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In two-dimensional Lennard-Jones (LJ) systems, a small interval of melting-mode switching occurs below
which the melting occurs by first-order phase transitions in lieu of the melting scenario proposed by Kosterlitz,
Thouless, Halperin, Nelson, and Young (KTHNY). The extrapolated upper bound for phase coexistence is
at density ρ ∼ 0.893 and temperature T ∼ 1.1, both in reduced LJ units. The two-stage KTHNY scenario
is restored at higher temperatures, and the isothermal melting scenario is universal. The solid-hexatic and
hexatic-liquid transitions in KTHNY theory, even so continuous, are distinct from typical continuous phase
transitions in that instead of scale-free fluctuations, they are characterized by unbinding of topological defects,
resulting in a special form of divergence of the correlation length: ξ ≈ exp(b|T − Tc|−ν ). Here such a divergence
is firmly established for a two-dimensional melting phenomenon, providing a conclusive proof of the KTHNY
melting. We explicitly confirm that this high-temperature melting behavior of the LJ system is consistent with
the melting behavior of the r−12 potential and that melting of the r−n potential is KTHNY-like for n � 12 but
melting of the r−64 potential is first order; similar to hard disks. Therefore we suggest that the melting scenario
of these repulsive potentials becomes hard-disk-like for an exponent in the range 12 < n < 64.
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I. INTRODUCTION

Since the work of Mermin and Wagner, melting in two
dimensions (2D) has been controversial [1,2]. Only quasi-
long-range (QLR) positional order is possible in 2D; however,
the orientational correlations could be long ranged. Kosterlitz,
Thouless, Halperin, Nelson, and Young (KTHNY) theory
proposes an upper bound for this phase of matter which
is reached by unbinding of dislocations [3–6]. Beyond this
threshold, the positional correlations are short ranged but the
orientational correlations are quasi-long-ranged. This phase of
matter intermediating between the solid and liquid phases is
called hexatic. Unbinding of disclinations, which are another
type of topological defects, destroys the QLR orientational
order.

Typical continuous phase transitions occur between phases
with long-ranged and short-ranged order. The spatial corre-
lations of the order parameter in these phases have the form
c(r) ∝ exp(−r/ξ ) + c(∞), where c(∞) is nonzero (zero) for
long (short)-ranged order, r is distance, and ξ is the correlation
length. The correlations are algebraic at the critical point of
these phase transitions: c(r) ∝ r−η, where the exponent η de-
pends only on the basic characteristics such as dimensionality
and symmetry properties of system. Thus, fluctuations of the
order parameter do not have a length scale, and the thermody-
namic properties of the system become independent of micro-
scopic details; this is the source of universality in continuous
phase transitions. In the vicinity of the critical temperature
T → Tc, this universality manifests itself in the exponents
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of power-law divergence or vanishing of several quantities
such as the correlation length ξ ∝ |T − Tc|−ν , where ν is a
universal number.

The defect-mediated continuous phase transitions pro-
posed by Kosterlitz and Thouless (KT) occur between a phase
in which the correlations are already algebraic and a phase
with short-ranged correlations. Near liquid-hexatic phase tran-
sitions, KTHNY theory predicts that the correlation length of
sixfold orientational order diverges as ξ6 ≈ exp(b/|T − Tc|ν ),
where ν equals 1/2 and b is a constant. A similar divergence
with ν ≈ 0.37 is predicted for the positional correlation length
near the hexatic-solid transition. KT theory has been contro-
versial in the melting problem because it could be preempted
by other mechanisms. For instance, Chui [7] proposed for-
mation of grain boundaries which cause a first-order phase
transition. The melting may also be induced by local disorder
and phase coexistence [8]. The two phases in equilibrium are
separated by an interface, and the free energy of the system is
minimized when the interfacial area is minimized. Hence, the
free energy barrier between two phases is proportional to the
size of interface and the perimeter of the system rather than its
volume.

Several scenarios have been observed experimentally:
KTHNY melting for superparamagnetic colloids [9] and grain
boundary melting for complex plasmas [10]. A liquid-hexatic
phase coexistence was reported for colloids [11,12]. In sim-
ulation of hard disks, the hexatic-liquid phase transition was
found to be first order [13,14] which is verified by experiment
[15]. The range of pure hexatic phase was so narrow that by
addition of a low concentration of smaller disks it totally dis-
appeared [16]. By increasing the particle size polydispersity
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of the hard disks the melting scenario switches to KTHNY
transitions [17]. Hard regular polygons with seven or greater
vertices melt similarly to the hard disks, while for polygons
less than seven vertices melting depends on the shape and
symmetry of the polygons [18]. For systems with ∝ r−n

repulsive interactions [19], a crossover occurs from KTHNY-
like for n � 6 to hard-disk-like for n > 6. A similar crossover
occurs for the Morse potential [20]. In simulations of other
typical models of purely repulsive soft-core disks, the melting
scenario changes from first order to continuous transitions as
the density increases [21]. Switching of the melting scenario
has also been confirmed in stif and soft polymeric particles
[22].

A variety of observed scenarios, which are mostly limited
to purely repulsive soft and hard disks, show that melting in
2D is a complex phenomenon. Here we investigate melting of
Lennard-Jones (LJ)-type systems in 2D. The potential is given
by

U (r) =
{

4ε[(σ/r)12 − (σ/r)6] − U0 r � rc

0 r > rc
, (1)

where rc = 2.5σ and U0 is calculated by U (rc) = 0. All
quantities are expressed in LJ units with ε/σ/kB = 1. Also,
the mass of an atom is 1 so that we may use “density” and
“number density” interchangeably.

We explore the phase diagram of this model by extensive
Monte Carlo simulations in a NVT ensemble. Isotherms span-
ning the melting phase transitions are simulated at several
temperatures in the range [0.5,10], and finite-size effects are
explicitly taken into account. We see that the melting scenario
changes from first order to continuous phase transitions as
the temperature becomes larger than T ∼ 1.1. The two-step
continuous melting scenario persists at high temperatures, at
least up to the highest temperature we have checked. This
seems to be at odds with a previous study [19] which suggests
melting of power-law r−n repulsive potentials is first order
for n > 6. The LJ system may effectively be considered as
power law with n = 12 at high temperatures. We address
this by repeating Monte Carlo simulations for r−12 and r−64

potentials with a larger number of particles than considered
before, and we show that for large enough systems, the first-
order characteristics of melting of the r−12 potential reported
in Ref. [19] disappear. Simulations with 5122 particles are
consistent with the continuous melting scenario that we ob-
serve for the LJ system at high temperatures.

II. METHOD

The event chain Monte Carlo (ECMC) algorithm [23,24] is
used for the equilibration and sampling. A perfect hexagonal
solid with the geometry of (1,

√
3/2)La0 was considered as

the initial state where L = √
N is the linear size of the system

and a0 is the natural lattice spacing for a given density (ρ =
1/v, v = a2

0 sin (π/3)/2). Simulations were carried out in the
NVT ensemble subject to the periodic boundary conditions.
We considered nine isotherms at temperatures T = 0.5, 0.7,
1, 1.5, 2, 3, 5, 7, and 10, about 25 densities with spacing
of δρ ∼ 0.002 for each isotherm, and three sizes of N =
1282, 2562, 5122 particles.

The ECMC algorithm is a rejection-free Monte Carlo
method that displaces a chain of particles in one move. To
ensure equilibration of systems as large as 5122 particles,
(1 − 2) × 107 displacements per particle were performed.
This length for the simulations is chosen so that two simula-
tions with different initial configurations converge. The equi-
libration is discussed with more details in the Supplemental
Material [25] (SM).

III. PHASE DIAGRAM

The phase diagram of this system obtained from ECMC
simulations is shown in Fig. 1(a). Detailed plots of equations
of state and relevant correlation functions are in the SM [25].
When T � 1.0, there is a Mayer-Wood loop [26] in the equa-
tion of state, indicating a phase coexistence. Then the equi-
librium pressure p0 and the volume interval 
v = vl − vs of
phase coexistence are determined by Maxwell constructions.
The free energy barrier 
F is related to the integral of the
equation of state in this interval. 
F should be proportional
to the linear size of system (∝ √

N) at phase coexistence
and 
 f = 
F/N ∝ 1/

√
N . This is asymptotically true at

T = 0.5 [Fig. 1(c)]. By extrapolation, the phase coexistence
interval disappears at T ≈ 1.1 [Fig. 1(d)].

Here we introduce a simple transformation so that the
regions in the phase diagram are easily referenced. The order-
disorder curve (obtained by fitting) is defined by

ρ0(T ) = a( ln(T ))2 + b ln(T ) + c T ∈ [0.5, 10], (2)

with the fit parameters a = 0.0183, b = 0.0973, and c =
0.8839. This is shown by the solid green+black (light+dark
gray) curve in the phase diagram of Fig. 1(a). On this curve the
orientational correlations change from QLR to short ranged
corresponding to the hexatic-to-liquid phase transition. If the
hexatic phase is preempted by phase coexistence, this curve is
the density at which the two coexisting phases occupy equal
volumes in the system. We define the “relative density” as


ρ(T ) = ρ − ρ0(T ), (3)

and (
ρ(T ), T ) are hereafter considered as the independent
parameters instead of (ρ, T ). In this notation the extrapolated
liquid-hexatic-coexistence triple point in the phase diagram
Fig. 1(a) is located at (
ρ, T ) ≈ (0, 1.1).

The solid-hexatic and hexatic-liquid phase transitions at
high temperatures are driven by the (QLR to short ranged)
transformations of the positional and orientational correla-
tions, which are discussed next.

IV. CORRELATIONS

The hexagonal order parameter (hex-order) is defined as

ψi = 1

ni

∑
j

(Ai j/Ai )e
6iθi j , (4)

where the sum is over the nearest neighbors of i; ni is the num-
ber of nearest neighbors; θi j is the angle of�r j −�ri with respect
to the x axis; Ai j is the length of the edge that the Voronoi
polygons of particles i and j share; and Ai = ∑

j Ai j . Clearly,
the neighborhood relations are weighted [27]. Another com-
mon definition of the hex-order is ψi = (1/6)

∑6
j=1 e6iθi j ,
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FIG. 1. (a) Phase diagram of the LJ system for 5122 particles (lines are interpolations). Continuation of the hexatic phase with similar
density width is verified up to T = 10. The extrapolated upper bound for phase coexistence is at ρ ∼ 0.893 and T ∼ 1.1. The green+black
(light+dark gray) solid curve is ρ0(T ) given by Eq. (2). Above the red+black (light+dark gray) dashed curve orientational correlations are
long ranged. Above the dotted curve, positional correlation functions are perfectly power law [g(x, 0) ∝ x−η] with an exponent η � 1/3.
Between the dashed and dotted curves g(x, 0) decays as a power law up to moderate distances (with η slightly higher than 1/3) but slightly
faster than power law at the largest distances due to the finite-size effects. The uncertainty in density is 0.005 for the dotted line and 0.002 for
all other lines and symbols. (b) The shifted pressure-density equations of states at temperatures, from bottom to top, are 0.5, 0.7, 1, 1.5, 2, 3,
5, 7, and 10 for 5122 particles. Boundaries of phase coexistence are obtained by Maxwell constructions and marked by × signs on isotherms
[and by blue triangles in (a)]. (c) Scaling of the free energy barrier per particle with the system size at T = 0.5. The solid line is proportional
to 1/

√
N . (d) The volume (v = 1/ρ) interval of phase coexistence disappears at T ∼ 1.1.

where the sum is over six closest neighbors. In the following
we distinguish between two definitions by using the terms
weighted and weightless hex-order. The weighted definition is
computationally much more expensive, but it has the benefit
of being a continuous function. We have used this definition
in all of our ECMC simulations. The orientational order
parameter is  = 1/N

∑
i ψi, and the orientational correlation

function is

g6(r) =
〈

1

N

∑
i, j

ψiψ
∗
j δ(r − |�ri −�r j |)

〉
. (5)

The 2D pair distribution function is

g(x, y) = 1

ρ

〈
1

N

∑
i

ρ(x − xi, y − yi )

〉
, (6)

where ρ(�r) = ∑
j δ(�r −�r j ), and the direction of the x axis

is parallel to the direction of symmetry axis of solid. By
integrating and normalizing this function at constant radius,
x2 + y2 = r2, the conventional radial distribution function
(RDF) gr (r) is recovered.

The spatial form of these correlation functions at important
temperatures and densities are plotted in the SM [25]. We
extract the main information from these correlation functions
by fitting them to the exponential ∝ exp(−r/ξ ) and algebraic
∝ r−η forms. The temperature and density dependence of
the correlation length ξ and/or the exponent η provides an
abstract description of the correlation functions.

In the liquid phase, the orientational correlations g6(r)
are short ranged and described by a correlation length ξ6.
These correlations become algebraic in the hexatic phase and
are described by an exponent η6. ξ6(
ρ, T ) and η6(
ρ, T )
are plotted in Figs. 2(a) and 2(b). They become independent
of temperature at T > 1.1. The solid curve (fit to bullets) in

Fig. 2(a) is a fit to the correlation length with the form

ξ6(
ρ) = exp(b/
√

αN − 
ρ), (7)

where b equals 0.28 and the size dependence of correlation
length is expressed in αN , which is equal to 0.0027, 0.0016,
and 0.0007 for the sizes of 1282, 2562, and 5122 particles (see
Fig. S5 [25] for size dependence of ξ6). From these numbers,
it is easy to see that αN ∝ 1/

√
N . This form of divergence

of correlation length strongly supports KTHNY theory, while
the slower variation observed at low temperatures is consistent
with phase coexistence.

The exponent η6 is ∼1/4 when 
ρ = 0 and it be-
comes zero at (
ρ, T ) ≈ (0.013, T > 1.1), (0.015,0.7), and
(0.017,0.5) [see inset of Fig. 2(b)]. The orientational corre-
lations are long ranged beyond these densities. In Fig. 1(a),

ρ(T ) = 0.013 is plotted in the black (dark gray) dashed
curve, while the nonuniversal values at T < 1.1 are plotted
in the red (light gray) dashed curve. At T > 1.1, even so g6

becomes perfectly long ranged at 
ρ = 0.013, g(x, 0) and gr

become perfectly power law at 0.025 ± 0.005 (shown by the
dotted curve). The true solid-hexatic phase transition should
be at a density in this range. Within this range the positional
correlations decay faster than a power law at distances larger
than r ∼ ζ/2, where ζ = L/2 is the largest distance in the
system, but are perfectly power law at shorter distances and,
overall, are better described with a power law than an expo-
nential function [Fig. 2(c)].

For an infinite system there are clear distinctions between
short-ranged, long-ranged, and power-law correlations. In
such a system the respective transformations in g6 and g(x, 0)
near solid-hexatic transition should occur at the same density.
But for a finite system, there could be a range of functions
between clear short-ranged and clear power-law limits. For
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FIG. 2. Temperature dependence of correlation-derived quantities for 5122 particles. Plots of raw correlation functions and size dependence
analysis are provided in the SM [25]. The color codes for temperatures are given at the right side. The scatter plots verify that, for instance,
ξ6(
ρ, T ) → ξ6(
ρ ) at T > 1.1. The correlations at T = 1 differ only slightly from that of T > 1.1. (a) Orientational correlation length.
(b) Exponent of the algebraic fits to the orientational correlations. (c) Relative error of exponential and power-law fits to the RDF. Error is
estimated from variance of the difference between the fit and the raw correlation function at r > 10. (d) Correlation length of the RDF.

instance, a function could decay faster than a power law but
still be nonzero at the largest meaningful distance.

In simulation of hard disks [13], g6 became perfectly
long ranged immediately above the phase coexistence but
g(x, 0) was still “clearly short ranged.” Since long-ranged
orientational correlations are inconsistent with short-ranged
positional correlations, they concluded that the system must
be in hexatic phase with a power law g6 but with a very
small exponent η6 → 0+. Here, up to the largest systems
simulated, the positional correlations are not “clearly short
ranged” beyond 
ρ > 0.013. Thus we perform a finite-size
scaling analysis and exploit the universality of correlations at
T > 1.1. The 
ρ at which η6 becomes zero increases slowly
with the system size (see Fig. S5 [25]): 0.010 for 1282, 0.012
for 2562, and 0.013 for 5122 particles, hence very close to
0.013 for larger sizes.

The correlation length ξr of the RDF, plotted in Fig. 2(d),
has very little temperature dependence. The solid curve (fit to

bullets) is obtained by fitting ξr to

ξr (
ρ ′) = exp(c/|βN − 
ρ ′|ν ), (8)

where 
ρ ′(T ) = 
ρ(T ) − 0.013, ν = 0.39, c = 0.375, and
βN = 0.007, 0.005, 0.004 for the sizes 1282, 2562, 5122. Es-
pecially near 
ρ(T ) = 0.013 the temperature dependence of
ξr is much weaker than its size dependence. If the exponential
form is assumed for gr at 
ρ > 0.013, the resulting cor-
relation length shows a size dependence which switches its
behavior at 0.013 (see Fig. S5(d) [25]). Therefore the density
at which η6 becomes zero yields a coherent picture for the
solid-hexatic phase transition.

In summary, we suggest that vanishing of η6 accompanied
by finite-size scaling should be used for determination of
the hexatic-solid phase transition. Based on this criterion, the
dashed lines in the phase diagram Fig. 1(a) are very close to
the upper bounds of the hexatic phase in thermodynamic limit
and the hexatic phase totally disappears at 0.7 < T < 1.

0.797 0.827 0.857
ρ

0.932 0.962 0.992
ρ

−0.04 −0.02 0.00 0.02 0.04

FIG. 3. Solid-liquid phase coexistence vs hexatic phase. Both systems are at relative density 
ρ = 0.002 with 5122 particles but at different
temperatures: 0.5 (left) and 2 (right). This snapshot is reached after 3 × 108 MD steps. The systems are divided into 16 × 16 subsystems to
analyze the fluctuations. The color-bar indicates ρ(r) − ρ̄, and the histograms show the probability distribution function (PDF) of density
in subsystems obtained from ensemble averaging. The dashed lines coinciding with the two maxima of PDF, on the left histogram, are the
lower and upper densities for solid-liquid coexistence obtained from ECMC simulations. The vectors on top of the color maps show the local
orientational order: (Re(), Im()). In coexistence the orientation is uniform in the solid portion of system, while in hexatic phase there are
mobile topological defects in the orientational field (see movies in SM [25]).
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FIG. 4. Orientational order in hexatic phase. (a, b) Dynamics of
orientational order parameter  = ||ei arg() with time step 0.001,
at relative density 
ρ = 0.002, at T = 2, and for 5122 particles.
t is number of MD steps. (c) Finite-size scaling of spontaneous
orientational order. L = 128, 256, 512 is the linear size of system.

V. MOLECULAR DYNAMICS STUDY

To verify some of these findings with another independent
method, we performed targeted molecular dynamics simula-
tions using LAMMPS [28] for the potential given by Eq. (1).
These simulations are limited to 
ρ(T ) = 0.002 (just above
the order-disorder line) at T = 0.5, 2, 3, and 10 with a time
step of 0.001. According to the ECMC simulations, this 
ρ

falls into the coexistence interval at T = 0.5 while the hexatic
phase is expected at other temperatures. A snapshot of spatial
fluctuations of density and orientational order is shown in
Fig. 3, where the weightless definition of hex-order is used in
this case. The histogram of density fluctuations has a single
peak at T = 2, while it has two distinct peaks at T = 0.5.
These two peaks coincide with the lower and upper densities
of phase coexistence obtained from the ECMC simulations.
In addition, the snapshot shows that regions of low and high
density tend to separate and create an interface.

The dynamics of orientational order parameter with time,
at T = 2, is shown in Fig. 4. In the hexatic phase, a fi-
nite system has nonvanishing spontaneous orientational order
(|| > 0), but the angle of orientation changes with time in a

manner similar to a random walk. This results in vanishing of
the time average of order parameter

∫ ∞
0 (t )dt → 0 where,

from Fig. 4(c), the spontaneous order vanishes only when
the size of system is infinity: 〈||2〉 ∝ L−η6 with η6 = 0.20.
Similar analysis at T = 3 and 10 results in η6 = 0.21 and
0.19, respectively. The results of the MD simulations at T =
10 are presented in more detail in the SM [25] (see Fig. S14).

VI. REPULSIVE DISKS REVISITED

It is suggested that melting of soft disks interacting by a
repulsive ∝ r−n potential is first order when n > 6 [19]. The
Lennard-Jones potential may effectively be considered as ∝
r−12 potential at high enough temperatures. Here we showed
that melting of the Lennard-Jones system is continuous at high
temperatures. There is an apparent controversy here which we
will address in the following.

In Ref. [19], the equations of states were calculated for sys-
tems with ∼2562 particles. Our simulations of the Lennard-
Jones system at T = 10 with the same size also shows an
S loop in the equation of state, but this loop disappears
for larger systems with 5122 particles. Therefore finite-size
scaling appears to be a critical issue here.

Here we repeat Monte Carlo simulations for the potential
defined by

U (r) =
{
ε(σ/r)n − U0 r � rc

0 r > rc
, (9)

where rc = 1.8σ (same cutoff used in Ref. [19]) and U0 is
calculated by U (rc) = 0. The units are chosen where σ, ε = 1
and simulations are done for n = 12, 64 cases at unit tempera-
ture. The weightless definition of hex-order is applied in these
simulations. We chose the Metropolis algorithm because of
more trivial parallelization for lengthy simulations. Equations
of states are calculated for N = 1282, 2562, and 5122 particles.
Simulations for N = 10242 particles are carried out only at
critical densities of 1.002 for n = 12 and 0.894 for n = 64.
About 8 × 107 Monte Carlo sweeps are performed in most
cases.

The S loop in the pressure-density equation of state of
the r−12 potential disappears for 5122 particles [Fig. 5(a)].
The power-law finite-size scaling of the orientational or-
der parameter at ρ = 1.002 [Fig. 5(b)] is an important
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FIG. 5. Pressure-density equations of state for (a) r−12 and (c) r−64 potentials. (b) Power-law finite-size scaling of the bond orientational
order at ρ = 1.002 for r−12 potential. Notice the logarithmic scale of the horizontal axis in (b) and that x = ln

√
N in the legend.
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FIG. 6. Fluctuations of local density when the global density is
fixed at (a) ρ̄ = 1.002 for the r−12 and (b) ρ̄ = 0.894 for the r−64

potentials.

characteristic of the continuous phase transitions. In addition,
we have checked for the homogeneity of system by sampling
the local density distribution. The local density is defined as
the number density of a block of the size ∼100σ × 100σ .
Such a block is chosen randomly within the system in every
sampling. A histogram of these local densities is shown in
Fig. 6. This figure shows that melting of the r−12 potential
occurs through homogeneous systems while melting of the
r−64 occurs through hexatic-liquid mixtures.

Thus melting of the r−12 potential has all of the charac-
teristics of the continuous phase transitions, and the S loops
in the equations of states of smaller systems (N � 2562) are
only due to the finite-size effects. Melting of the r−64 potential
is first order, similar to the hard disks [13]. The crossover
from KTHNY-like to hard-disk-like melting of the repulsive
disks with ∝ r−n potential occurs for an exponent in the range
12 < n < 64.

VII. CONCLUSION

To summarize, we showed that the KTHNY melting sce-
nario is preempted by phase coexistence at T < 1.1 in the

Lennard-Jones system. This occurs because the energy of
local vacancy aggregates becomes vanishingly small in this
part of the phase diagram [29,30]. At higher temperatures
the melting scenario is consistent with KTHNY theory. The
KTHNY theory is derived by the assumption of harmonic in-
teractions. Since the anharmonic effects are weaker in denser
LJ systems [29,30], the KTHNY theory is accurate at high
temperatures where melting occurs at higher densities.

We also revisited melting of the ∝ r−n potential for two
special cases of n = 12 and 64 by simulating larger systems
than before. It is concluded that melting of the n = 12 case
is continuous in the thermodynamic limit, consistent with
the melting scenario we observe for the LJ system at high
temperatures. Therefore we suggest that the critical exponent
for the KTHNY to first-order crossover in the melting scenario
of these systems should be a number in the range 12 < n < 64
instead of n ∼ 6, as suggested in Ref. [19].

Thus, in addition to having a harder repulsive potential,
introducing an attractive well is another route towards first-
order melting. The difference is that in the former melting is
derived by entropic terms, while in the latter energetics are
important. That is, due to the competition of lattice constant
and length scale of the attractive well, vacancies may or may
not be favorable. For instance, if a cavity is created within the
solid it may be stable if attractive forces are present, but it is
certainly unstable if the forces are purely repulsive.

ACKNOWLEDGMENTS

This work was supported by the NRF (National Honor Sci-
entist Program, Grant No. 2010-0020414) and KISTI (Grants
No. KSC-2015-C3-002, No. KSC-2016-C3-0074, and No.
KSC-2017-C3-0081).

[1] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[2] N. D. Mermin, Phys. Rev. 176, 250 (1968).
[3] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
[4] B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978)
[5] D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).
[6] A. P. Young, Phys. Rev. B 19, 1855 (1979).
[7] S. T. Chui, Phys. Rev. Lett. 48, 933 (1982).
[8] E. Domany, M. Schick, and R. H. Swendsen, Phys. Rev. Lett.

52, 1535 (1984).
[9] K. Zahn, R. Lenke, and G. Maret, Phys. Rev. Lett. 82, 2721

(1999).
[10] V. Nosenko, S. K. Zhdanov, A. V. Ivlev, C. A. Knapek, and

G. E. Morfill, Phys. Rev. Lett. 103, 015001 (2009).
[11] A. H. Marcus and S. A. Rice, Phys. Rev. Lett. 77, 2577

(1996).
[12] B. Lin and L. Chen, J. Chem. Phys. 126, 034706 (2007).
[13] E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704

(2011).

[14] M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe,
E. P. Bernard, and W. Krauth, Phys. Rev. E 87, 042134
(2013).

[15] A. L. Thorneywork, J. L. Abbott, D. G. A. L. Aarts,
and R. P. A. Dullens, Phys. Rev. Lett. 118, 158001 (2017).

[16] J. Russo and N. B. Wilding, Phys. Rev. Lett. 119, 115702
(2017).

[17] P. S. Ruiz, Q. Lei, and R. Ni, arXiv:1804.05582.
[18] J. A. Anderson, J. Antonaglia, J. A. Millan, M. Engel, and S. C.

Glotzer, Phys. Rev. X 7, 021001 (2017).
[19] S. C. Kapfer and W. Krauth, Phys. Rev. Lett. 114, 035702

(2015).
[20] S. I. Lee and S. J. Lee, Phys. Rev. E 78, 041504 (2008).
[21] M. Zu, J. Liu, H. Tong, and N. Xu, Phys. Rev. Lett. 117, 085702

(2016).
[22] Y. Li and M. P. Ciamarra, Phys. Rev. Mater. 2, 045602 (2018).
[23] E. P. Bernard, W. Krauth, and D. B. Wilson, Phys. Rev. E 80,

056704 (2009).

022145-6

https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.176.250
https://doi.org/10.1103/PhysRev.176.250
https://doi.org/10.1103/PhysRev.176.250
https://doi.org/10.1103/PhysRev.176.250
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevLett.48.933
https://doi.org/10.1103/PhysRevLett.48.933
https://doi.org/10.1103/PhysRevLett.48.933
https://doi.org/10.1103/PhysRevLett.48.933
https://doi.org/10.1103/PhysRevLett.52.1535
https://doi.org/10.1103/PhysRevLett.52.1535
https://doi.org/10.1103/PhysRevLett.52.1535
https://doi.org/10.1103/PhysRevLett.52.1535
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1103/PhysRevLett.103.015001
https://doi.org/10.1103/PhysRevLett.103.015001
https://doi.org/10.1103/PhysRevLett.103.015001
https://doi.org/10.1103/PhysRevLett.103.015001
https://doi.org/10.1103/PhysRevLett.77.2577
https://doi.org/10.1103/PhysRevLett.77.2577
https://doi.org/10.1103/PhysRevLett.77.2577
https://doi.org/10.1103/PhysRevLett.77.2577
https://doi.org/10.1063/1.2409677
https://doi.org/10.1063/1.2409677
https://doi.org/10.1063/1.2409677
https://doi.org/10.1063/1.2409677
https://doi.org/10.1103/PhysRevLett.107.155704
https://doi.org/10.1103/PhysRevLett.107.155704
https://doi.org/10.1103/PhysRevLett.107.155704
https://doi.org/10.1103/PhysRevLett.107.155704
https://doi.org/10.1103/PhysRevE.87.042134
https://doi.org/10.1103/PhysRevE.87.042134
https://doi.org/10.1103/PhysRevE.87.042134
https://doi.org/10.1103/PhysRevE.87.042134
https://doi.org/10.1103/PhysRevLett.118.158001
https://doi.org/10.1103/PhysRevLett.118.158001
https://doi.org/10.1103/PhysRevLett.118.158001
https://doi.org/10.1103/PhysRevLett.118.158001
https://doi.org/10.1103/PhysRevLett.119.115702
https://doi.org/10.1103/PhysRevLett.119.115702
https://doi.org/10.1103/PhysRevLett.119.115702
https://doi.org/10.1103/PhysRevLett.119.115702
http://arxiv.org/abs/arXiv:1804.05582
https://doi.org/10.1103/PhysRevX.7.021001
https://doi.org/10.1103/PhysRevX.7.021001
https://doi.org/10.1103/PhysRevX.7.021001
https://doi.org/10.1103/PhysRevX.7.021001
https://doi.org/10.1103/PhysRevLett.114.035702
https://doi.org/10.1103/PhysRevLett.114.035702
https://doi.org/10.1103/PhysRevLett.114.035702
https://doi.org/10.1103/PhysRevLett.114.035702
https://doi.org/10.1103/PhysRevE.78.041504
https://doi.org/10.1103/PhysRevE.78.041504
https://doi.org/10.1103/PhysRevE.78.041504
https://doi.org/10.1103/PhysRevE.78.041504
https://doi.org/10.1103/PhysRevLett.117.085702
https://doi.org/10.1103/PhysRevLett.117.085702
https://doi.org/10.1103/PhysRevLett.117.085702
https://doi.org/10.1103/PhysRevLett.117.085702
https://doi.org/10.1103/PhysRevMaterials.2.045602
https://doi.org/10.1103/PhysRevMaterials.2.045602
https://doi.org/10.1103/PhysRevMaterials.2.045602
https://doi.org/10.1103/PhysRevMaterials.2.045602
https://doi.org/10.1103/PhysRevE.80.056704
https://doi.org/10.1103/PhysRevE.80.056704
https://doi.org/10.1103/PhysRevE.80.056704
https://doi.org/10.1103/PhysRevE.80.056704


FIRST-ORDER AND CONTINUOUS MELTING … PHYSICAL REVIEW E 99, 022145 (2019)

[24] M. Michel, S. C. Kapfer, and W. Krauth, J. Chem. Phys. 140,
054116 (2014).

[25] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.99.022145 for details of equilibration by
ECMC algorithm and analysis, visualizations, and finite size
scaling of the correlation functions.

[26] J. E. Mayer and W. W. Wood, J. Chem. Phys. 42, 4268 (1965).
[27] W. Mickel, S. C. Kapfer, G. E. Schröder-Turk, and K. Mecke,

J. Chem. Phys. 138, 044501 (2013).
[28] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[29] B. Joos and M. S. Duesbery, Phys. Rv. Lett. 55, 1997 (1985).
[30] B. Joos and M. S. Duesbery, Phys. Rev. B 33, 8632 (1986).

022145-7

https://doi.org/10.1063/1.4863991
https://doi.org/10.1063/1.4863991
https://doi.org/10.1063/1.4863991
https://doi.org/10.1063/1.4863991
http://link.aps.org/supplemental/10.1103/PhysRevE.99.022145
https://doi.org/10.1063/1.1695931
https://doi.org/10.1063/1.1695931
https://doi.org/10.1063/1.1695931
https://doi.org/10.1063/1.1695931
https://doi.org/10.1063/1.4774084
https://doi.org/10.1063/1.4774084
https://doi.org/10.1063/1.4774084
https://doi.org/10.1063/1.4774084
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1103/PhysRevLett.55.1997
https://doi.org/10.1103/PhysRevLett.55.1997
https://doi.org/10.1103/PhysRevLett.55.1997
https://doi.org/10.1103/PhysRevLett.55.1997
https://doi.org/10.1103/PhysRevB.33.8632
https://doi.org/10.1103/PhysRevB.33.8632
https://doi.org/10.1103/PhysRevB.33.8632
https://doi.org/10.1103/PhysRevB.33.8632



