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The sensitivity to perturbations of the Fisher and Kolmogorov, Petrovskii, Piskunov front is used to find a
quantity revealing perturbations of diffusion in a concentrated solution of two chemical species with different
diffusivities. The deterministic dynamics includes cross-diffusion terms due to the deviation from the dilution
limit. The behaviors of the front speed, the shift between the concentration profiles of the two species, and the
width of the reactive zone are investigated, both analytically and numerically. The shift between the two profiles
turns out to be a well-adapted criterion presenting noticeable variations with the deviation from the dilution limit
in a wide range of parameter values.
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I. INTRODUCTION

The Fisher and Kolmogorov, Petrovskii, Piskunov (FKPP)
wave front is the prototype of pulled fronts whose properties
are strongly influenced by the leading edge of the profile [1,2].
From the perspective of applications, wave fronts of FKPP
type are widely used in models of combustion [3] and biology
[4–6], in particular to account for adaptation, mutation, and
selection in evolutionary strategies. Sufficiently steep initial
profiles converge to the front propagating at the minimum
velocity deduced from a linear stability analysis [7,8]. The
FKPP front is known to be highly sensitive to even small
perturbations of many different origins. Brunet and Derrida
proved that a small cutoff introduced in the leading edge of
the front induces a negative correction to the front speed [9].
Fluctuations have also been shown to modify the propagation
speed of pulled front [10]. The description of a reaction-
diffusion system at a mesoscopic scale by a master equation
[11,12] as well as particle dynamics simulations using the
direct simulation Monte Carlo (DSMC) method [13] both
revealed that the discrete nature of particle numbers induces
analogous corrections to the front speed as a cutoff in the
deterministic partial differential equations. Roughly speaking,
the cutoff can be interpreted as the inverse of the particle
number in the reactive zone [14]. It has then been shown in
the framework of a Langevin approach that the effect of a
multiplicative noise on the front speed can be studied under
the scope of a modified cutoff theory [15,16]. The effect of
a slightly exothermic reaction on the front speed has also
been studied using DSMC. Below a critical heat release, the
speed remains equal to the one in the isothermal case and is
imposed by the Chapman-Jouguet criterion above it [17]. In
addition, the DSMC method has been used to study the impact
of the perturbation of local equilibrium by a fast reaction
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associated with a small activation energy: Reaction-induced
non-Maxwellian particle velocity distributions result in posi-
tive corrections to the front speed [18]. Molecular dynamics
simulations of dense fluids also lead to propagation speeds
larger than the marginally stable one [14]. Recent articles
focused on the effect of an advection term [19–21].

In this paper we study a reaction-diffusion wave front of
FKPP type propagating in confined systems such as biological
environments or more generally in concentrated chemical
systems. We focus on the impact of molecular crowding on
diffusion. Indeed, diffusion may be modified at high concen-
trations and the usual Fick’s law relating the diffusion flux
of a given species to the gradient of the concentration of
that single species is not always valid. Linear nonequilibrium
thermodynamics is used to extend Fick’s law to concentrated
systems, leading to diffusion flux depending on the con-
centration gradients of all the chemical components of the
mixture [22–24]. In these conditions, the partial differential
equations governing dynamics involve cross-diffusion terms.
Experiments demonstrate that cross-diffusion coefficients can
be quite significant in many kinds of chemical systems involv-
ing, for example, ions, micelles, surface, or polymer reactions
[25–28]. A priori, cross-diffusion can lead to spatial and
spatiotemporal pattern formation. Recently, hydrodynamic
instabilities were observed in reaction-diffusion-convection
patterns in microemulsions [29,30]. We checked that the
wavelength of a Turing pattern is not affected and can there-
fore not characterize the perturbation of diffusion induced by
high concentrations [24,31]. The goal of the paper is first to
determine the impact of cross-diffusion on the properties of
FKPP wave fronts involving two chemical species A and B of
different diffusivities. Then we intend to harness the sensitiv-
ity of FKPP fronts to find a macroscopic quantity depending
on the detail of the diffusion rates and thus sensitive to the
deviation from the dilution limit. Literature mostly reports
on corrections to the front speed [8,15,16,19–21,32,33]. We
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will first examine the impact of diffusion perturbation on the
front speed and then investigate the behavior of alternative
quantities with the aim of defining a criterion that could be
used in experiments to check if diffusion is perturbed in a
concentrated system admitting a FKPP front.

The paper is organized as follows. We present the reaction-
diffusion model in Sec. II. Analytical expressions of different
quantities characterizing the wave front in dilute and concen-
trated systems are derived in Sec. III. Specifically, we look for
effects of diffusion perturbation on the propagation speed, the
shift between A and B profiles, and the width of the reactive
zone. The analytical predictions are compared to numerical
results in Sec. IV. Section V contains conclusions.

II. REACTION-DIFFUSION MODEL

The system is composed of three chemical species. Two of
them, A and B, are reactive whereas the third species S is the
solvent. The reaction scheme is given by

A + B
k→ 2 A, (1)

where k is a rate constant. In a dilute system, the reaction-
diffusion equations associated with the mechanism are

∂t A = kAB + DA∂2
x A, (2)

∂t B = −kAB + DB∂2
x B, (3)

where A and B are the concentrations of species A and B,
and DA and DB are the diffusion coefficients of the A and B
species, respectively. In a concentrated solution, the diffusion
of A and B species may be perturbed. Nevertheless, we
assume that the solution is ideal, in the sense that the activity
remains equal to the concentration. In the framework of linear
nonequilibrium thermodynamics, we derived linear relations
between generalized diffusion fluxes and forces which couple
the diffusion of a species with the gradients of each constituent
of the mixture [22,24]. After the elimination of the solvent
concentration S, we showed that the reaction-diffusion equa-
tions are given by

∂t A = kAB + DA∂x

[(
1 − A

C

)
∂xA

]
− DB∂x

(
A

C
∂xB

)
,

(4)

∂t B = −kAB + DB∂x

[(
1 − B

C

)
∂xB

]
− DA∂x

(
B

C
∂xA

)
,

(5)

where the total concentration C = A + B + S is constant.
Equations (4) and (5) converge to Eqs. (2) and (3) in the
dilution limit (A + B)/C → 0 and are valid for sufficiently
small values of (A + B)/C.

We choose inhomogeneous initial conditions in the form of
a step function for species A and B:

x < 0, A(x, t = 0) = V0, B(x, t = 0) = 0,
(6)

x � 0, A(x, t = 0) = 0, B(x, t = 0) = V0,

where the constant V0 characterizes the height of the step. The
reaction-diffusion equations have wave front solutions which

propagate at constant speed vα where the index α = d for the
dilute system and α = c for the concentrated system. These
FKPP fronts are also called pulled fronts because the speed is
determined by the leading edge of the profile which pulls the
bulk to the right [7,9].

For identical diffusion coefficients DA = DB and initially
homogeneous conditions for S and A + B = V0, the sum
A + B does not evolve. Then, introducing the conservation
relation A + B = V0 into Eqs. (4) and (5), we find that the
concentrated solution obeys the same unperturbed equations
given in Eqs. (2) and (3) as the diluted system. With the
aim of specifying how the properties of a FKPP wave front
are perturbed as the system becomes more concentrated, we
consider different diffusion coefficients DA and DB in the
following.

III. ANALYTICAL DERIVATION OF WAVE FRONT
FEATURES IN DILUTE AND CONCENTRATED SYSTEMS

A. Propagation speed

To derive an approximate analytical expression of the prop-
agation speed, we perform a linear stability analysis around
the steady state (A = 0, B = V0) in the moving frame at speed
vα . Linearizing the reaction-diffusion equations is supposed
to be valid in the leading edge of the front. We introduce the
following transformation:

ξ = x

vα

− t, (7)

A(x, t ) = fα (ξ ), (8)

B(x, t ) = gα (ξ ), (9)

where α = d, c.
We first address the case of a dilute system. Equations (2)

and (3) can be rewritten as

0 = k fd gd + f ′
d + εd DA f ′′

d , (10)

0 = −k fd gd + g′
d + εd DBg′′

d , (11)

where εd = 1/v2
d and ′ denotes the derivation with respect

to ξ . The second-order differential equations are trans-
formed into first-order equations in the four-dimension space
( fd , f ′

d , gd , g′
d ). We perform a linear stability analysis around

the unstable steady state and obtain the following linearized
uncoupled system for ( fd , f ′

d ):

dfd

dξ
= f ′

d , (12)

df ′
d

dξ
= − v2

d

DA
(kV0 fd + f ′

d ), (13)

which leads to the eigenvalues λ±

λ± =
−v2

d ± vd

√
v2

d − 4kV0DA

2DA
. (14)

The existence of wave front solutions is ensured for real
eigenvalues which imposes the minimum velocity

v∗
d = 2

√
kV0DA. (15)
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In the concentrated case, Eqs. (4) and (5) read

0 = k fcgc + f ′
c + εc

(
DA

[(
1 − f ′

c

C

)
f ′′
c − ( f ′

c )2

C

]

− DB

[
fcg′′

c

C
+ f ′

cg′
c

C

])
, (16)

0 = −k fcgc + g′
c + εc

(
DB

[(
1 − gc

C

)
g′

c − (g′
c)2

C

]

−DA

[
gc f ′′

c

C
+ f ′

cg′
c

C

])
, (17)

where εc = 1/v2
c . Following the same procedure as in the

dilute case, we find

v∗
c = 2

√
kV0DA. (18)

Hence, the front speeds in the dilute system and the con-
centrated system are identical in the framework of a linear
stability analysis. Consequently, the following notations are
introduced:

v∗
c = v∗

d = v, (19)

εc = εd = ε. (20)

We checked that for sufficiently steep initial conditions and
after a transient regime, the wave front propagates at the
minimum speed v, as in the case of identical diffusion coeffi-
cients [7,9]. Interestingly, in both the dilute and concentrated
systems, the minimum propagation speed of the linearized
system does not depend on the diffusion coefficient DB of
species B and only depend on the product kV0DA.

B. Front profile

A perturbation technique is used to determine analytical
expressions of quantities characterizing the wave front profile.
We look for solutions of the reaction-diffusion equations in
the frame moving at front speed v as a Taylor expansion in the
small parameter ε [4]. As ε tends to zero, Eqs. (10) and (11)
and Eqs. (16) and (17) switch from second-order differential
equations to first-order equations. The boundary conditions of
the first-order equations must be compatible with the ones
of the second-order equations. However, the reactive terms
±k fαgα and the first-order terms f ′

α and g′
α equal zero at

the boundaries ξ = ±∞ for all perturbation orders, which
ensures the consistency of a regular perturbation procedure

fα = fα,0 + ε fα,1 + ε2 fα,2 + · · · , (21)

gα = gα,0 + εgα,1 + ε2gα,2 + · · · , (22)

where fα,i and gα,i are the ith order corrections with i =
0, 1, 2, . . . . and α = d, c. The boundary conditions obey

fα,0(−∞) = V0, fα,0 = (+∞) = 0, (23)

gα,0(−∞) = 0, gα,0(+∞) = V0, (24)

fα,i(±∞) = gα,i(±∞) = 0, for i � 1. (25)

The origin of the ξ axis is chosen such that

fα,0(0) = V0

2
, (26)

fα,i(0) = 0, for i � 1. (27)

The zeroth-order solutions are straightforwardly deduced
from Eqs. (10) and (11) and Eqs. (16) and (17) without
diffusion terms

fα,0 = V0

1 + ekV0ξ
, (28)

gα,0 = V0

1 + e−kV0ξ
, (29)

for α = d, c.
Instead of determining the higher-order solutions, we focus

on characteristic properties of the profiles. We define the
height hα = fα (0) − gα (0) as the difference of concentrations
between species A and B in the moving frame at the origin
ξ = 0. The height hα evaluates the shift between the profiles
of species A and B due to their different diffusivities. Using
Eqs. (26) and (27), we obtain the evaluations of the height up
to the first and second orders

hα,1 = εgα,1(0), (30)

hα,2 = εgα,1(0) + ε2gα,2(0), (31)

for α = d, c. Using Eqs. (10) and (11), we obtain the first
hd,1 and second-order hd,2 approximations of the height in the
dilute case

hd,1 = V0

16

(
1 − DB

DA

)
, (32)

hd,2 = V0

16

(
1 − DB

DA

)[
1 + 1

8

(
1 − DB

DA

)]
. (33)

As a result, the height hd,2 does not depend on the rate
constant k and the scaled height hd,2/V0 only depends on
the ratio DB/DA. Using Eqs. (16) and (17), we find in the
concentrated case

hc,1 = V0

16

(
1 − DB

DA

)(
1 − V0

C

)
, (34)

hc,2 = V0

16

(
1 − DB

DA

)(
1 − V0

C

)

×
[

1 + 1

8

(
1 − DB

DA

)(
1 − 2

V0

C

)]
. (35)

We check that, in the dilution limit V0
C → 0, the first- and

second-order expressions of the height in the concentrated
system given in Eqs. (34) and (35) converge to the first- and
second-order expressions of the height in the dilute system
given in Eqs. (32) and (33). Up to the second order, the
scaled height hc/V0 only depends on the ratio of the diffusion
coefficients DB/DA and the deviation V0/C from the dilution
limit. The parameter V0/C varying in the range [0,1], the
first-order evaluation hc,1 in a concentrated system is always
smaller than the corresponding quantity hd,1 given in Eq. (32)
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in the dilute system. High concentrations tend to reduce the
shift between A and B profiles, at least at the first order.

The width Wα of the wave front is deduced from the inverse
of the steepness of the A profile at ξ = 0

Wα = −vV0/ f ′
α (0). (36)

We consider the following evaluations of the width:

Wα,1 = −vV0

f ′
α,0(0) + ε f ′

α,1(0)
, (37)

Wα,2 = −vV0

f ′
α,0(0) + ε f ′

α,1(0) + ε2 f ′
α,2(0)

, (38)

deduced from the first-order and the second-order expansions
of fα . For the sake of simplicity, Wα,1 and Wα,2 will be called
first- and second-order evaluations of the width, respectively.
In the dilute case, the first-order Wd,1 and the second-order
Wd,2 expressions of the width are deduced from Eqs. (10) and
(11)

Wd,1 = 8

√
DA

kV0

[
1 + 1

8

(
1 − DB

DA

)]−1

, (39)

Wd,2 = 8

√
DA

kV0

[
1 + 1

8

(
1 − DB

DA

)
− 1

64

DB

DA

(
3 − DB

DA

)]−1

.

(40)

It is worth noting that Wd,0 = 8
√

DA
kV0

is an approximation of
the width in the case DA = DB known to be valid up to the
first order [4]. The second-order evaluation Wd,2 provides the
corrected expression 8

√
DA
kV0

(1− 1
32 ) of the width for DA = DB.

Using Eqs. (16) and (17) in the concentrated case, we obtain
after tedious calculations,

Wc,1 = 8

√
DA

kV0

[
1 + 1

8

(
1 − DB

DA

)(
1 − 3V0

2C

)]−1

, (41)

Wc,2 = 8

√
DA

kV0

[
1 + 1

8

(
1 − DB

DA

)(
1 − 3V0

2C

)

− 1

64

[
DB

DA

(
3 − DB

DA

)
+

(
9

2
− 8

DB

DA
+ 7

2

D2
B

D2
A

)
V0

C

−
(

7

2
− 7

DB

DA
+ 7

2

D2
B

D2
A

)
V 2

0

C2

]]−1

. (42)

We check that, in the dilution limit V0
C → 0, the first- and

second-order expressions of the width in the concentrated
system given in Eqs. (41) and (42) converge to the first and
second-order expressions of the width in the dilute system
given in Eqs. (39) and (40). In addition, the zeroth-order
evaluations coincide, Wd,0 = Wc,0 = 8

√
DA
kV0

. The scaled width√
kV0
DA

Wc only depends on DB/DA and V0/C as the height does.
In the next section, the analytical predictions of the height and
the width are compared to the corresponding numerical results
deduced from Eqs. (2) and (3) in the dilute case and Eqs. (4)
and (5) in the concentrated case.

IV. COMPARISON BETWEEN ANALYTICAL
AND NUMERICAL RESULTS

Analytical results are derived from expansions with respect
to ε = 1

v2 . For the domain of validity of approximations to be
the same for all the considered parameter values, we impose
that the front speed remains constant, i.e., k, V0, and DA are
constant. In addition, the values of k, V0, and DA are set such
that ε is much smaller than 1:

k = 10, V0 = 10, DA = 1. (43)

According to Brunet and Derrida [9], a small cutoff δ

introduced in the nonlinear reactive term ±kAB induces a
negative correction to the propagation speed

v − vs

v
= π2

2(ln δ)2
, (44)

where vs is the velocity of the simulated front. More generally,
FKPP wave fronts are known to be sensitive to small pertur-
bations, including fluctuations [14] in stochastic descriptions,
perturbation of velocity distribution function [18] in particle
dynamics simulations. With the aim of unambiguously as-
signing the observed perturbations of a wave front to high
concentrations, the effect of a cutoff on the numerical results
has to be evaluated and disregarded. If sufficiently fine space
and time discretizations are employed, the cutoff mainly
originates from the precision of the computations involving
real numbers. Choosing double precision leads to a cutoff δ �
10−16. Using Eq. (44), the relative correction to the front speed
is estimated at 0.4%. The effect of space discretization is
similar on wave fronts with profile widths occupying the same
number of spatial cells. According to Eqs. (39) and (41), at
zeroth order, the width Wd,0 = Wc,0 = 8

√
DA
kV0

only depends on
the rate constant k, the diffusion coefficient DA of species A,
and the boundary condition V0. For the effect of the cutoff to
be the same in all the numerical solutions for different param-
eters, we impose the cell length, 	x = πWd,0

5000 , the total number

of cells, n = 50 000, and the time step, 	t = 0.1	x2

Dmax
B

, where
Dmax

B = 16 is the maximum diffusion coefficient considered.
Hence, the width occupies about 1600 cells in all cases. For
the initial condition defined in Eqs. (6), we numerically solve
Eqs. (2) and (3) and Eqs. (4) and (5) using the Euler method
for different values of the diffusion coefficient DB in the
interval [ 1

16 , 16] and the total concentration C in the interval
[25, 400].

To mimic an infinite system in the x direction, it is neces-
sary to counterbalance the production of species A due to the
propagation of the reactive front. At each time step where the
sum of the concentrations of species A in each cell reaches
the initial value nV0/2, the first left cell is suppressed and a
new cell is added to the right with no A species and a V0

concentration for species B. This trick amounts to switching in
the moving frame at the propagation speed of the wave front.
The speed is numerically evaluated using the time difference
between two creations of right cells after the stationary regime
has been reached.

For these conditions, we find that the front speeds as-
sociated with the dilute and the concentrated cases are the
same and about 0.5% smaller than the zeroth-order prediction
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FIG. 1. Snapshot of the wave front profile deduced from Eqs. (2)
and (3) with DB/DA = 16 at time t = 400. Concentration profiles of
A (black solid line) and B (black dashed line) versus spatial coor-
dinate x

	x . The horizontal line represents V0
2 . The vertical segment

represents the height hd at ξ = 0.

v∗
d . This result is close to the estimation of the cutoff effect

induced by double precision. The choice of the other param-
eters, such as cell length and time step, and the simulation
procedure are therefore satisfying. In addition, the numerical
results confirm that the propagation speed is not impacted by
the perturbation of diffusion induced by high concentrations
as predicted in Eq. (18).

Figure 1 shows the stationary concentration profiles of
A and B species deduced from the numerical integration of
Eqs. (2) and (3) in the dilute case. In agreement with Eq. (33),
a large ratio DB/DA is chosen for the height hd illustrating
the shift between A and B profiles to be sufficiently large.
Whereas the A concentration abruptly vanishes in the leading
edge, the B concentration smoothly tends to V0. A and B
profiles are noticeably asymmetric with respect to the A = V0

2
axis. This feature disappears for DA = DB.

Figure 2(a) shows the variation of the scaled height hd/V0

in the dilute case with respect to the ratio of the diffu-
sion coefficients DB/DA in logarithmic scale. The first- and
second-order analytical expressions hd,1 and hd,2 given in
Eq. (32) and (33) are compared to the results deduced from
the numerical integration of Eqs. (2) and (3). The uncertainty
on the numerical results due to discretization is smaller than
the symbols.

As expected, the height vanishes for DB = DA. For
DB/DA < 1, the height hd is positive, and the first-order
expression already offers a satisfying approximation. Con-
sidering that DA is set at 1 whereas DB varies, and that
the perturbative term in Eq. (11) is proportional to εd DB =

1
4kV0

DB
DA

, the analytical result is correct provided that DB is
smaller or equal to 1, i.e., DB < DA. It is worth noting that, as
DB → 0, the height hd tends to a positive limit slightly larger
than V0/16 as predicted by Eq. (33): For fixed B particles, the
concentration of species B in the moving frame reaches the
value hd � V0/16, independent of the diffusion coefficient DA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 1 10

h
d
−

h
c

h
d

DB

DA

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.1 1 10

h
d

V
0

DB

DA

(a)

(b)

FIG. 2. (a) Scaled height hd/V0 in the dilution limit and (b) rela-
tive difference between the dilute case and the concentrated case for
V0/C = 0.25 versus diffusion coefficients ratio DB/DA. First-order
approximation (black dashed line), second-order approximation (red
solid line), and numerical results (black squares).

of species A at the abscissa ξ = 0 for which the concentration
of species A equals V0/2.

For DB/DA > 1, the height hd is negative. The second-
order approximation is valid until DB/DA = 4 and diverges for
larger values of DB/DA. In the explored range of DB/DA, the
height hd significantly decreases. Still, the scaled height hd/V0

is bounded by −0.5 since concentrations cannot be negative.
The behavior of the height hc associated with the con-

centrated system is similar to the one of hd . Nevertheless,
as shown in Fig. 2(b), the relative height difference hd −hc

hd
is

always positive in the entire range of DB/DA values. Hence,
the shift between the concentration profiles of species A and
B induced by the difference between the diffusion coefficients
DA and DB is reduced in a concentrated system. Actually,
according to Eqs. (4) and (5), the diffusion of a given species
is affected by the diffusion coefficient of the other species
which reduces the effect due to DA �= DB. In the limit of
large DB, both hd and hc reach the extreme value −0.5 so
that the difference hd − hc tends to zero. As DB → 0, the
relative height difference hd −hc

hd
tends to a positive limit larger

than the prediction V0/C of the first-order approximation
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FIG. 3. Scaled height hc/V0 versus concentration ratio V0/C.
First-order approximation (black dashed line), second-order approx-
imation (red solid line), and numerical results (black squares) are
presented for (a) DB/DA = 1/16 and (b) DB/DA = 7/3.

deduced from Eqs. (32) and (34). The first-order approx-
imation does not account for the variation of the relative
height difference hd −hc

hd
with respect to DB/DA. The numerical

results perfectly agree with the second-order prediction in the
domain DB/DA < 1 for which perturbative analysis is valid.
Interestingly, the relative difference of heights reaches 28%
for small DB/DA values, making the shift between A and
B profiles well adapted to the discrimination between the
concentrated and the dilute system.

As mentioned in Sec. III, the height hc only depends on
DB/DA and V0/C. The variations of the height hc in the con-
centrated system with respect to V0/C are given in Fig. 3 for
two different values of DB/DA. The parameter V0/C quantifies
the deviation from the dilution limit obtained for V0/C → 0.
We recall that a concentrated system does not refer to large
values of C but to high concentrations A + B of the solute. The
results shown in Fig. 2(b) are given for V0/C = 0.25 which
is a good compromise between a too small value for which
concentration effects would be negligible and a too large value
for which the reaction-diffusion equations [Eqs. (4) and (5)]
would not be valid. In Fig. 3(a), the results are given for
DB/DA = 1/16 < 1, associated with a positive value of hc in
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FIG. 4. (a) Width Wd in the dilution limit and (b) relative differ-
ence between the dilute case and the concentrated case for V0/C =
0.25 versus the ratio DB/DA of diffusion coefficients. First-order
approximation (black dashed line), second-order approximation (red
solid line), and numerical results (black squares).

agreement with the results shown in Fig. 2. We find that the
shift between the profiles of A and B species decreases as the
system becomes more concentrated, i.e., as V0/C increases.
For the small value of DB/DA chosen, the expansion technique
rapidly converges and the agreement between the numerical
results and the second-order approximation is excellent. In
Fig. 3(b), for DB/DA = 7/3 > 1, the height hc is negative
and decreases in absolute value as V0/C increases. As already
mentioned, the perturbation analysis is less relevant and the
second-order prediction deviates from the numerical results.
The concentrated system is closer to the standard FKPP front
with DA = DB than is the dilute system.

Figure 4(a) gives the variation of the front width Wd of
species A with respect to the ratio of the diffusion coefficients
DB/DA in logarithmic scale in the dilute case. The slope
sd of the A concentration profile at ξ = 0, deduced from
the numerical integration of Eqs. (2) and (3), is evaluated
according to

sd = − 0.2V0

ξ2 − ξ1
, (45)
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FIG. 5. Width Wc versus concentration ratio V0/C. First-order
approximation (black dashed line), second-order approximation (red
solid line), and numerical results (black squares) are presented for
DB/DA = 1/16.

where the abscissa ξ1 and ξ2 in the moving frame obey
fd (ξ1) = 0.6V0 and fd (ξ2) = 0.4V0. Equation (36) is used to
obtain an estimation of the width of the reactive front. Both
the first- and second-order approximations given in Eqs. (39)
and (40) satisfactorily agree with the numerical results for
DB/DA < 4.

An analogous procedure is followed to determine an es-
timation of the width Wc in the concentrated system from
the numerical integration of Eqs. (4) and (5). The relative
difference (Wd − Wc)/Wd between the widths in the dilute
system and the concentrated system versus DB/DA is given
in Fig. 4(b). It is worth noting that it has been necessary to
decrease cell length 	x for Wc	x to reach about 1600 to
obtain a sufficient precision in the numerical estimation of the
relative correction. This constraint has motivated the choice
of the cell length used in this study. For DB/DA � 1, a sat-
isfying agreement is obtained between the numerical results
and the first and second-order analytical predictions given in
Eqs. (39) and (40) in the dilute case and Eqs. (41) and (42)
in the concentrated case. Interestingly, the relative correction
to the width induced by high concentrations changes sign as
DB/DA varies but it does not exceed 6% in the best case as
DB/DA → 0. Hence, for small and medium DB/DA values,
the width offers a worse criterion than the shift between A
and B profiles to discriminate between the concentrated and
the dilute systems. However, for significantly large DB/DA

values, the relative difference of height vanishes whereas the
relative difference of widths converges toward about 3%.

According to Eqs. (41) and (42), the front width Wc in a
concentrated system depends on DB/DA and also the deviation
from the dilution limit V0/C. The variation of Wc with V0/C
is given in Fig. 5 for a sufficiently small ratio of diffusion
coefficients DB/DA = 1/16 for the analytical prediction to be
valid. As expected, the width Wc tends to the value Wd =
0.719 associated with DB/DA = 1/16 for V0/C → 0. The
width Wc increases as V0/C increases: As the system becomes
more concentrated, Wc becomes closer to the zeroth-order
prediction Wd,0 = Wc,0 = 0.8 obtained for DA = DB. Hence,
the difference between the profile shape in a concentrated
system with DB �= DA and the profile shape in a system with

DA = DB decreases as V0/C increases. We already came to an
analogous conclusion for the variation of the height hc with
V0/C as shown in Fig. 3. In conclusion, high concentrations
tend to reduce the asymmetry of the profiles induced by the
difference of diffusivities DA and DB. This phenomenon is
due to cross-diffusion in which the diffusion of both species
influences the dynamics of each other.

V. CONCLUSION

In this work, we study the effects of concentration-induced
perturbation of diffusion on FKPP wave fronts. The sensi-
tivity of FKPP wave front to small perturbations makes it a
good candidate for characterizing the effects of the deviation
from the dilution limit on diffusion. We assume that high
solute concentrations induce specific cross-diffusion terms in
the reaction-diffusion equations in the framework of linear
nonequilibrium thermodynamics. We consider two chemi-
cal species A and B engaged in the reaction A + B → 2A
and with different diffusion coefficients, knowing that the
perturbation of diffusion vanishes in the limit of identical
diffusion coefficients. The analytical results deduced from
a linear stability analysis show that the propagation speed
in a concentrated system is not appreciably affected by the
perturbation of diffusion. The relative correction of the profile
width with respect to the dilute case presents an interesting
behavior: It changes sign as the ratio of diffusion coefficients
varies. However, the relative correction is in the order of
6% for concentration values in the domain of validity of the
reaction-diffusion equations. We introduce the height h as the
difference of concentrations between A and B species in the
moving frame at the origin to evaluate the shift between A
and B profiles due to their different diffusion coefficients.
Contrary to the width, the relative correction to the height h
with respect to the dilute case reaches 28% for reasonable
solute concentrations. The relative correction to the height is
larger than 25% when the diffusion coefficient of species B
is smaller than the one of species A. The diffusion coefficient
of species B has to become at least 30 times larger than the
diffusion coefficient of species A for the relative correction
to the height to drop below 5%. In the limit of very large
diffusion coefficients of species B, the width of the profile may
be chosen as an alternative criterion to detect concentration-
induced perturbations since the relative correction to the
width converges to about 3% in this limit. We conclude that
the FKPP wave front offers the opportunity to characterize
concentration-induced perturbation of diffusion. Specifically,
the shift of the concentration profiles of species associated
with different diffusion coefficients is a well-adapted criterion
showing significant variations with the deviation from the
dilution limit in a wide range of diffusion coefficients.
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