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Inertial effects in the dc+ac driven underdamped Frenkel-Kontorova model:
Subharmonic steps, chaos, and hysteresis
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The effects of inertial terms on the dynamics of the dc+ac driven Frenkel-Kontorova model were examined.
As the mass of particles was varied, the response of the system to the driving forces and appearance of the
Shapiro steps were analyzed in detail. Unlike in the overdamped case, the increase of mass led to the appearance
of the whole series of subharmonic steps in the staircase of the average velocity as a function of average driving
force in any commensurate structure. At certain values of parameters, the subharmonic steps became separated
by chaotic windows while the whole structure retained scaling similar to the original staircase. The mass of the
particles also determined their sensitivity to the forces governing their dynamics. Depending on their mass, they
were found to exhibit three types of dynamics, from dynamical mode-locking with chaotic windows, through to
a typical dc response, to essentially a free-particle response. Examination of this dynamics in both the upforce
and downforce directions showed that the system may not only exhibit hysteresis, but also that large Shapiro
steps may appear in the downforce direction, even in cases for which no dynamical mode-locking occurred in
the upforce direction.
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I. INTRODUCTION

Frequency locking phenomena are the common features
of nonlinear dynamical systems with competing timescales,
and they appear in a wide variety of physical, chemical, and
biological systems in nature, from their first observation in
coupled pendulum clocks in in the 17th Century, to super-
conductors, periodically forced heart cells, and firing neurons
[1]. Possible technological applications of one particular fre-
quency locking phenomenon such as dynamical mode-locking
or Shapiro steps, have, for years, inspired many experimental
and theoretical studies in charge- and spin-density wave sys-
tems [2–6], vortex matter [7,8], irradiated Josephson junctions
[9,10], superconducting nanowires [11,12], driven colloids
[13,14], dynamics of skyrmions [15], etc. However, in search
for the optimum way to control the dynamical mode-locking,
one should keep in mind that there is one usually unwanted
but often present phenomenon in nonlinear dynamical systems
which is highly sensitive to the initial condition and which
can affect the stability of locked states, this phenomenon is
the chaos. Therefore, it would be impossible to get a complete
microscopic picture of frequency locking without studying the
chaotic behavior.

A model that can be very successful in capturing the
essence of frequency locking is the dc+ac driven Frenkel-
Kontorova (FK) model [16,17]. Introduced initially to de-
scribe dynamics of crystal lattice near dislocations, today, it
represents one of the fundamental models in nonlinear physics
due to its applicability to model many physical phenomena

[16]. The standard Frenkel-Kontorova model represents a
chain of harmonically interacting particles subjected to a sinu-
soidal substrate potential [16]. It describes different commen-
surate or incommensurate structures that under an external
driving force exhibit a very rich response. In the presence of
an external dc+ac driving force, in general, the steady-state
dynamics, like those of the Josephson junction, may include
chaotic, quasiperiodic, and mode-locked solutions [18]. The
chaotic dynamics is characterized by a pseudorandom re-
sponse of the particles to the driving forces. In their quasiperi-
odic state, the particles respond more or less regularly to the
drive, though this response is strictly nonperiodic. Finally, the
mode-locked solutions are strictly periodic, and it is mainly
these that lead to the appearance of the well-known staircase
macroscopic response or the Shapiro steps in the response
function v̄(F̄ ) of the system [19–21]. The steps are called
harmonic if the locking appears at integer multiples of the
ac frequency, while for the locking at noninteger rational
multiples of the ac frequency they are called subharmonic.

Both the overdamped and the underdamped FK model have
been studied extensively [16,17]. However, it is interesting
that while the underdamped FK model was usually related
to the problems in solid-state friction, surface physics, and
tribology [16,22–24], it was the overdamped FK model
which was always exclusively associated with dynamical
mode-locking and Shapiro steps in the charge-density wave
(CDW) systems and the systems of Josephson junctions
[16,17,19]. These systems represent typical examples of
dissipative or overdamped physical systems where the inertia
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could be irrelevant on physical grounds and where the
long-term behavior is largely independent of how we start up
the system [16,17,19]. In the charge-density wave systems,
the frequency-dependent conductivity, when interpreted
in terms of a classical model of pinned CDW, indicates a
strongly overdamped system [2,25], while in the systems of
Josephson junctions, the inertial terms can be disregarded if
the capacitance of junctions is small enough [9].

It is well known that dissipative dynamical systems with
competing frequencies can be described by the circle map.
Depending on the coupling strength, the circle map can
develop a cubic inflection point leading to the appearance
of a devil’s staircase and the transition to chaos [26–29].
When the coupling is below some critical value, the staircase
is incomplete, i.e., there are quasiperiodic intervals between
the frequency locked plateaus (steps) of periodic behavior.
As coupling increases, the frequency-locked regions start to
broaden, and at some critical value, they fill up all the space.
Though the quasiperiodic intervals have zero measure, and
the devil’s staircase is said to be complete, they have nonzero
fractal dimension (scaling index) which is universal, i.e., the
same D = 0.87 for all the systems (at least for those described
by the circle map with a cubic inflection point), and thus
often considered as a constant of nature [26]. The mechanism
leading eventually to chaos is the interaction between different
resonances caused by the nonlinear coupling and overlapping
of resonant regions when coupling exceeds certain critical
value. Nevertheless, the universality of fractal dimension and
the universality of this scenario have been questioned by
many authors. In our previous work [30], we have shown that
the overdamped FK model represented one example where
this universality is broken. The dc+ac driven overdamped
FK model has an interesting property: Though entirely non-
chaotic, it exhibits the devil’s staircase structure arising from
the complete mode locking with the fractal dimension which
varies with the system parameters. The absence of chaos
was attributed to the dissipative character of the system and
the Middleton no-passing rule [31,32], which applies on the
strictly overdamped systems with convex interatomic interac-
tion, and according to which the order of particles must be
preserved in dynamics.

However, the discrete FK model is not integrable, and
in general, its dynamics can be chaotic [16]. Due to non-
integrability, atomic motion is always accompanied by en-
ergy exchange between different modes leading to intrinsic
chaotization of its dynamics [16]. Also, frequency locking
in diverse physical systems, from oscillating Josephson junc-
tions to periodically forced chicken heart cells, is intimately
associated with the onset of chaotic behavior [18,26–28,33].
Appearance of chaos have been observed in numerous experi-
mental and theoretical works in Josephson junctions and other
physical systems related to the Frenkel-Kontorova model
[34–37]. A good overview of the past studies can be found
in Refs. [34,35,37] and references therein. Through years,
the standard overdamped FK model [38,39] as well as its
generalized forms [40–42] have been very successful in the
studies of Shapiro steps, but all these models are entirely
nonchaotic, and no chaotic dynamics has been ever observed
[17,30,43]. Is it possible then, to make the FK model gen-
erally applicable and reliable for the studies of potentially

chaotic systems, and can the dc+ac driven FK model exhibit
chaos?

In contrast to all previous works on the Shapiro steps in
the FK model, which always have been performed on some
forms of an overdamped dynamics [17,30], in this paper,
we extend our investigation to the underdamped Frenkel-
Kontorova model driven by dc+ac forces. We will start from
the well known results of the Shapiro steps observation in
the overdamped standard FK mode [17,19,20], and examine
the most interesting inertial effects that appear as the mass of
particles is increased, and the system transfers from the over-
damped to underdamped dynamics. New phenomena such as
the introduction of new subharmonic steps, appearance of
chaos, and hysteresis, initially nonexistent in the overdamped
regime, will start to appear.

The paper is organized as follows. The model is intro-
duced in Sec. II, while the simulation results are presented
in Secs. III–VI. Appearance of subharmonic steps as one of
the inertial effects is presented in Sec. III. Chaotic behavior
was investigated in Sec. IV. Motion of particles and influence
of their mass on the response to the dc+ac driving force is
examined in Sec. V. Hysteresis and dynamics in decreasing
force situations are analyzed in Sec. VI. Finally, Sec. VII
concludes the paper.

II. MODEL

We consider the dynamics of the standard damped FK
model which consists of a series of coupled harmonic oscilla-
tors ul of mass m, subjected to the periodic substrate potential
V (u):

V (u) = K

(2π )2
[1 − cos(2πu)], (1)

where K is the pinning strength.
The system is driven by dc and ac forces,

F (t ) = Fdc + Fac cos(2πν0t ), (2)

where Fac and ν0 are amplitude and frequency of the ac force,
respectively.

The dynamics is described by the following set of equa-
tions:

u̇l = υl ,
(3)

mυ̇l = ul+1 + ul−1 − 2ul − K

2π
sin(2πul ) − υl + F (t ),

where l = 1, ..., N labels the particles. The damping is fixed
by two parameters m and K , and for some constant force F ,
the system is overdamped for (for more details see Appendix)
[44,45]

0 < m � 1

4(2 + K )
. (4)

When the system is driven by a periodic force, two fre-
quency scales appear in the system: the frequency ν0 of the
external periodic (ac) force and the characteristic frequency
of the particle motion over the periodic substrate potential
driven by the average force F̄ = Fdc. The competition be-
tween these two frequency scales can result in the appearance
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of dynamical mode locking. The solution of the system Eq. (3)
is called resonant if the time average mean velocity v̄ satisfies
the relation:

v̄ :=
〈

1

N

N∑
i=1

vi

〉
t

= iω + j

s
ν0, (5)

where i, j, s are integers and ω is the winding number [19]
which is fixed to rational or irrational values, characterizing
commensurate or incommensurate structures, respectively.
During their motion, the particles advance iω + j sites during
s cycles of the ac force; therefore, s represents the period of
the solution, measured in the cycles of the ac force [18]. When
s = 1, the solution corresponds to harmonic steps. If s > 1,
then the solution is subharmonic (it includes components
at the subharmonics of the ac force), and in this case, the
motion is characterized by the appearance of a sequence
which consists of s cycles of the ac force. Though the motion
is different on each of s cycles that form the sequence, this
sequence can repeat indefinitely.

In the case of a commensurate structures that we will study,
the resonant velocity simplifies to the form

v̄ = i

s
ων0, (6)

where the ratio i
s marks harmonic and subharmonic steps ( i

s =
1
1 , 2

1 , 3
1 , ... for the first, second, and third harmonic, while i

s =
i
2 for halfinteger steps).

It is well known that in all frequency-locking systems,
resonances always appear following specific order. In the
dc+ac driven FK model, all observable subharmonic Shapiro
steps belong to various Farey sequences without exceptions
[46]. The average velocity as a function of average driving
force exhibits the devil’s staircase of infinite but countable
steps (resonances), which can be reproduced by continued
fractions formula [30,47,48]:

v̄ =
⎛
⎝i ± 1

j ± 1
k± 1

l±...

⎞
⎠ων0, (7)

where i, j, k, ... are positive integers. Harmonic steps are
presented by the first-level terms, which involve only i, while
the other terms involving other integers describe subharmonic
or fractional steps. Terms involving i and j are called second-
level terms, those with i, j, and k are third-level terms, etc.
Therefore, between any two steps there is an infinity of steps,
and this progressive generation of subharmonic steps within
devil’s staircase is a manifestation of its self-similarity [26].

The above system of Eqs. (3) has been integrated for the
commensurate structures ω = 1

2 and 1 using the fourth-order
Runge-Kutta method with the periodic boundary conditions
for the system of N = 8 particles (all parameters except m
were set to the same values as in Ref. [20]). Though the
winding number ω does not enter explicitly into the Eqs. (3), it
is required to solve the system of equations numerically under
the assumed initial as well as periodic boundary conditions.
For the initial condition, at the zero applied force, we consider
all particles to be at rest and equally distributed over the
potential with ul = lω and vl = 0, where l = 1, ..., N . In
the numerical settings of the Eqs. (3), the periodic boundary

FIG. 1. The average velocity v̄ as a function of the average
driving force F̄ for K = 4, ν0 = 0.2, Fac = 0.2, ω = 1

2 , and differ-
ent values of the mass m = 0, 0.1 and 0.2 represented by different
colors. The case m = 0 corresponds to the standard overdamped
case. Results in (a) and (b) corresponds to the dc+ac and dc driven
dynamics, respectively. Numbers mark the harmonic steps, while Fc0

marks dynamical dc threshold.

conditions are implemented as u0 = uN − Nω and uN+1 =
u1 + Nω. The timescale ν−1

0 imposed by the periodic driving
force F (t ) has been used. The force has been increased from
zero with the very fine discretization 10−4 − 10−6. Unlike in
the overdamped case, here, the behavior of the system depends
on its previous history therefore, the initial condition at the
each step of driving force was obtained from the last step in
the integration, at its previous value.

III. INERTIAL EFFECTS AND THE ORIGIN
OF SUBHARMONIC STEPS

We will start from the well known result of Shapiro
steps observation in the standard overdamped FK model with
commensurate structure ω = 1

2 presented in Ref. [20], and
examine how the increase of mass affects its dynamic. In
Fig. 1, the average velocity as a function of the average
driving force is presented for various values of mass m. For
the comparison we present the results for both cases: dc+ac,
and dc driven FK model in Figs. 1(a) and 1(b), respectively. As
m increases, even at this resolution we could see in Fig. 1(a)
that halfinteger steps start to appear, and the transition regions
between harmonic steps are attaining staircase structure. In

022206-3
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FIG. 2. The average velocity v̄ as a function of the average
driving force F̄ for m = 0.1 in the region between the first and the
second harmonic step in (a), and in the region between the second
and the third harmonic step in (b). The rest of parameters are the
same as in Fig. 1.

the absence of external periodic force in Fig. 1(b), there is
no locking and though the curve start to shift from the case
m = 0, the response is still typical for the overdamped dc
driven systems. If we look at the depinning point, we could
see that critical depinning force is not affected by the increase
of mass. The critical depinning force for the dc driven system
is also called dynamical dc threshold, it is determined by the
properties of the substrate potential and the commensurability
of the system [16], and in our case it has the value Fc0 =
0.2544.

In Fig. 2, the high resolution plots of the region between the
first and the second harmonic step, and the region between the
second and the third harmonic step are shown. As we can see,
the subharmonic steps appear following continued fraction
formula Eq. (7). According to the Farey rule [46], the largest
one are halfinteger steps 3

2 and 5
2 , which are followed by

higher order subharmonic steps 4
3 , 5

3 , 5
4 , 7

4 , and 7
3 in Figs. 2(a)

and 2(b), respectively.
We have also examined the trivial case ω = 1 for which,

in the strictly overdamped case, the system reduces to the
single particle model and no subharmonic locking exists [16].
In Fig. 3, the high resolution plots of the region between the
first and the second harmonic step, and the region between the
second and the third harmonic step for ω = 1 are presented.

FIG. 3. The average velocity v̄ as a function of the average
driving force F̄ for ω = 1, and m = 0, and 0.1 in the region between
the first and the second harmonic step in (a), and in the region
between the second and the third harmonic step in (b). The rest of
parameters are the same as in Fig. 1.

The results clearly show presence of the whole series of
subharmonic steps.

We substantiate our claim of subharmonic step generation
via inertia by computing the fractal dimension D (definition
can be found in Refs. [26] and [30]). In particular, starting
from strictly overdamped regime m = 0 via equations of
motion as in Ref. [30], and m > 0 via Eq. (3), we proceed to
compute the fractal dimension D from the response function
v̄(F̄ ). If we focus on the region between the first and the
second, and the region between the second and the third
harmonic steps, in Figs. 4(a) and 4(b), D is computed for
parameter regimes presented in Figs. 2 and 3, respectively.
At m = 0, the fractal dimension should be 1 or close to that
value (up to the numerical precision) due to the absence of any
subharmonic mode locking. By increasing the mass (inertial
term), the subharmonic steps start to appear, and accordingly,
the fractal dimension indeed goes below 1, indicating the
complete locking and the devil’s staircase structure [30].

The origin of subharmonic steps in the frequency lock-
ing systems has been a matter of many debates [17]. In
the standard overdamped FK model (mi = 0), it was proved
that subharmonic steps do not exist for integer values of ω

[49,50]. For rational noninteger values of ω, the subharmonic
steps appear, however, their size is so small that they are
hardly visible on the regular plot v̄(F̄ ) [20]. Therefore, the
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FIG. 4. Fractal dimension D as a function of mass m measured
in the region between the first and the second (F1dc < Fdc < F2dc),
and the second and the third (F2dc < Fdc < F3dc) harmonic steps for
ω = 1

2 , and 1 in (a) and (b), respectively. The rest of the parameters
are the same as in Fig. 1.

standard overdamped FK model could not be used for mod-
eling phenomena related to subharmonic steps. However, it
was shown in Ref. [40] that even the strictly overdamped FK
model can exhibit large half integer and the whole series of
subharmonic steps due to deformation of substrate potentials
in any commensurate structures, regardless of the value of
winding number ω [17]. However, here, in Figs. 2–4, the
subharmonic steps appear in the standard FK model with
sinusoidal potential, and their origin comes from the presence
of inertial term. These results, together with the previous
one in Ref. [40] clearly show that there is no one universal
scenario behind the appearance of subharmonic steps but
they may equally exist in both overdamped or underdamped
systems and have different origins such as deformation of the
potential as it was shown previously or inertial effects in this
case.

IV. THE APPEARANCE OF CHAOS

The increase of mass in the ac+dc driven FK model may
have much more dramatic effects than just simply inducing
subharmonic mode-locking. According to Eq. (4), for K = 4,
our system is overdamped if m < mc = 0.0417, and it can
exhibit devil’s staircase and complete locking while remaining

FIG. 5. The average velocity v̄ as a function of the average
driving force F̄ and the corresponding Lyapunov exponents λi

for K = 4, Fac = 0.2, ν0 = 0.2, ω = 1
2 , and m = 0.041 and 0.1 in

(a) and (b), respectively. On this scale of y axis only the largest
Lyapunov exponent is visible. Numbers mark the harmonic steps.

completely nonchaotic [30]. In our search for chaotic behavior
we will apply the Lyapunov exponent (LE) computational
technique [30,43] and extend our examination further into
the underdamped region. We have calculated the Lyapunov
exponent spectrum which for the system Eqs. (3) consists
of 2N equations, where each LE is associated with each
independent coordinate of the system. In nonlinear dynamical
systems, the Lyapunov exponents determine degree of chaos
inherent to the system and quantify the sensitivity of the
system to the initial conditions. Starting from some small
arbitrary initial separation, positive or negative value of the
particular LE characterizes the long term average exponential
divergence or convergence of the coordinate. If only one LE
is positive, the system is chaotic, while for more than one
positive LE, it is hyperhchaotic.

In Fig. 5, the response function v̄(F̄ ) and the corresponding
Lyapunov exponents λi are presented for two cases: m < mc

and m > mc in Figs. 5(a) and 5(b), respectively. As we can
see, the increase of m, and just the crossing of the overdamped
limit mc did not change much the LE which clearly show that
the system does not have to be necessarily strictly overdamped
to be nonchaotic.

However, further increase of mass will completely change
the motion of particles. In Fig. 6, the response function
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FIG. 6. The average velocity v̄ as a function of the average
driving force F̄ and the corresponding Lyapunov exponents λi for
m = 0.15 and 1.5 in (a) and (b), respectively. The rest of parameters
are the same as in Fig. 1. On this scale of y axis only the largest
Lyapunov exponents are visible. Numbers mark the harmonic steps.

v̄(F̄ ) and the corresponding Lyapunov exponents (LE) λi are
presented for much larger values of m. The positive values of
the LE indicate the presence of chaotic behavior. For small
m such as in Fig. 6(a), the chaotic motion appears between
the first and the second harmonic, while as m increases in
Fig. 6(b), the chaos is spread in all regions between large
harmonic steps. In the same way as the positive values of
the LE mark the chaotic motion, the negative values, however,
mark the Shapiro steps, i.e., the locked regions with periodic
motion of particles.

Further, we will focus on the chaotic regions between the
large harmonic steps and examine in detail the onset on chaos
on subharmonic steps for two values of mass: m = 0.2 and
1.25. In Fig. 7, the staircase structure of the average velocity
as a function of the average driving force v̄(F̄ ) for m = 0.2 is
presented. If we focus, for example, on the region between
second and the third step in Fig. 7(a), the high resolution
analysis with the force step �F = 10−6, in Figs. 7(b) and 7(c),
reveals an infinite series of subharmonic steps which appear
following continued fraction formula Eq. (7). Further increase
of resolution will reveal an interesting structure, in Fig. 7(d),
we can see that the subharmonic steps are separated by chaotic
windows.

To examine this interesting structure we perform the LE
analysis. In Fig. 8, the high resolution plot of the response

FIG. 7. The average velocity as a function of the average driving
force v̄(F̄ ) for m = 0.2, K = 4, Fac = 0.2, ν0 = 0.2, and ω = 1

2 .
Numbers mark harmonic and subharmonic steps. The staircase in
(b), (c), and (d) represent the high-resolution views of the selected
areas in (a), (b), and (c), respectively.

function and the Lyapunov exponents in the region which is
situated between the second and third harmonic is presented.
As we can see the subharmonic steps are separated by chaotic
windows indicated by the positive Lyapunov exponent.

Devil’s staircase containing Shapiro steps separated by
self-similar chaotic regions has been observed both in the
single and in the one dimensional stack of Josephson junctions
[34,35]. It was shown that in the current-voltage character-
istics of the junctions the staircase with chaotic intervals
preserves the scaling of the original staircase with the frac-
tal dimension close to 0.87. Considering the fact that the

FIG. 8. The Lyapunov exponents λi as a function of the average
driving force F̄ and the corresponding response function v̄(F̄ ) in the
small region between the second and the third harmonics for m = 0.2
are presented. On this scale of y axis only the largest Lyapunov
exponent is visible. The rest of the parameters are the same as
described in the caption of Fig. 7.
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FIG. 9. The average velocity as a function of the average driving
force v̄(F̄ ) for m = 1.25, K = 4, Fac = 0.2, ν0 = 0.2, and ω = 1

2 .
Numbers mark harmonic and subharmonic steps. The staircase in
(b) and (c) represent the high-resolution views of the selected areas
in (a).

overdamped FK model also exhibits complete locking [30]
raises the question whether this staircase of subharmonic steps
separated by chaotic windows which appears in the under-
damped case is still complete and how its scaling changes.
To estimate the fractal dimension D we have followed the
same method used in Ref. [30], and for the region between the
second and third harmonic step, obtained D = 0.8759 with an
uncertainty of ±0.0166.

The increase of mass to larger values will affect signifi-
cantly the existence of Shapiro steps. In Fig. 9, the staircase
structure of the average velocity as a function of the average
driving force v̄(F̄ ) for m = 1.25 is presented. As the mass

FIG. 10. The Lyapunov exponents λi as a function of the average
driving force F̄ and the corresponding response function v̄(F̄ ) in the
region between the zero and the first harmonicstep for m = 1.25 are
presented. Different colors of λi corresponds to different Lyapunov
exponents. The rest of the parameters are the same as described in
the caption of Fig. 9.

increases, the locking appears only at the lower values of
force. Unlike the case in Fig. 7(a) where three harmonics
appear, here in Fig. 9(a), only two harmonics can be ob-
served, and as the force increases to higher values, dynamical
mode-locking disappears. High resolution examination of the
regions between harmonic steps in Figs. 9(b) and 9(c) shows
that only some of subharmonic steps can be observed, and
the staircase structure with the subharmonic steps as it was
in Fig. 7, is now completely destroyed. Calculation of fractal
dimension showed disappearance of complete locking as D
approached 1.

We further extend our analysis of the results in Fig. 9
to the calculation the Lyapunov spectrum. In Fig. 10, the
Lyapunov exponents for the region between the zero and the
first harmonic is presented. More than one positive LE clearly
indicates the presence of hyperchaos.

V. MOTION OF PARTICLES: FROM LIGHT TO HEAVY

When a particle moves in the dc+ac driven FK model, its
motion is governed by the simultaneous action of the pinning
force from the substrate potential, dc driving force, and the
time periodic ac force. If the system is not overdamped and
the inertial term is present, then the mass of particle will
determine its sensitivity to those forces and the way it moves.

In Fig. 11, the evolution of the response function v̄(F̄ )
with the increase of mass is presented. For the mass m = 0.2
in Fig. 11(a), as the force increases, Shapiro steps appear
at the lower values of driving force, and with the further
increase of F̄ , the curve approaches to the response of the dc
(Fac = 0) driven system represented by the dashed line. The
critical depinning force Fc for the dc+ac curve is much lower
than dynamical dc threshold Fc0 [17]. We already showed
in the previous section that the increase of mass would start
destroying the staircase, and as we can see here in Fig. 11(b),
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J. TEKIĆ, A. E. BOTHA, P. MALI, AND YU. M. SHUKRINOV PHYSICAL REVIEW E 99, 022206 (2019)

FIG. 11. The average velocity as a function of the average driv-
ing force v̄(F̄ ) for K = 4, Fac = 0.2, ν0 = 0.2, ω = 1

2 , and m =
0.2, 2, and 20 in (a)–(c), respectively. The dc curve presented by the
red dashed line corresponds to the dc driven system where Fac = 0,
while K = 0 is linear response of the system of free particles. Fc

and Fc0 mark critical depinning force and dynamical dc threshold,
respectively.

only two large harmonic steps separated by the chaotic regions
are visible. As F̄ increases and the mode-locking disappears,
the response v̄(F̄ ) approaches to the one of the dc driving
system, and goes to the response of free particles (K = 0)
for very large F̄ . If we increase mass to even larger values
in Fig. 11(c), regardless of the ac amplitude, we have a typical
dc response, particles depin at Fc0, and move with the velocity
which is now a linear function of driving force. Namely, when
particles become heavy, they respond more slowly to the ac
force, in the same way as they respond more slowly if the

ac frequency is increased. From the dynamics of overdamped
FK model [17] we know that if we increase the ac frequency,
at some values, particles became unable to follow the ac
drive and become insensitive to it. Hence, particles become
insensitive to the periodic ac force, which therefore, does not
play any role in the dynamics, and the system behaves as the
dc driven system. For small masses such as in Fig. 11(a),
the system is always far from the system of free particles
presented by the K = 0 curve. However, for larger m, not only
that particles become insensitive to the ac force, but above
certain values of F̄ which is around 0.58 in Fig. 11(b), or even
immediately after depinning at Fc0 in Fig. 11(c), the substrate
potential will have no influence, and they become free.

According to the results in Figs. 11(a)–11(c), we can
clearly distinguish different regions where particles exhibit
one of the three different types of dynamics:

(i) the dc+ac driven, where particles are sensitive to the
both dc and ac forces while moving over the substrate poten-
tial, and the staircase structure of Shapiro steps with possible
chaotic behavior occurs;

(ii) the dc driven, where particles become insensitive to the
ac force, and the response v̄(F̄ ) is the one typical for dc driven
underdamped FK model;

(iii) the free particles, where particles do not feel substrate
potential and move freely with a speed which increases lin-
early with F̄ .

These results together with those in previous section
clearly show that though the increase of mass may induce
subharmonic steps and chaotic behavior which otherwise in
overdamped limit would not exist, the further increase will
actually have contra effect by reducing the mode-locking and
destroying the staircase at very large values of m. Since the
chaotic behavior is closely related to the instability of periodic
solutions i.e. steps, it will appear only in the certain range
of driving force and system parameters where the steps also
appear.

FIG. 12. The average velocity v̄ as a function of the average
driving force F̄ for K = 4, ω = 1

2 , Fac = 0.2, ν0 = 0.2, and m =
1.25. The dashed lines corresponds to the dc driven case where
Fac = 0. Fc0 marks dynamical dc threshold.
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VI. HYSTERESIS AND SHAPIRO STEPS

One phenomenon which is inherent to underdamped non-
linear systems is hysteresis. In the overdamped FK model, dy-
namics does not depend on previous history, and in the studies
of overdamped dynamics, the force is usually varied in the in-
creasing (upforce) direction. So, we followed the same fashion
in this study, and all results presented in previous sections are
obtained by increasing force from zero. However, unlike in
the overdamped case, here, the previous history determines
the response, and the system may have running solutions even
if the minima of the potential still exist. Namely, due to their
momentum the particles may overcome the next barrier which
is lower than the one from which they were falling due to the
dc force contribution which gives the potential a washboard
shape. Depending on their initial velocity or momentum, for
the same value of driving force the particles may be either
moving or pinned, i.e. the system exhibits bistability which
will result in the appearance of hysteresis in the response
function v̄(F̄ ). Hysteresis has been studied extensively in both
one-dimensional and two-dimensional dc driven FK model
and its generalizations [51–54], where it was shown that
transition from the locked to the sliding state passed through

FIG. 13. The average velocity v̄ as a function of the average
driving force F̄ for m = 5, K = 4, ω = 1

2 , Fac = 0.2, and ν0 = 0.2.
The high-resolution view of the selected area in (a) is presented in (b)
where the numbers mark Shapiro steps. Fc0 = Fc marks critical de-
pinning force or dynamical dc threshold while Fp represents critical
pinning force in downforce direction.

hierarchy of hysteretic depinning transitions, where hysteresis
persisted even in the presence of thermal noise.

In this section we will examine the appearance of hys-
teresis in the dynamics of the dc+ac driven underdamped
FK model. Parameter which again plays the major role is of
course the mass. For the case m = 0.2, which was presented
in Fig. 7, hysteretic transitions are invisible on regular plots,
therefore, we will not show this case. Nevertheless, the situa-
tion will change as the mass increases. In Fig. 12, the average
velocity v̄ as a function of the average driving force F̄ for
m = 1.25 is presented. For the comparison, we also presented
the curves (dashed lines) for the dc driven case. Unlike the dc
driven case where all transitions are characterized by the large
hysteresis, in the dc+ac driven dynamics, a large hysteresis
appears in the region of large driving force where particles
become insensitive to the ac force and move more like in dc
driven system.

As we already know, further increase of mass as it was
shown in Fig. 11, will destroy the staircase and the Shapiro
steps. In Fig. 13, the hysteresis in the response function v̄(F̄ )
for m = 5 is presented. In the upforce direction in Fig. 13(a),
there is no mode-locking except the very small subharmonic
step 4

3 , which is visible in Fig. 13(b), and the particles move
as in the dc driven case. However, an interesting phenomenon

FIG. 14. The average velocity v̄ as a function of the average
driving force F̄ for K = 4, ω = 1

2 , Fac = 0.2, ν0 = 0.2 and m = 10
and 102 in (a) and (b), respectively. Fc0 = Fc and Fp mark the critical
depinning and pinning force, respectively. Inset shows the third
harmonic step which appears in the downforce direction.
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appears in the downforce direction, as the force passes the
critical depinning force Fc0, the particles lock to the external
ac frequency, and the large first harmonic step appears.

In Fig. 14, the evolution of hysteretic behavior with the
increase of m to very large values is presented. Here for
m = 10, again in the downforce direction, a very small third
harmonic step shown in the Inset of Fig. 14(a) is observed.
This is yet another example of “downforce” Shapiro step
in the situation where no dynamical mode-locking exist in
the “upforce” direction. From the theory and studies of un-
derdamped dynamics, we know that the kinetic energy of
the preceding stage defines transition to the following stage
Ref. [54]. Consequently, in the downforce direction particles
will due to its momentum pass critical depinning force and
enter into the region where dynamical mode-locking may
appear due to their sensitivity to the ac force.

Another interesting aspect of hysteretic behavior is how
critical pinning force Fp in downforce direction changes with
m. In the previous section we showed that with the increase of
mass, the critical depinning force Fc approaches the dynamical
dc threshold Fc0 after which in the upforce direction the
system always behaves like in the dc driven case regardless
of the ac force and its amplitude. However, in downforce
direction as we can see for the case m = 102 in Fig. 14(b),
the pinning force Fp is totally different from the case in (a)
simply because the particles with larger mass will have larger
momentum and therefore, be able to continue moving longer.
If m increases to infinity, the critical pinning force Fp will
approach to zero.

VII. CONCLUSION

In this work, we presented the major inertial effects that can
appear in the dc+ac driven underdamped Frenkel-Kontorova
model and that distinguish its dynamics from the overdamped
case. As the mass increases and the systems transfers from
the overdamped to underdamped limit, one of the immedi-
ate effects is the appearance of subharmonic steps and the
staircase structure even in the commensurate systems with
integer values of winding number where no subharmonic
locking exists in the overdamped limit. The most striking
and interesting inertial effect is certainly the appearance of
chaotic behavior where depending on the mass, the systems
may exhibit a staircase of Shapiro steps separated by chaotic
windows which retains the fractal dimension of the original
staircase. Our results also show that the mass determines
sensitivity of particles to the forces which rule their motion.
Namely, depending on their mass, the particles may exhibit
mode-locking or become insensitive to the external ac force or
even become free from the influence of the substrate potential
and move with velocity which is linear function of driving
force. Another interesting inertial effect is the hysteresis, i.e.,
not just the hysteretic behavior of the average velocity as
a function of average driving force but the appearance of
Shapiro steps in the downforce direction in the situation where
there is no dynamical mode-locking in the upforce direction.

This work could be important for all nonlinear physical
systems with competing frequencies which exhibit devil’s
staircase and potentially could go under the transition to
chaos. Though such physical systems might come from a

wide variety of physical, chemical and biological origins,
their dynamics is often described by equations similar to the
one in our paper. Frequency locking is basically the resonant
effect between two oscillators where one of them is replaced
by an external periodic driver. The presented results give
a clear picture of what happens when such system slowly
transfers from the overdamped to the underdamped regime by
the increase of the inertial term. Thus, as a starting point in
our work we used the well known result of the Shapiro steps
observation in the overdamped FK model and the parameters
settings which were widely used in those studies [17,19,20].
Our results clearly show how much mass and driving force
we need in this particular set of parameters to have sub-
harmonic steps, chaos, certain sensitivity to external forces,
or hysteresis. The observed effects are not particular to the
FK model but are general characteristics of any periodically
driven, underdamped system.

The ac+dc driven FK model is well known as a model
that gives a fair description of the sliding charge-density wave
systems in a radio frequency field and the Josephson junction
systems in a microwave field [17,19]. The chaotic behavior
has already been studied in those systems [29]. In recent
years, a number of studies in the Josephson junction systems
has been particularly focused on the presence of one unusual
phenomenon known as the structured chaos [34,35]. That is,
the in-between chaotic regions interlacing the subharmonic
Shapiro steps in the current-voltage characteristics of the
junctions were shown to be self-similar and structured. Detail
comparative analysis between chaotic behavior of the FK
model and the JJs systems as well as the possibilities of repro-
ducing the chaotic phenomena observed in those systems are
on the way, and they will be published separately. Moreover,
in this work we examined only the effect of inertial term but
other parameters such as the ac amplitude or frequency, the
shape of the potential or the type of particle interaction as well
as the number of particles (the number of particles is irrelevant
in the overdamped commensurate structures but not in the
underdumped ones) play an important role and can trigger or
suppress chaotic behavior and completely change dynamics.
These problems will be also part of our future studies.

Shapiro steps represent a phenomenon with a great po-
tential for technological applications from device building to
voltage standards and detection of Majorana fermions [55]. In
any application, the stability of Shapiro steps is crucial and
any chaotic behavior must be avoided. This requirement is
even more complicated by the fact that optimum operating
region is actually at the onset of chaos. Therefore, chaotic
aspects of frequency locking phenomena are interesting both
theoretically and experimentally, and we hope that this as well
as our further studies on this problem could help in creating
a good theoretical guideline for technological applications of
Shapiro steps and motivate future studies and experiments.
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APPENDIX: THE OVERDAMPED CONDITION

1. First method

According to Ref. [45], if we consider the following system
of equations given as

mnẍn + γnẋn = fn(x), nn, γn > 0, (A1)

where the function fn(x) satisfies cooperativity (convex) con-
dition

∂ fn

∂x j
� 0, ∀ j �= n, (A2)

the system is overdamped if

−4mn
∂ fn

∂xn
� γ 2

n . (A3)

If this is applied on the FK model under external forces,

mül + u̇l = ul+1 − 2ul + ul−1 − K

2π
sin(2πul ) + F, (A4)

then the inequalities Eqs. (A2) and (A3) become

−4m
∂

∂ul

[
ul+1 − 2ul + ul−1 − K

2π
sin(2πul ) + F

]
� 1,

(A5)

and

−4m[−2 − K cos(2πul )] � 1. (A6)

The left side of the inequality Eq. (A6) has maximal value
when cos(2πul ) = 1, and in that case, the inequality becomes

4m(2 + K ) � 1, (A7)

or m � 1
4(2+K ) . Since the mass m is nonnegative, the over-

damped condition is given as 0 � m � 1
4(2+K ) .

2. Second method

Linearizing the system Eq. (A4) we obtain the following
equation:

mül + u̇l = ul+1 − 2ul + ul−1 − Kul + F, (A8)

which can be written in the form

mül + u̇l + (2 + K )ul = ul+1 + ul−1 + F. (A9)

From Eq. (A9), the homogeneous equation

mül + u̇l + (2 + K )ul = 0 (A10)

has the characteristic equation

mλ2 + λ + (2 + K ) = 0, (A11)

with the characteristic roots

λ1,2 = −1 ± √
1 − 4m(2 + K )

2m
. (A12)

According to Eq. (A12), the system is overdamped if 1 −
4m(2 + K ) > 0, which leads to

m <
1

4(2 + K )
. (A13)

Therefore, mc = 1
4(2+K ) represents the critical damping.
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[38] B. Hu and J. Tekić, Phys. Rev. E 75, 056608 (2007).
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