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N-break states in a chain of nonlinear oscillators
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In the present work we explore a prestretched oscillator chain where the nodes interact via a pairwise Lennard-
Jones potential. In addition to a homogeneous solution, we identify solutions with one or more (so-called)
“breaks,” i.e., jumps. As a function of the canonical parameter of the system, namely, the precompression
strain d , we find that the most fundamental one-break solution changes stability when the monotonicity of the
Hamiltonian changes with d . We provide a proof for this (motivated by numerical computations) observation.
This critical point separates stable and unstable segments of the one-break branch of solutions. We find similar
branches for two- through five-break branches of solutions. Each of these higher “excited state” solutions
possesses an additional unstable pair of eigenvalues. We thus conjecture that k-break solutions will possess
at least k − 1 (and at most k) pairs of unstable eigenvalues. Our stability analysis is corroborated by direct
numerical computations of the evolutionary dynamics.
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I. INTRODUCTION

The study of chains with pairwise interaction potentials has
had a long and distinguished history since the inception of
the Fermi-Pasta-Ulam model [1]; for some relevant accounts,
see Refs. [2,3]. Intriguingly, some of the original questions
revolving around the foundations of associated studies remain
active topics of investigation even half a century later. Among
them, we note the potential equipartition of the energy among
different degrees of freedom [4] or the number of solitary
waves emerging in the early Kruskal-Zabusky simulations [5];
for the latter, see the associated recent work [6].

In the present work, we intend to examine a variant of
such intersite interaction potential chains, in the context of a
Lennard-Jones (LJ) potential [7]. We focus, in particular, on
the equilibrium states of a prestretched, one-dimensional (1D)
LJ chain and provide a detailed bifurcation analysis of the
elastic (i.e., homogeneous) and broken states, where one or
more bonds deviate towards large strains, rendering the chain
inhomogeneous. We will use the terms broken or fractured
to denote the latter bonds. The LJ potential is prototypical of
nonconvex pair interactions, with a convex region for close
particles and a concave region for longer-range interactions,
with the force decaying to zero as the interparticle distance
goes to infinity. The nonconvexity allows the potential to
model fractured states of the material, where two portions
of the chain are sufficiently separated and have very weak
interactions, as is done in �-convergence approaches to the
continuum limit of such 1D chains [8,9].

Among the numerous and diverse topics considered for
such LJ lattices are, for example, the dynamics and mean
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length of clusters at finite temperature [10], the (homoclinic
to exponentially small periodic oscillations) subsonic as well
as supersonic lattice traveling waves [11], the potential for
chaotic motion through the maximum Lyapunov exponent
[12], and as a model for superheated and stretched liquids [13]
(whereby the role of the different dynamical configurations
must be assessed in the calculation of thermodynamic quanti-
ties). A linear approximation of the chain and its solutions for
nearest-neighbor and next-nearest-neighbor interactions was
explored in Ref. [14].

The existence and stability of one-break solutions was
studied for the Morse [15] and LJ [13] potentials, while the
instability of more than one-break solutions was argued. This
can be seen intuitively by considering the translation of a
nonboundary segment in a direction that closes one of the
fractures. In both cases the arguments used were based on
the relative character of the energy minimum. In the latter
study statistical mechanics arguments were used. Using the
static solutions as initial states, these studies were extended in
molecular dynamics methods to study the expected time for a
failure to occur at finite temperatures (see, e.g., Ref. [16] and
references therein) and collective fluctuations [17].

Later it was shown that for a wide range of potentials and
many-neighbor interactions, the chain with more than one
fracture is always locally unstable [18] (see also references
therein).

Our aim here is somewhat different, as we explore the
bifurcation analysis of different states and provide a system-
atic count of the eigenvalues of the different branches of
solutions. We also consider the eigendirections of the relevant
instabilities and excite them in order to observe the dynamical
response of the chain to different unstable perturbations (when
appropriate). This helps us shape a systematic picture about
the existence, stability, and dynamical properties of the chain.
It adds to the picture provided by molecular dynamics simu-
lations by showing more direct paths to create broken chains,
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using eigendirections of the linear excitations and providing
avenues to steer the evolution from one equilibrium state
to another, guiding the choice of suitable (e.g., in-phase or
out-of-phase) perturbations.

Our presentation will be structured as follows. In Sec. II
we will present the mathematical formulation and some of the
principal features of the model. In Sec. III we will prove a ba-
sic result for the stability of the static solutions in connection
to the monotonicity of the Hamiltonian as a function of the
driving precompression parameter. In Sec. IV we will present
numerical computations of existence, stability and dynamics.
Finally, in Sec. V we will summarize our findings and present
our conclusions, as well as some directions for future work.

II. MATHEMATICAL SETUP: NEAREST-NEIGHBOR
INTERACTION IN A PRESTRETCHED OSCILLATOR

CHAIN

We consider the following Hamiltonian system describing
M free oscillators interacting via a potential φ(r), with the
two ends clamped. Let un for n = 0, . . . , M + 1 denote the
displacements of the oscillators, with u0 = 0 and uM+1 = 0.

We also assume that the chain has been prestretched to a sepa-
ration value d. (Bold characters denote vectors whose compo-
nents are as in u = [u0, u1, . . . , uM , uM+1].) The Hamiltonian
is written as the sum of kinetic and potential energy, giving

H(u̇, u) = K (u̇) + V (u), where

K (u̇) =
M∑

n=1

1

2
u̇2

n,

V (u) =
M+1∑
n=1

[φ(d + un − un−1) − φ(d )].

From this we obtain the equations of motion (with the
index n = 1, . . . , M)

ün = φ′(d + un+1 − un) − φ′(d + un − un−1). (1)

If we consider the interaction potential to be of the LJ type,
scaled to have the dimensionless form,

φ(r) = 1

r12
− 2

r6
, (2)

the reference length, where force f is zero, is at r0 such that

∂φ

∂r
= f (r) = 0 ⇒ r0 = 1. (3)

Similarly, the inflection point is obtained from

∂2φ

∂r2
= 0 ⇒ ri =

(
13

7

)1/6

≈ 1.10868. (4)

In our considerations here, we will examine the possible
solutions of the corresponding static problem as parametrized
by d . Once a static solution u0 is identified we perturb them
by means of the ansatz:

un = u0,n + εeλtδn. (5)

Substituting in the equation of motion, written as

ün = Fn(u), (6)

we obtain

d2

dt2
(u0 + εeλtδ) = F (u0 + εeλtδ) (7)

or

ü0 + ελ2eλtδ = F(u0) + εeλt ∂F
∂u

∥∥∥∥
u0

δ + O(ε2). (8)

At O(1) we obtain the steady state equation, and at O(ε)
we have

λ2δ = ∂F
∂u

∥∥∥∥
u0

δ = J (u0)δ, (9)

where J is the Jacobian matrix. This is an eigenvalue problem
arising for the eigenvalue-eigenvector pair (λ, δ). The relevant
ith pair (i = 1, . . . , M ) will also be denoted by (λi, ei ) in
what follows. The analysis of (9) will allow us to assess
the spectral (linear) stability of the different solutions, as a
nonvanishing real part of the eigenvalue λ (positive λ2) will
be associated with dynamical instability (the perturbation will
grow), while for marginally stable solutions (the perturbation
will just oscillate) all λ will lie on the imaginary axis (negative
λ2).

III. BIFURCATION ANALYSIS OF THE LENNARD-JONES
CHAIN: A CRITERION

Before we embark on a systematic numerical computation
of the stationary solutions and their spectral properties, we
establish a theoretical criterion for stability motivated by our
numerical computations that will follow. Due to the nearest-
neighbor interactions between the particles, the equilibrium
states are particularly simple, as the balance of force on each
particle gives

φ′(d + un+1 − un) = φ′(d + un − un−1). (10)

We define the bond length (or strain) variables rn = d +
un+1 − un, where we have the equilibrium condition

φ′(rn) = φ′(rn−1), n = 1, . . . , M.

The Dirichlet boundary conditions u0 = uM+1 = 0 lead to the
total strain condition

M∑
n=0

rn = (M + 1)d. (11)

We let fmax = maxr φ′(r) = φ′(ri). For 0 < f < fmax,

there are two solutions to φ′(r) = f , one with 1 < r <

ri, the other with r > ri. We describe a bond with length
r < ri as elastic and with length r > ri as broken, and
define the two right inverses re:(0, fmax] → (1, ri] and
rb:(0, fmax] → [ri,∞) where φ′[re( f )] = φ′[rb( f )] = f for
every f ∈ (0, fmax]. In the following, we will consider equi-
libria containing one or more breaks.

Lemma 1. There is a minimal d for which one-break solu-
tions exist, corresponding to M + 1 isolated saddle points at
which the stability of the equilibria changes.

Proof. From the elastic and broken bond solutions, we can
parametrize the equilibrium states using the bond stress f .
Then a uniformly stretched chain has total length L0( f ) =
(M + 1)re( f ), whereas a chain with a single break has total
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length L1( f ) = Mre( f ) + rb( f ). Note that L0( f ) is a mono-
tone increasing function of f , whereas L1( f ) is not, it has a
local minimum when L′

1( f ) = Mr′
e( f ) + r′

b( f ) = 0.

The total energy for a chain with a single break is H1( f ) =
Mφ[re( f )] + φ[rb( f )], and we see

H′
1( f ) = Mφ′[re( f )]r′

e( f ) + φ′[rb( f )]r′
b( f )

= M f r′
e( f ) + f r′

b( f ), (12)

so that its local minimum corresponds to that of L1. We
can also show directly that this point represents a change in
stability for the single-fracture solution.

For that, consider a single-fracture equilibrium with strain
r, where we take without loss of generality r0 = rb and rn =
re for n = 1, . . . , M. We will denote the internal stress f =
φ′(re) = φ′(rb). We then consider the mean-zero perturbation
direction:

δn =
{

M n = 0,

−1 n = 1, . . . , M.
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FIG. 1. The top panel shows stable (blue, solid) and unstable
(blue, dashed) modes with one break as a function of the prestretch-
ing parameter d . Also shown (cyan) is the uniform stretch mode
(no breaks). The inset represents examples of the profiles with an
elastic (cyan), an unstable break (blue), and a stable break (red). As
d grows, the unstable mode merges with the uniform stretch mode.
The bottom panel shows the largest two eigenvalues of the one break
(again, solid for the stable part, dashed for the unstable), together
with the largest eigenvalue of the elastic (uniform stretch) mode. The
numbers in subscripts indicate the order of the eigenvalue, and the
subscript letters indicate stability, with s standing for stable and u for
unstable.

When applying a perturbation εδn, for positive ε, this enlarges
the break, proportionally shrinking the rest of the chain, and
inversely for negative ε. For large enough d, there are two
single-fracture equilibria possible, one stable and one unsta-
ble, with the unstable branch moving toward the no-break
solution for negative epsilon and toward the stable single-
fracture equilibrium for positive epsilon; see Fig. 1. Then we
expand the energy

H(r + εδ) = φ(rb + Mε) + Mφ(re − ε)

= φ(rb) + Mφ(re) + [Mφ′(rb) − Mφ′(re)]ε

+ [M2φ′′(rb) + Mφ′′(re)]
ε2

2
+ O(ε3).

The linear term in ε is zero since r is an equilibrium. The
quadratic coefficient satisfies

[M2φ′′(rb) + Mφ′′(re)] = Mφ′′(rb)φ′′(re)

[
M

φ′′(re)
+ 1

φ′′(rb)

]

= Mφ′′(rb)φ′′(re)[Mr′
e( f ) + r′

b( f )],

where the last equality follows from differentiating
φ′[re( f )] = φ′[rb( f )] = f . This has a zero (that is, a change
of concavity) exactly when L′

1( f ) does as well. �
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FIG. 2. The top panel shows the amplitude of the two-break
solutions as a function of prestretching, d . The inset represents an
example of the two profiles for a given d . The bottom panel shows
the two largest eigenvalues of this branch (for both its energy and
strain increasing and decreasing segments), which is always unstable.
Note that it exists only for a higher prestretching than the one-break
modes. Subscripts in legend as in Fig. 1.
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This calculation suggests that motion along this eigendirec-
tion becomes neutral as we cross the relevant critical point of
the length or energy curve as a function of the precompression
parameter d . As a result, crossing this point will induce a
change of stability along the corresponding eigendirection, a
feature that we will monitor further in our detailed computa-
tions below. It is relevant to point out here that the stability
criterion developed herein is in line with recent criteria (based
on energy monotonicity changes upon suitable parametric
variations) for stability of both traveling waves in lattices
[19,20] and breather-like periodic orbits [21].

Note that the criterion proved above is applicable to any
potential that has a change of concavity and a maximum for
the absolute value of the force.

IV. NUMERICAL RESULTS FOR THE
NEAREST-NEIGHBOR LENNARD-JONES POTENTIAL

A. Steady state

In our existence computations, we identified stationary
solutions via a fixed point (Newton) iteration scheme. Using
Eq. (9), we also calculate the eigenmodes ei and correspond-
ing eigenvalues λi of that configuration (where the index in
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FIG. 3. The top panel shows the amplitude of the three-break
solutions as a function of prestretching, d . The inset represents an
example of the solution profiles for a given d . The bottom panel
shows the three largest eigenvalues associated with the saddle and
center portions of the three-break branch, which are both always
unstable. Subscripts in legend as in Fig. 1, but now the 3 lowest
eigenvalue pairs are shown.

both λ and e labels an ordering, which we choose to be of
decreasing magnitude of λ2). Upon identifying a member of
a particular family of solutions (with one or more breaks or
fractures), we performed a continuation in the parameter d .
When a turning point was reached, the direction of variation
of d was reversed, and care was taken to ensure the segment
of the curve followed was a different one (see Figs. 1–3). A
more detailed description of the numerical procedure can be
found, e.g., in Ref. [22].

In what follows we will be showing results obtained for a
chain with 20 free nodes.

1. One break

In Fig. 1, top panel, we have represented the amplitude of
the broken bond as a function of the continuation parameter d .
Two modes were found, a stable (blue, solid) and an unstable
one (blue, dashed). The elastic (no breaks) mode is also shown
(cyan, solid). The inset shows the corresponding profiles for
select values of d . These broken states exist only above d =
1.034, the turning point of the branch. The unstable one-break
branch can also be identified in the figure as bifurcating from
the uniform elastic solution at the critical strain d = ri.

In the bottom panel we show the highest eigenvalue for
each d and the second highest if the mode is unstable. As
per the analysis of the previous section, the monotonicity
change of the maximal strain is correlated with the stability
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FIG. 4. Combined results for elastic and one- to five-break
branches. The top panel summarizes our results for break length, and
the bottom panel shows the energy of these branches as a function of
the potential prestretching parameter d .
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change of the one-break solutions. We have indeed confirmed
that the maximal strain, as well as the total length of the
chain, but also, importantly, the energy of the configuration all
have turning points at the location of the change of stability
of the branch. In particular, the monotonically increasing
portion of the branch is associated with stability, while the
monotonically decreasing one with instability. Let us now see
how the situation is modified in the presence of an additional
break.

2. Two breaks

The configuration with two breaks was found to be always
unstable; see Fig. 2. In this case too, the branch was found to
possess two segments, one of which with two unstable eigen-
value pairs (the additional one stemming from the monotonic-
ity of the energy as a function of the precompression strain
d), while the other one with only one unstable eigenvalue
pair. These two branch segments once again terminated in a
saddle-center bifurcation at a critical value of d , higher than
that of the one-break branch.

3. Three breaks

Similar conclusions could be drawn for the case with three
breaks; see Fig. 3. Here the different segments of the branch
generically possessed two unstable eigenvalue pairs. The one
with the monotonically increasing dependence on d had only
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FIG. 5. For the one-break branch, the upper (top row) and lower
(bottom row) segment eigenvectors (ê1,2) are shown in the left
panel (the two principal ones). The right panels show the one-break
solutions with 0.2 × ê1,2. Here d = 1.05, as in the inset of Fig. 1.

these two unstable modes, while the decreasing one, just as
before, featured an additional pair of unstable eigenvalues.
From this, as well as our additional results involving modes up
to N = 5 breaks, a general picture is emerging regarding the
stability properties of the different branches. As illustrated in
Sec. III, the change of monotonicity of the energy is associated
with a change of stability of a particular eigenmode. For
the relevant eigenmode, an increasing energy as a function
of d results in stability (along this eigendirection), while
a decreasing energy leads to instability. In addition to this
eigendirection, the presence of N breaks implies the existence
of an additional N − 1 unstable eigenmodes. These features
are summarized in Fig. 4 showcasing the dependence of the
maximal strain as well as of the energy on the precompression
strain d . We also performed a similar bifurcation study for
the scenario of periodic boundary conditions and found that
the results were qualitatively similar. As such we chose not
to include them here. Now, we discuss the implications of
the excitation of the corresponding unstable eigenvectors, as
a preamble towards predicting the dynamical evolution of the
associated instabilities.

4. Geometry of the principal eigenmodes

Our aim in the present section is to explore the ex-
act stationary solutions when the unstable eigenmodes are
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FIG. 6. Similar to the previous figure, but now for the two-break
branch, for d = 1.07, as in Fig. 2. In the right panel, a perturbation
involving the relevant eigenvectors, 0.2 × ê1,2, has been added to
the two segments (increasing or decreasing in the top or bottom,
respectively) of the branch.

022201-5



A. S. RODRIGUES, P. G. KEVREKIDIS, AND M. DOBSON PHYSICAL REVIEW E 99, 022201 (2019)

appended to them, in order to appreciate the paths that the
system can take towards the decay of the unstable stationary
states. The next series of plots show the modes found above
together with the eigenvectors that are associated with their
potential instabilities, as identified before. The right panels
show a linear combination of the mode with a small pertur-
bation in the form of each eigenvector represented on the
left panels. In Fig. 5 and the following similar figures, the
weight given to the perturbation was exaggerated for clarity.
On the corresponding dynamical simulations, small weights
were applied, consistent with the linear stability hypothesis
behind the calculation leading to those eigenvectors. This is
shown for the upper and lower segments of branches in the
top and bottom rows, respectively.

In Fig. 5 we show the effect of the eigenvector correspond-
ing to the largest eigenvalue on the shape of the modes, for up-
per (linearly stable) and lower (unstable) single-break branch
segments. In this case we also show the second eigenvector
for illustration, but it always has λ2 < 0, so its effect will be
oscillatory (i.e., the mode will be marginally stable and will
not lead to instability). At first sight the eigenvectors seem
to have opposite effects, but we can always perform a phase
shift of π (since there is the freedom of multiplying them by
any real constant). The important difference lies on the sign
of λ2, which is negative for the upper branch segment, and
so its effect is to solely lead to a benign oscillation, while
for the lower branch segment it grows with time. It is this
growth that leads to destruction of the mode. The decay can
lead to two distinct results, as will be shown below: in the form
shown, ê1 will make the unstable state u1l (subscript l for the

lower segment branch and u for the upper branch segment)
grow towards a stable 1 break waveform on the upper branch
segment, albeit a oscillating one, given the nondissipative,
Hamiltonian nature of the model. However, if we change the
sign of the perturbation it will decay to the elastic mode,
shedding some energy in the form of small-amplitude waves
in the process.

In Fig. 6 we show a similar representation for the two-break
case. The two leading eigenvectors alternate in parity with
respect to the breaks, and so it is expected that they appear
to seed different dynamical evolutions. For example, for the
unstable lower branch, one of these eigendirections involves
the two breaks moving in concert, moving towards either the
larger two-break solution or the uniform state.

On the other hand, addition of the other eigendirection (the
one that is generically unstable) tends to convert the two-break
state into a one-break one, i.e., to eliminate one of the two
breaks. Similar interpretations can be generalized in the case
of the three-break solution, with the only difference that now
there are two generically unstable eigendirections, tending to
reduce the number of breaks in the system.

The analogous representation for the three-break mode is
shown in Fig. 7. Here the most unstable eigenmode ê1 for the
upper segment is either “in-phase” (IP) with the side breaks
and “out-of-phase” (OOP) with the central one (as represented
in left upper panel of the Fig. 7, blue circles) or vice versa.
This causes the elimination of the central break, allowing for
the survival of the lateral ones, if added (as represented in the
middle top panel of the same Fig. 7), or induces the decay the
lateral ones, and survival of the one in the middle, that grows

5 10 15 20
n

-0.5

0

0.5

e i
,u

3b

(d)

e1

e2

e3

u3b

5 10 15 20
n

-0.2

0

0.2

(e)u3b + e1

u3b + e2

u3b

5 10 15 20
n

-0.2

0

0.2

(f)u3b + e3

u3b

5 10 15 20
n

-0.5

0

0.5

e i
,u

3b

(a)

e1

e2

e3

u3b

5 10 15 20
n

-0.4

-0.2

0

0.2

0.4 (b)
u3b + e1

u3b + e2

u3b

5 10 15 20
n

-0.4

-0.2

0

0.2

0.4 (c)u3b + e3

u3b

FIG. 7. Similar to the previous figures, but now for the three-break branch, and d = 1.07, corresponding to the inset of Fig. 3. Here, too,
a perturbation in the direction of the leading eigenvectors of the form 0.2 × ê1,2,3 was added to the upper (top row) and lower (bottom row)
segments of the branch (middle and right columns). The left column shows the mode profile and the first three eigenvectors; the middle column
shows the linear combination of the mode with the first or second eigenvector; the right column shows the linear combination of the mode with
the third eigenvector.
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FIG. 8. The dynamical evolution of the one-break branch is shown in spatiotemporal (n − t) contour-plot form of the displacements.
The initial condition consists of the stationary solution with a perturbation of ±0.01 × ê1 added to it, for d = 1.05. (a) Upper (linearly
stable) segment branch mode u1u + 0.01 × ê1; (b) upper segment branch mode u1u − 0.01 × ê1; (c) lower (unstable) segment branch mode
u1l + 0.001 × ê1; (d) lower segment branch mode u1l − 0.001 × ê1. In the last two, the instability leads, respectively, to oscillations around
the upper segment branch and to degeneration to the homogeneous state.

to a stable oscillating one break, if subtracted. The second
most unstable eigenmode ê2 has a different parity (see again
left upper panel, but now the red triangles), so it is natural to
expect that whether added or subtracted will essentially lead
to a qualitatively similar result. Again from the middle top
panel, we see that it will initially reduce one of the lateral
breaks and increase the size of the other, the middle one
remaining essentially unchanged. As for the third eigenmode,
it is stable for this upper segment, i.e., will not lead to
growth or decay, but only oscillation. From the right upper
panel we see that its effect is more pronounced on the lateral
breaks.

For the lower segment, from the lower left panel we can
see that the general characteristics of the three eigenmodes
represented do not differ from those of the upper segment.
Given the smaller size of the mode of the lower segment,
however, its effects can be more pronounced. This is apparent
on the middle and right lower panels, where the central (for

ê1), or left (for ê2) breaks have essentially disappeared. Now
the third eigenvalue is also unstable. So the effects of the
highest two eigenmodes should be qualitatively the same as
for the upper segment. The third eigenvalue however, can
show changes, as now it can lead to decay of all three breaks
(if we have it OOP with the mode, i.e., opposite to the situation
represented).

We now turn to the dynamical evolution of the branches,
armed with the interpretation of the different unstable states
and their associated eigendirections.

B. Dynamics

We start by illustrating the potential outcomes of the evo-
lution of a one-break state. In Fig. 8 we show the evolution of
such a state at the value corresponding to the profiles shown
in Fig. 5, i.e., for d = 1.05. On the upper row we start with an
upper branch segment (stable) one-break mode. We can see
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FIG. 9. Similar to Fig. 8. Here the initial condition consists of the two-break waveforms with a perturbation added in the form of the second
eigenmode, ±0.01 × ê2, for d = 1.07. (a) Upper segment branch mode u2u + 0.01 × ê2; (b) upper segment branch mode u2u − 0.01 × ê2; (c)
lower segment branch mode u2l + 0.01 × ê2; (d) lower segment branch mode u2l − 0.01 × ê2. Notice that although we perturb the wave in the
direction of the less unstable eigenmode ê2, the more unstable one (ê1) eventually crucially contributes to the destabilization dynamics of both
segments of the two-break branch.
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FIG. 10. Similar to the previous figures, but now for a three-break branch with a perturbation ±0.05 × ê3, for d = 1.07. (a) Upper segment
of the branch mode u3u + 0.05 × ê3; (b) upper segment of the branch mode u3u − 0.05 × ê3; (c) lower segment of the branch mode u3l +
0.05 × ê3; (d) lower segment of the branch mode u3l − 0.05 × ê3. In all four cases, eventually the dynamics results in a one-break state.

that, even with a moderate perturbation (in this case a compo-
nent proportional to the eigenvector of the largest eigenvalue),
the waveform is able to maintain its shape for the duration of
the propagation, although there is some oscillation due to the
extra energy stemming from the perturbation. We ensured that
the numerical scheme conserved the initial energy throughout
the propagation duration.

On the other end, the bottom panels show the evolution
starting with the unstable one-break solution for the same
d . Here the amount of perturbation introduced was much
smaller (by an order of magnitude), and yet very quickly this
one-break decays. Importantly, however, the two distinct evo-
lutions of Figs. 8(c) and 8(d) illustrate that depending on the
direction of the perturbation, the unstable one break (operating
as a separatrix) may lead either towards the stable one-break
branch segment (featuring large amplitude oscillations) or
towards a homogeneous state. These two radically different
behaviors shown in Figs. 8(c) and 8(d) confirm what was
hinted in Fig. 5: adding the most unstable eigenvector takes
the system to the stable one-break solution, while subtracting
takes it to the elastic state. It is interesting to point out that
even without introducing any noise explicitly, the numerical

round-off error would also have eventually lead to similar
dynamics.

In Fig. 9 we represent now the result of propagation of
a perturbed two-break solution, corresponding to the profiles
shown in Fig. 6, for which d = 1.07. The main difference now
is that the highest eigenvalue is positive for both branch seg-
ments, and so it dominates the motion. As a result, although
we perturb only with the second eigenvector (which is only
unstable for the lower segment of the branch), even the upper
branch segment suffers decay because of numerical noise,
although it takes longer to develop. Thus adding or subtracting
the second eigenvector leads essentially to a (later) decay into
a one break. For the lower branch adding ê2 should lead to
an oscillation around an upper branch two-break waveform,
yet the effect of contamination by a ê1 causes one of them to
decay. Subtracting ê2 should lead to an elastic mode, and that’s
what the simulation shows during an initial stage. However,
the energy present is enough to eventually “nucleate” a stable
one break.

The scenario of the evolution of a perturbed three break is
shown in Figs. 10–12. Here, as explained above, there are two
unstable eigenvalues present for all elements of these branches
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FIG. 11. Same as Fig. 10, but with perturbation ±0.05 × ê1, for d = 1.07. (a) Upper segment of the branch mode u3u + 0.05 × ê1; (b)
upper segment of the branch mode u3u − 0.05 × ê1; (c) lower segment of the branch mode u3l + 0.05 × ê1; (d) lower segment of the branch
mode u3l − 0.05 × ê1. The resulting dynamics is more diverse, potentially leading to a homogeneous state in panel (c), the survival of a central
break in panels (b) and (d), as well as the survival of one of the lateral breaks in panel (a).
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FIG. 12. The three-break waveform is perturbed by ±0.05 × ê2, for d = 1.07. (a) Upper segment of the branch mode u3u + 0.05 × ê2; (b)
upper segment of the branch mode u3u − 0.05 × ê2; (c) lower segment of the branch mode u3l + 0.05 × ê2; (d) lower segment of the branch
mode u3l − 0.05 × ê2. In all cases, one of the lateral breaks asymptotically persists.

of solutions. Therefore even more so than the two-break case,
the effects of ê3 are harder to see, as any numerical noise
contamination introducing ê1 and/or ê2 will have stronger
consequences. That is the reason why we chose to increase
the strength of the perturbation here compared to the one- and
two-break cases. The eigenvector ê3 is antisymmetric like u3.
For the lower segment of the branch, as noted before it will
increase or decrease all breaks but more so the central one (as
ê3 is larger there). So if added, the central break grows at the
expense of the side ones to lead to a stable one break (left
bottom panel of Fig. 10). If subtracted it will collapse all three
breaks to the elastic mode, yet the extra energy will eventually
allow the creation of a one break; see the right bottom panel
of Fig. 10. Note that the decay happens very soon (t ≈ 2.5),
so it is hardly discernible in Fig. 10(d).

In the case of the upper segment of the branch its third
eigenmode has a central “break” rather smaller than the side
ones; see the left upper panel of Fig. 7. Thus, when added or
subtracted to the stationary state, its influence is mainly on
the side breaks, leading them to oscillate, given the negative
sign of λ2. This behavior, however, can be seen only for very
short times. As previously mentioned, contamination with
any of the lower eigenmodes, especially so the first which
has the same parity, will lead to decay, governed mostly by
those lower eigenmodes. This is evident on the dynamical
simulation in the upper panels of Fig. 10.

Turning now to the influence of the stronger eigenmodes,
notice that ê1 is IP with the side breaks but OOP with the
central break. Then, in general, its effect will be to lead to
the survival of the two side breaks by adding it, or the middle
one by subtracting it. As we have seen before the two break is
also unstable, so one of those two will later collapse as well
(see, e.g., the top left panel of Fig. 11). Notice the similarity
between Fig. 11(b) and the upper panels of Fig. 10, pointing
to the influence of ê1 in that case.

The effect of ê2, on the other end, being an even mode is
nearly the same whether we add or subtract it to the mode.
From its shape, we can infer that it will collapse one of the
side breaks, while increasing the other, and at an initial stage
not influence much of the central one. But of course the two
break state thus formed is also unstable, and one break (the

central one in this case) will soon disappear as well towards a
one-break state. This is confirmed in Fig. 12.

V. CONCLUSIONS AND FUTURE WORK

In the present work, we have examined solutions involving
different numbers of fractures or breaks in a chain featuring
a Lennard-Jones potential of interaction between the nodes
and Dirichlet boundary conditions at the edges. We saw that
for each of the solutions beyond the uniform, elastic one,
there was a (more) stable and a (more) unstable portion of the
branch, separated by a critical point where the monotonicity
of the strain and/or the energy as a function of the precom-
pression stress changed. At the same time, while the single-
break solutions could be potentially stable, any state with
N > 1 break would feature N − 1 real eigenvalue pairs, being
associated with respective instabilities. By monitoring the
eigendirections of these instabilities, we could connect them
with the tendency to eliminate one or more breaks from the
chain and result to fewer break, more robust waveforms. Such
diagnostics led us to gain insights not only on the stability of
different states but also importantly on the dynamics of such
unstable states and overall metastable (transient) dynamics of
the system.

These conclusions of the stability analysis were subse-
quently corroborated by means of direct numerical simula-
tions featuring the unstable evolution of controlled numerical
experiments where the instability-inducing eigenvectors were
added to the unstable structures. Another important aspect of
these results is the ability to controllably steer the evolution
of a profile towards another, intended, profile. For this it is
crucial to have a detailed understanding of the relative stability
of the modes and of the nature (e.g., in-phase or out-of-phase)
of the required perturbation.

Naturally, a number of additional directions for future
research are emerging as a result of the present study. On the
one hand, in the 1D setting, it is especially relevant to explore
the role of interactions beyond those of nearest neighbors. In-
ducing next-nearest-neighbor interactions in competition with
nearest-neighbor ones may be a topic that will modify the sta-
bility of the presently considered states and will be of interest
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to explore in light of zigzag [23] and related configurations.
On the other hand, it would be of particular interest to explore
how configurations like the ones considered herein behave in
higher dimensional settings. The latter offer the possibility
of different types of geometries (e.g., in a two-dimensional
square, hexagonal, honeycomb, etc.) and thus may induce an
interplay of geometry with the nonlinear interactions that may
introduce novel states. Such studies are currently in progress
and will be reported in future publications.
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