3 × 10−5 (labeled as 0 in the x axis).
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lines [as in Fig. 3(a)] while the color indicates the amplitude
of the perturbation. In Fig. 4(a) we see that for low Idc

it is not possible to perfectly entrain the spikes: while the
success rate can approach to 1 (at low fmod), the number
of false positives is always large (revealing many “natural,”
uncontrolled spikes). At intermediate Idc values [Figs. 4(b)
and 4(c)] there is perfect locking, as indicated by points at
SR = 1, 1/2 and 1/3 and FPR = 0. For higher Idc [Fig. 4(d)]
high-quality locking is not obtained.

IV. NUMERICAL RESULTS

To demonstrate the general applicabilty of ROC analy-
sis, we study numerically a stochastic bistable system [37],
dx/dt = x − x3 + √

2Dξ (t ) + F (t ), where F (t ) represents a
square-wave periodic signal of amplitude Amod and frequency
fmod, and ξ (t ) represents white Gaussian noise of strength
D. We keep Amod small enough such that, without noise, the
square-wave signal does not induce switchings.

With noise, in response to the combined effect of the
square-wave signal and the noise, the system switches be-
tween two states (+1, −1) and displays optimal switching
regularity for particular parameter values (the well-known
phenomenon of stochastic resonance [38–40]). Let us next an-
alyze the dynamics using the ROC approach, which allows us
to identify the parameters that produce optimal locking, such
that the system switches between the two states following the
changes of the external signal. To this end, the switchings that
follow the changes of the square-wave signal are considered
true positives, and the others, false positives.

Figure 5(a) displays the ROC curve obtained when varying
the noise strength D, while keeping constant Amod and fmod. At
low noise intensities the system rarely switches, and therefore,
both SR and FPR are close to 0. As D increases, SR increases
while FPR remains low. As D is increased further, SR remains
nearly constant while FPR increases due to extra switchings.
Remarkably, the noise strength for which the ROC curve is
closest to the [0,1] corner coincides with the minimum of the
coefficient of variation, Cv , shown in the inset of Fig. 5(a).
Thus, ROC analysis identifies optimal switching regularity
(i.e., stochastic resonance). This is not the case in Fig. 5(b),
where we vary the modulation frequency while keeping con-
stant D and Amod. At fmod there is a high success rate, but also
a large number of false positives (extra switchings). As fmod

increases, FPR decreases but SR also decreases due to the fact
that the system does not always follow the modulation. In con-
trast to the experimental laser system, in the bistable system
we have not found parameters that produce perfect locking.
The inset in Fig. 5(b) displays Cv as a function of fmod,
and we note it is minimum for fmod = 0.007. On the other
hand, the frequency for which the ROC curve is closest to the
[1,0] corner is fmod = 0.012. The system evolution for these
frequencies is shown in Figs. 5(c) and 5(d), where we note
that, for fmod that minimizes Cv , there are several very short

FIG. 5. ROC analysis of a stochastic bistable system with square-
wave forcing when the noise strength is varied (a), while keeping
constant Amod = 0.3 and fmod = 0.012, and when the modulation
frequency is varied (b), while keeping constant D = 0.3 and Amod =
0.3. The insets show the coefficient of variation. (c, d) The evolution
of the system for the frequency that minimizes Cv , and for the
frequency that gives (SR, FPR) closest to the (1, 0) corner.

switchings (e.g., just before 250, shortly after 750 and 1000),
which are false positives that do not occur when the system is
modulated at the frequency identified by ROC analysis.

V. CONCLUSIONS

To summarize, we have shown that ROC curve analysis
provides a precise quantification of the degree of locking of
noisy oscillators. In the case of the laser with optical feedback,
we have found the experimental parameters that allow full
control of the laser output, entraining the emitted spikes to
the electric perturbations such that the success rate is equal to
1, while the false positive rate is equal to zero. Considering,
as a numerical example, a stochastic bistable system driven
by a square-wave periodic force, we have shown that ROC
curve analysis allows to identify the parameter for which the
system optimally follows the switchings of the forcing signal.
We anticipate that ROC curve analysis will lead to higher
locking quality in a wide variety of practical applications
where irregular oscillations need to be controlled by small
amplitude signals.
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