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Itinerant chimeras in an adaptive network of pulse-coupled oscillators
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In a network of pulse-coupled oscillators with adaptive coupling, we discover a dynamical regime which
we call an “itinerant chimera.” Similarly as in classical chimera states, the network splits into two domains,
the coherent and the incoherent. The drastic difference is that the composition of the domains is volatile,
i.e., the oscillators demonstrate spontaneous switching between the domains. This process can be seen as
traveling of the oscillators from one domain to another or as traveling of the chimera core across the network. We
explore the basic features of the itinerant chimeras, such as the mean and the variance of the core size, and the
oscillators lifetime within the core. We also study the scaling behavior of the system and show that the observed
regime is not a finite-size effect but a key feature of the collective dynamics which persists even in large networks.
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I. INTRODUCTION

Networks of interacting nodes are omnipresent in nature
and technology [1]. In recent decades, a specific type of
collective behavior called “chimera states” is intensively ex-
plored in networks of coupled oscillators. Chimera states
manifest themselves as spontaneous symmetry breaking in
systems of identical and symmetrically coupled oscillators
which split into phase-coherent and phase-incoherent parts.
First observed by Kuramoto and Battogtokh [2] and later
named “chimeras” by Abrams and Strogatz [3], this type
of partial synchronization later attracted much attention of
specialists in dynamical networks. Chimera states were dis-
covered and studied for networks of various configurations,
and experimental observations were provided as well (see the
reviews [4,5] and references therein).

The analytical study of the chimera states was carried
out in the continuum limit, see, for example, Refs. [6–8].
However, for the finite network size the rigorous analysis is
hardly possible, and the results rely on the intensive numerical
studies. It was shown that finite-size effects have a pronounced
influence on the chimera states. In particular, the lifetime
of chimeras quickly decreases as the number of oscillators
in the network becomes smaller [9]. Another characteristic
feature is the Brownian-like motion of the chimera position,
i.e., location of the coherent domain in the network [10]. The
effective diffusion coefficient quickly drops as the network
size grows which allows to associate the motion to finite-size
effects.

In the present paper, we demonstrate a new type of
chimera-like behavior which we call an “itinerant chimera.”
Similarly, with classical chimeras, in this state the network
splits into the coherent and the incoherent domains. How-
ever, the drastic difference is the volatile composition of the
domains. As the time passes, each oscillator demonstrates
spontaneous transitions between the domains, so that none of
them remains in the same domain forever. From the collective
dynamics viewpoint, this process can be seen as the traveling
of the synchronized core across the network. Importantly, the
core motion is not just a finite-size effect observed for small

number of interacting units but rather a key characteristic of
the network dynamics which persists even for large networks.

The motion of the chimera’s core was reported in a number
of previous works. In Ref. [10] it was shown that Brownian-
like motion is intrinsic for chimeras, but the effective diffu-
sion coefficient vanishes for large networks. The disrupted
chimera ordering with the wandering incoherent domain was
observed in a lattice of spins [11]. In Ref. [12] the so-called
resurgence of chimera states was reported which manifests
itself as spontaneous emergence of chimeras at random po-
sitions where they exist for some time and later disappear.
Transient chimeras in modular networks were observed in
Ref. [13] where the synchrony in different modules was rising
and falling in irregular manner. Alternating chimeras were
observed where the coherent and incoherent domains swapped
on course of the network dynamics [14,15]. In Ref. [16]
hetoroclinic switching between chimeras was demonstrated
which can be interpreted as periodical traveling of the chimera
across the network. The most typical type of chimera motion
is a constant-speed drift which may be induced by such
factors as the sign-alternating coupling function [17], cou-
pling asymmetry [18,19], nonlinear coupling [20], or coupling
delay [21]. This drift may be used in control schemes for
stabilization of the chimera’s position [22–24]. The drastic
difference of our model is that the core motion is randomlike,
but it does not vanish as the network size grows. Therefore
we consider itinerant chimeras reported herein as a novel
dynamical regime observed for the first time.

II. MODEL

Our model is a network of phase oscillators with pulse
coupling. The pulse coupling scheme was used in order to
speed up the numerical simulations by using the effective
reduction schemes [25]. On the other hand, pulse-coupled os-
cillators are often seen as a conceptual model for populations
of neurons. In the phase oscillator representation, neurons are
characterized by their phase response functions (PRCs) which
may be calculated for any neuronal model [26,27].
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FIG. 1. Left: The circuitry of the studied network. Large gray
circles denote oscillators, black lines denote all-to-all coupling, and
small black circles stand for adaptive coupling strength. Right: The
plots of the PRC �(ϕ) = − sin(ϕ + α) and the adaptivity function
�(ϕ) = sin(ϕ + β ) for the standard parameter values α = 1.4 and
β = 4.94.

A distinctive feature of our model is that the coupling
weights are not constant but rather evolve according to a
certain plasticity rule. In the context of neuronal networks, the
coupling weights evolution corresponds to various plasticity
mechanisms which change the strength of the synapses. Re-
cent studies have demonstrated the importance of the timing
of individual spikes in synaptic plasticity [28–30]. In order
to account for such spike-timing-dependent plasticity (STDP)
in our model the dynamics of the coupling weights is phase
dependent.

Our network of N identical all-to-all coupled oscillators is
given by the system

dϕ j

dt
= ω + 1

N

∑
k �= j

κ jk�(ϕ j )
∑

tk

δ(t − tk ), (1)

dκ jk

dt
= ε

[
−κ jk + �(ϕ j )

∑
tk

δ(t − tk )

]
. (2)

Here ϕ j ∈ [0; 2π ] is the jth oscillator’s phase, κ jk is the
strength of the connection from the kth to jth oscillator [31],
�(ϕ) is the phase response curve, ε is a (small) parameter
controlling the adaptation rate, while function �(ϕ) defines
the plasticity rule (see Fig. 1). In the absence of coupling, each
oscillator has the same native frequency ω = 1, and its phase
grows uniformly. When the phase reaches 2π , it resets to zero,
and the oscillator emits a pulse. The coupling is pulselike
and described by the double sum in (1). The first sum runs
over all oscillators k �= j, while the second sum runs over
all moments tk when the kth oscillator produces pulses. Each
pulse is instantly received by the jth oscillator and causes the
latter’s momentary phase shift �ϕ j = κ jk�(ϕ j ). We take the
phase response curve in the form �(ϕ) = − sin(ϕ + α), where
α is the coupling phase lag.

In the absence of pulses, the coupling coefficients κ jk relax
to zero with the rate defined by ε. Each pulse produced by
oscillator k leads to momentary change of its connections to
all other oscillators so that κ jk changes by �κ jk = �(ϕ j ). The
plasticity rule is given by the function �(ϕ) = sin(ϕ + β ),
where β allows to control various modalities. For exam-
ple, β = π gives rise to an STDP-like plasticity rule, while
β = 3π/2 qualitatively represents the Hebbian learning rule
[32,33].
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FIG. 2. The dynamics of a randomly chosen pair of oscillators.
(a) The phase lag between the two oscillators �ϕ1,80 ≡ ϕ1 −
ϕ80 mod2π . (b) The transient degree of synchrony between the same
oscillators. The network size N = 200, the parameters ε = 0.01,
α = 1.4, and β = 4.94.

III. RESULTS

For the rest of the paper, we use the parameter values
ε = 0.01, α = 1.4, and β = 4.94 unless otherwise is stated.
We observe the dynamics of the network starting from random
initial conditions. The initial phases are drawn from a uniform
distribution ϕ ∈ [0, 2π ], the coupling coefficient from a uni-
form distribution κ ∈ [−1, 1].

While observing the network collective dynamics, our
attention was drawn by a peculiar regime which, to the best
of our knowledge, has not been reported before. We first
noticed this regime when we observed the temporal dynamics
of phase lags between different oscillators. For certain param-
eters, these lags demonstrated intermittent behavior: The two
oscillators alternated between the periods of phase locking
and incoherence. This behavior is illustrated in Fig. 2(a) for
a randomly selected pair of oscillators, and it is very similar
for all other pairs.

In order to gain sight of a broader picture on the whole
network scale, we calculated the transient degree of synchrony
between the oscillators defined as follows:

Rjk (t ) = 1

�

∣∣∣∣
∫ t+�

t
ei[ϕ j (t )−ϕk (t )]dt

∣∣∣∣. (3)

Here t is the current time and � is a (sufficiently large)
time window. In order to capture the intermittent behavior
described above, � must be much larger than the native period
of the oscillators but much smaller than the typical duration
of the coherence and incoherence episodes. Further, we usd
� = 3000, but the results do not significantly change for
other values of � in a wide range. Figure 2(b) shows the
evolution of the transient degree of synchrony between the
two oscillators whose dynamics is depicted in Fig. 2(a). It is
close to 1 while the phases of the two oscillators are locked
and smaller than 1 while they drift apart.

We analyzed the degree of synchrony of all the oscillator
pairs across the network depending on time. The resulting
matrices Rjk are presented in Fig. 3 along with the snapshots
of the phases and mean frequencies. The mean frequency of
each oscillator was calculated along the time interval �. The
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FIG. 3. The network states at subsequent time moments: (a) at t = t0 = 5 × 105, after the indexes renumbering; (b) at t = t1 = 6.5 × 105;
(c) at t = t2 = 8.5 × 105. In the upper panels, the matrix of the transient degrees of synchrony Rjk is plotted. Red (light gray) corresponds to
strong synchrony Rjk > R∗, where R∗ = 0.999. Blue (dark gray) corresponds to weak synchrony Rjk < R∗. In the middle and bottom panels,
the phases and the mean frequencies of the oscillators are presented. In (a), the core size M0 is indicated by the red dashed line. The network
size N = 200, the parameters ε = 0.01, α = 1.4, and β = 4.94.

major finding is that the oscillators split into two domains.
The first domain demonstrates strong synchronization which
is manifested by the degree of synchrony close to 1. The os-
cillators of the second domain show low synchrony with those
from the first domain and also between each other. In order to
reveal this splitting we renumbered the oscillators according
to their degree of synchrony at the particular time moment
t = t0 = 5 × 105. Then, the coherent domain consists of the
oscillators with indexes from 1 to M0, and the incoherent one
of the oscillators with indexes from M0 + 1 to N , where M0 =
148 is the size of the coherent domain at t0. The state of the
network with renumbered indexes is illustrated in Fig. 3(a).
One sees that the coherent domain consists of two antiphase
clusters, while the incoherent domain has a broad distribution
of phases. The frequencies of the oscillators from the coherent
domain are equal, while those of the incoherent domain
are widely distributed. This frequency profile is typical for
chimera states.

The splitting of the oscillators into the two domains,
the coherent and the incoherent ones, strongly resembles a
chimera state. However, there is a drastic difference between
the classical chimeras and the regime that we observe. In order
to trace it we fixed the oscillator indexes and observed the
long-term evolution of the network. Then we noticed that the
composition of the coherent and the incoherent domains was
volatile, meaning that each particular oscillator spontaneously
switched from one domain to another. In order to demonstrate
this volatility we illustrate the network states in subsequent
moments of time. In Fig. 3(b), the coherent and the incoherent
domains are still present at t = t1 = 6.5 × 105, but their com-
position is different compared to t = t0. The oscillators which

constitute the domains are not longer ordered but rather mixed
across the network. This mixing goes even further in Fig. 3(c)
for t = t2 = 8.5 × 105.

To better picture the process of mixing of the coherent and
the incoherent domains we studied the temporal evolution of
their composition. At each time moment we calculated the
transient degrees of synchrony and determined the domain
attribute u j of each oscillator. The oscillator was attributed
belonging to the coherent domain with u j = 1 if it was
strongly synchronized with some others, and to the incoherent
one with u j = 0 if it has no strong synchrony with any others.
The composition of the domains is plotted versus time in
Fig. 4, with red (light gray) corresponding to the coherent and
blue (dark gray) to the incoherent domain. At the time t0 just
after the oscillators renumbering the domains are ordered. As
the time passes the oscillators spontaneously switch their do-
mains. From the network viewpoint, this process corresponds

.on rotalli cso
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FIG. 4. The evolution of the coherent and incoherent domains of
the coherent of the itinerant chimera. Red (light gray) corresponds to
the coherent, blue (dark gray) to the incoherent domain. The network
size N = 200, the parameters ε = 0.01, α = 1.4, and β = 4.94.
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FIG. 5. Coupling matrix κ jk at the moment t = t0 after the os-
cillators renumbering. The network size N = 200, the parameters
ε = 0.01, α = 1.4, and β = 4.94.

to the volatility of the domains composition. The coherent
domain, which is often called the chimera’s core, does not stay
in the same position but rather moves spontaneously across
the network. This feature led us to adopt the name “itinerant
chimera” to the observed regime.

The splitting of the oscillators into two domains is
supported by the sufficient structure of the coupling matrix
which is depicted in Fig. 5 for t = t0. Note that this moment
corresponds to the network state illustrated in Fig. 2(a)
when the oscillator indexes are renumbered so that the
coherent domain consists of oscillators 1, . . . , M0, and the
incoherent domain of oscillators M0 + 1, . . . , N . Recall
that the coherent domain consists of two antiphase clusters.
The oscillators within each synchronous cluster have strong
positive connections, while the two clusters have strong
negative connections between each other. These strong and
structured connections are the reason for the synchrony within
the coherent domain. At the same time, the connections within
the incoherent domain and between the two domains do not
show any structure; they may be either negative or positive
as well as strong or weak. This diversity determines the lack
of synchrony within the incoherent domain. Note that the
structure of the coupling matrix is not prescribed but rather
emerges from the random initial conditions due to the network
adaptivity. During the further network evolution when the
core composition changes, the coupling matrix changes as
well, but its basic features remain: The connections within
the core are strong and well structured, while the resting
connections do not show any structure.

The itinerant chimeras are robust patterns which persist
under the variation of the system parameters. In order to prove
that we changed the parameters α, β, and ε and analyzed
the observed behavior patterns. The results are presented in
Fig. 6 where the core size M is plotted versus the parameter
β (the data for other parameters variation is not shown). The
core size is calculated as the number of the synchronized
oscillators M = ∑

j u j . For β < 4.86 the oscillators split into
several clusters of synchrony, therefore the “core” occupies
the whole network and M = N . For 4.86 < β < 4.93 classical
chimeras are observed for which the composition and the size
of the core do not change with time. The itinerant chimeras are
observed for 4.93 < β < 4.99, and in this parameter interval
not only the constitution but also the size of the core changes

clustered
states

chimera
states

itinerant
chimeras

coherent
states

ezis eroc

FIG. 6. Core size versus the parameter β. Black bars denote the
points where the simulations were performed. For itinerant chimeras,
the mean core size is plotted by a solid line and minimal and
maximal values by dashed lines. The network size N = 200, the
resting parameters ε = 0.01, α = 1.4.

with time. For β > 4.99 the system undergoes a transition to
the coherent state.

Further, we investigate in more detail the traveling of the
core and demonstrate that it is not only a finite-size effect
but rather a keynote feature of the network dynamics which
is preserved even for a large number of nodes. The dynamics
of the core size is illustrated in Fig. 7(a); it demonstrates pro-
nounced fluctuations around the mean. The size fluctuations
suggest randomlike transitions of the oscillators between the
domains. These transitions appear to be positively correlated
meaning that the oscillators tend to switch their domain in
groups. In order to illustrate that we plot the distribution of
the chimera core size M observed in a long time interval
in Fig. 7(b). For the independent randomlike switching of
individual oscillators the core size would have binomial distri-
bution M ∼ B(N, p), where p is the fraction of the oscillators
belonging to the core. However, the obtained distribution is
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FIG. 7. (a) The chimera core size versus time for N = 200. (b)
Distribution of the core size for N = 200. Black solid line corre-
sponds to the binomial distribution. (c) The mean (black solid line)
and the variance (red dashed line) of the core size versus the network
size. The parameters ε = 0.01, α = 1.4, and β = 4.94.
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FIG. 8. (a) Autocorrelation function of the core composition
versus time for N = 200. The horizontal dashed line corresponds to
A = p. (b) Distribution of the nodes lifetimes in the core for N =
200. (c) The mean lifetime versus the network size. The parameters
ε = 0.01, α = 1.4, and β = 4.94.

much wider and has much heavier tails, suggesting concurrent
transitions of large groups of oscillators.

In order to study the scaling of the itinerant chimeras we
plot the mean and the variance of the core size M versus
the network size N in Fig. 7(c). The mean core size 〈M〉
grows linearly with the network size suggesting the constant
ratio between the coherent and the incoherent domains. The
fraction of the oscillators in the core may be estimated as p =
〈M〉/N ≈ 0.72. The variance σM =

√
〈M2〉 − 〈M〉2 grows

sublinearly; however, it is much larger than that predicted by
the binomial distribution. The wide distribution of the core
size corroborates that the core volatility manifests itself on the
macroscopic level, not only as a finite-size effect.

To prove the randomlike character of the oscillators switch-
ing between the domains, we introduce the autocorrelation
function of the core composition defined as

A(τ ) = 1

〈M〉 lim
t→∞

1

T

∫ T

0

N∑
j=1

u j (t )u j (t + τ )dt . (4)

Here the sum under the integral is nothing but the number
of the oscillators which belong to the core at the both time
moments t and t + τ . The function A(τ ) gives the mean
fraction of the oscillators which stay in the core (or return
back to it) in time τ . The autocorrelation function A(τ ) is
plotted in Fig. 8(a). It equals unity at τ = 0 and falls to A ≈ p
at τ ∼ 5 × 104, which corresponds to the fraction of units
shared by two randomly selected sets. This means that the
network memory about the core composition fades completely

in this time, the core effectively spreads across the network,
and its composition becomes unpredictable. The correlation
decay is a clear sign of the chaotic dynamics, which we
confirmed by the calculation of the largest Lyapunov exponent
λ = 0.0045. Note, however, that the inverse time λ−1 = 222
is much shorter than the typical time of the core spreading.

Another way to estimate the rate of the core traveling is
to compute the lifetimes of individual oscillators in the core.
The distribution of the lifetimes is shown in Fig. 8(b); it is a
broad unimodal distribution with an average of about 5 × 104,
which roughly corresponds to the result from Fig. 8(a). The
scaling behavior of the mean lifetime is illustrated in Fig. 8(c).
Although the lifetime grows with the network size, this growth
is relatively slow and tends to saturate, in sharp contrast with
the lifetime of classic chimeras, which was shown to increase
exponentially [9]. Thus, the finite-speed traveling is preserved
even for large networks.

IV. CONCLUSIONS

We have studied a new type of chimera-like behavior
observed in networks of oscillators with adaptive coupling.
Similarly with classical chimeras, the oscillators split into
two domains, coherent and the incoherent. However, the
drastic difference is that the composition of the coherent
and incoherent domains changes with time. The oscillators
spontaneously switch their domain, which results in traveling
of the chimera’s core across the network. This process is char-
acterized by fading memory, meaning that the network forgets
the composition of the core in a finite time. The lifetime of the
core grows slowly with the network size, suggesting that the
core volatility is not a finite-size effect but rather an intrinsic
feature of the network collective dynamics.

Our system may also demonstrate other collective behav-
iors depending on the parameters α and β. In particular,
we observed classical chimera states and the emergence of
clustered states similar to those described earlier for contin-
uous coupling [34]. However, we conjecture that the pulse
nature of coupling together with its adaptivity was crucial
for the emergence of itinerant chimeras. Provided that the
major motivation for the model comes from neuroscience, it
would be intriguing to search for similar dynamical regimes
in biologically plausible setups and explore their possible role
in collective dynamics of neuronal populations.
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