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Experimental metrics for detection of detailed balance violation
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We report on the measurement of detailed balance violation in a coupled, noise-driven linear electronic
circuit consisting of two nominally identical RC elements that are coupled via a variable capacitance. The state
variables are the time-dependent voltages across each of the two primary capacitors, and the system is driven by
independent noise sources in series with each of the resistances. From the recorded time histories of these two
voltages, we quantify violations of detailed balance by three methods: (1) explicit construction of the probability
current density, (2) constructing the time-dependent stochastic area, and (3) constructing statistical fluctuation
loops. In comparing the three methods, we find that the stochastic area is relatively simple to implement and
computationally inexpensive and provides a highly sensitive means for detecting violations of detailed balance.
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I. INTRODUCTION

Detailed balance violation is an essential feature of many
nonequilibrium systems. In the context of noise-driven dy-
namical systems, detailed balance violation generally implies
a nonvanishing steady-state probability current in the system
phase space [1–4]. Additionally, violations of detailed balance
often indicate that the system is “open,” i.e., subject to ex-
ternal driving forces which induce energy transfer through it.
Examples abound in diverse fields such as climate dynamics
[5–8], active biological systems [9–12], electronic transport
systems [13–16], micromechanical oscillators [17,18], and
microscopic heat engines [19]. The fluctuation statistics of
voting models [20] and financial markets [21] also display
behavior that is analogous to detailed balance violation ob-
served in the aforementioned physical systems. The common
behaviors observed in these systems motivate the development
of widely applicable metrics that can quantify the level of
detailed balance violation in far-from-equilibrium systems.

The construction of probability current from numerical
or experimental data is a classic indicator of detailed bal-
ance violation. Due to conservation of probability, the steady
probability current is divergence free, so it typically has a
circulating structure. This tendency has been confirmed in
numerous theoretical studies [3,10,20,22,23]. Experiments on
such systems as actively beating flagella and thermally driven
electrical circuits have directly measured circulating probabil-
ity currents [9,16,24]. These experiments can be challenging
because they require a great deal of data in order to define the
vector field on a fine-enough grid and with sufficient number
of data points for each grid location.

In this paper, we demonstrate alternative experimental met-
rics of detailed balance violation which are easier to imple-
ment and more sensitive. The experiments are conducted on
an electrical circuit consisting of two nominally identical RC
circuit elements that are driven by independent noise sources
and capacitively coupled to one another. When the noise
sources have unequal intensities we observe violations of

detailed balance through direct measurements of circulating
probability currents in the system phase space. Alternatively,
we use the experimental data to construct the time-dependent
stochastic area recently introduced by Ghanta et al. [23]. The
construction of stochastic area is much easier and, as a metric
of departures from detailed balance, much more sensitive.
The sensitivity derives from its global character: It uses all
the data from a long running experiment. This contrasts with
the probability current density vector field in a certain pixel
of phase space which utilizes only data corresponding to the
portion of the system trajectory in the given grid box.

We demonstrate that experimental ensemble-averaged fluc-
tuation loops [23] can be constructed using an equivalent
amount of data as used for probability current. Such loops
are intimately connected with the geometric theory of large
deviations [25–28]. The measured loops allow one to quan-
titatively visualize that nature of fluctuations from the highly
probable stable fixed point to rarely occurring remote states
and the relaxation back to the fixed point, a dynamics that
cannot be inferred from a plot of probability current alone.

The structure of the paper is as follows. Section II describes
the design of the experiment, its physical construction, and the
procedures to measure steady probability density and current.
It finishes with an overview of the circuit model and its
predictions of the steady-state probability density and current.
Section III presents measurements of the stochastic area for
different noise combinations which either violate or satisfy
detailed balance. We discuss the merits of stochastic area as an
experimental metric of detailed balance violation, relative to
probability current, as well as the importance of choosing ap-
propriate sampling rates. Section IV addresses the dependence
of the fluctuation statistics on system parameters. Specifically,
the model in Sec. II clearly predicts how the probability
density and time rate of change of stochastic area vary with
the coupling capacitance; experimental data confirm these
predictions. In particular, we find that it is possible to “tune”
the coupling capacitance so that the time rate of change of
stochastic area is maximized. Section V presents experimental
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FIG. 1. (a) Experimental circuit diagram. (b) Power spectrum of noise generator before and after bandpass filtering. Inset shows the
measured temporal autocorrelation function c(t ) of filtered noise. (c) Experimentally measured steady-state probability density and probability
current for asymmetric applied noise intensities, i.e., s2

1 = 8.53 × 10−10 V2 s and s2
2 = 5.30 × 10−11 V2 s.

constructions of fluctuation loops and their significance. Sec-
tion VI discusses the connections between the stochastic area
and other related metrics for characterizing detailed balance
violation in nonequilibrium systems [12,14,15]. A concluding
section includes a brief discussion of the connection between
the stochastic area and seminal work of Onsager on thermo-
dynamic correlation functions [29].

II. EXPERIMENTAL SETUP AND DYNAMICAL
CIRCUIT MODEL

The experimental system is a linear electrical circuit com-
prised of two nominally identical RC sections that are capac-
itively coupled to one another. Each RC section is driven by
an independent noise source, cf. Fig. 1(a) for the schematic.
The coupled RC network is built on a circuit breadboard and
secured inside a metal box fitted with coaxial connections
to avoid external interference. The resistances R1 and R2 are
metal film type, and the capacitances C, c1, and c2 are ce-
ramic disk capacitors. Parameter values used in the measure-
ments reported here are R1 ≈ R2 := R = 1.20 k� and c1 ≈
c2 = c := 33.1 nF and coupling capacitances in the range
C = 100 pF–880 nF. All nominally identical components are
verified to have parameter values within 1% of each other.
To measure the voltage variables v1 and v2, we use a Pico-
scope 2406B, a compact, computer-controlled oscilloscope
that serves as a multichannel analog-to-digital converter. It
reads the continuous time voltage signals v1(t ) and v2(t ) at a
regular sampling interval τ , thereby yielding discrete voltage
readings v1[t] and v2[t], with 8-bit vertical resolution and
a sampling rate up to 250 MS/s. Acquired data from the
picoscope are analyzed using MATLAB.

Injected noise signals δv1 and δv2 are created using a dual
channel Tektronix AFG3252 arbitrary function generator with
240-MHz bandwidth. The effective amplitudes can be varied
independently for each injected noise term. To avoid high-
frequency parasitic effects in the circuit, the function genera-
tor output signals are each passed through nominally identical
low-pass filters (Mini-Circuits Model: SLP-2.5+) with cut-
off frequency fc = 2.5 MHz [30]. Figure 1(b) shows the
measured power spectrum of the noise generator output both
before and after filtering. The inset shows the measured auto-
correlation of the filtered noise signal. It is clearly symmetric
under time inversion and the central peakwidth provides a

measure of the correlation time t∗ ≈ 400 ns. Provided that
the correlation time t∗ is much smaller than the deterministic
relaxation time Rc ≈ 40 μs, the injected experimental noises
are well described as δ-correlated white noises in the circuit
model presented below.

By placing the noise sources in series with the resistors, we
have in mind the natural thermal (Johnson-Nyquist) noises. In
our experiment, intrinsic thermal noises are negligibly small
relative to the added noises. In contrast, recent experiments
by Chiang et al. studied stochastic gyrating dynamics in a
similar circuit system using natural thermal noises [16,24]. By
placing one of the RC elements in a cryogenic environment
and employing relatively large resistances on the order of
106 �, the thermal noise voltages are large enough to allow
measurement of steady probability currents and detection
of detailed balance violation. Relative to the experiments
reported in this paper, using larger resistances implies longer
circuit relaxation times Rc and proportionately longer times to
collect sufficient data.

We now describe the processing of voltage time series
which generates measured approximations to the steady prob-
ability density and current in the v1-v2 plane. First, identify
a region in this plane which contains almost all of the sam-
ple points but whose dimensions are still comparable to the
standard deviations of v1 and v2. This region is divided into
square “pixels” with dimensions that are small compared to
the aforementioned standard deviations. Next, construct the
histogram, which records the number of data points in each
pixel. The approximate probability density is the fraction of
data points in each pixel. Figure 1(c) shows a typical measured
probability distribution in the v1-v1 phase plane which results
from the noise strength in RC element 1 exceeding that of 2.
The color scale is logarithmically scaled since the probability
distribution has a Gaussian profile.

The probability current is approximated by a vector-valued
histogram: From the original voltage time series v1[t] and
v2[t], construct the time series of displacement vectors

(
�v1[t]
�v2[t]

)
=

(
v1[t + τ ] − v1[t]
v2[t + τ ] − v2[t]

)
. (1)

Assign each displacement vector to the pixel in which it
occurs. After a sufficiently long run time T , the probability
current in a given pixel is approximated by the vector sum of
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displacements in that pixel, divided by T , and the area of the
pixel. This is how the arrows representing probability current
in Fig. 1(c) are generated. Although this construction is simple
and intuitive, how do we really know that it generates the
probability current? The answer comes from an analysis of the
stochastic ordinary differential equation (ODE) which models
fluctuation statistics in the v1-v2 plane.

Using the Kirchhoff laws, the dynamical circuit model for
voltages v1(t ) and v2(t ) is

R

(
C + c −C
−C C + c

)(
v̇1

v̇2

)
= −

(
v1

v2

)
+

(
s1(t )
s2(t )

)
. (2)

Here s1(t ) and s2(t ) are the injected noise signals in series with
each resistor and corresponding to δv1 and δv2, respectively,
in the experimental schematic, cf. Fig. 1(a). Since the noise
correlation time is much shorter than the Rc relaxation time,
but not so short as to induce high-frequency parasitics, for
modeling purposes, we can express the actual noises s1(t ) and
s2(t ) in (2) as

si(t ) ≈ siwi(t ), i = 1, 2, (3)

where w1(t ) and w2(t ) are independent unit white noises,
i.e., 〈wi(t )w j (t ′)〉 = δi jδ(t − t ′). The coefficients s1 and s2

are noise amplitudes. Note that detailed balance is broken by
taking the noise amplitudes to be different from one another.
The assignment of effective noise amplitudes to the filtered
experimental noise signals is described in Appendix A.

The circuit model (2) is now expressed as

R

(
C + c −C
−C C + c

)(
v̇1

v̇2

)
= −

(
v1

v2

)
+

(
s1 0
0 s2

)(
w1(t )
w2(t )

)
,

(4)
which is equivalent to a stochastic differential equation of
form

v̇ = Lv + σw, (5)

where v := (v1
v2

) is the state vector and w := (w1
w2

) denotes the
vector of independent unit white noises. Comparing (4) and
(5), we identify the dynamical tensor L,

L−1 = −R

(
C + c −C
−C C + c

)
, (6)

and state-independent noise tensor σ ,

σ = −L

(
s1 0
0 s2

)
. (7)

Due to the linearity of the stochastic dynamics, the steady-
state probability density is a Gaussian proportional to

ρ(v) ∝ exp
(− 1

2 vT M−1v
)
, (8)

where M denotes the second moment tensor with components
Mi j = 〈viv j〉. The second moment tensor is determined by a
fluctuation-dissipation relation, which implies that LM + D is
antisymmetric [5,23]. Here D is the diffusion tensor,

D := σσ T = LSL, S :=
(

s2
1 0
0 s2

2

)
. (9)

The fluctuation-dissipation relation amounts to linear inhomo-
geneous equations for the components of M. Physically, they
express the balance between flow toward the origin, embodied
by the dynamical tensor L (the dissipation) and spreading

(the fluctuation) embodied by the diffusion tensor D. These
equations determine the components of M as functions of the
circuit parameters and noise amplitudes.

The general expression for probability current density is

j = Lvρ − D∇vρ. (10)

For the stationary probability as in (8), we have

∇ρ = −M−1vρ,

and then the stationary probability current is

j = (L + DM−1)vρ = (LM + D)M−1vρ. (11)

Due to antisymmetry of LM + D we can, in two dimensions,
write the simple form

LM + D =
(

0 −�

� 0

)
, (12)

where � denotes the stochastic vorticity � = −(LM + D)12

[23]. This allows us to express the stationary probability
current density as

j = �

(
0 −1
1 0

)
M−1vρ. (13)

We outline the mathematics behind the construction of
probability current as a “vector-valued” histogram. Let δR be
a fixed small region in the v1-v2 plane, such as one of the
pixels of the histogram. A stochastic trajectory makes several
intermittent transits of the region δR in the time interval 0 <

t < T . For each transit, record the change �v in v between
entry and departure. It can be shown [31] that the ensemble-
averaged sum of these �v divided by T equals the integral of
probability current over δR, i.e.,

∫
δR j d2v.

III. EXPERIMENTAL DETERMINATION
OF STOCHASTIC AREA

For the circuit system (5), the stochastic area is defined by
the line integral

A(t ) = 1

2

∫
C(t )

(v1dv2 − v2dv1), (14)

where C(t ) denotes a specific stochastic trajectory of the
system over the time range from 0 to t > 0. Geometrically, the
stochastic area is simply the area swept out by the trajectory
in the v1-v2 plane over the time interval (0, t ). In Ghanta [23],
it is shown that its stationary ensemble average rate of change
is precisely the prefactor � of the probability current in (13),

〈Ȧ〉 = � = −(LM + D)12. (15)

Since j ≡ 0 iff � = 0, the stochastic area is a clear detector
of detailed balance violation. In contrast to the probability
density vector field, stochastic area is a global property of
voltage fluctuation statistics.

Given experimentally recorded voltage time series v1[t]
and v2[t] with sampling interval τ , the natural finite difference
approximation to the time rate of change

Ȧ(t ) = 1
2 (v1v̇2 − v2v̇1)(t )

of stochastic area is

(DA)[t] := 1

2τ
{v1[t]v2[t + τ ] − v1[t + τ ]v2[t]}. (16)
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FIG. 2. Schematic illustration of the geometric construction of
experimental stochastic area A(t ) with sampling interval τ .

Hence, the discrete approximation to the stochastic area at
time t = Nτ is

A[t] = 1

2

N−1∑
k=0

(DA)[kτ ]. (17)

Figure 2 is a visualization of the discrete area, which results
from linear interpolation between successive measurement
points (v1[t], v2[t]).

An analysis of the stochastic ODE (4) leads to an explicit
expression for the ensemble average of DA in (16),

〈DA〉 = 1

2τ
(MeτL − eτLM )12. (18)

See Appendix B for the derivation. In the limit of sampling
interval τ much shorter than the relaxation time Rc, 〈DA〉
converges to the theoretical prediction (15), that is,

〈DA〉 → −(LM − ML)12 = −(LM + D)12 = �. (19)

Figure 3 shows typical experimental results for the time
dependence of 〈A(t )〉 extracted from the recorded time series
according to (16) and (17). In this case, the sampling interval
τ is 500 ns 
 Rc � 40 μs and each curve in the main graph
of Fig. 3 is the result of averaging over 25 trials. The values
of the applied noise intensities are, respectively, s2

1 = 8.53 ×
10−10 V2 s and s2

2 = 5.30 × 10−11 V2 s for the positive-slope
curve, s2

1 = 5.30 × 10−11 V2 s and s2
2 = 8.53 × 10−10 V2 s

for the negative-slope curve, and s2
1 = 4.82 × 10−10 V2 s and

s2
2 = 4.86 × 10−10 V2 s for the nominally horizontal curve.

The graph with s1 > s2 exhibits positive slope, consistent
with the clockwise circulation of the probability current in
Fig. 1(b). For s1 < s2, the graph shows negative slope of
equivalent magnitude and consistent with the counterclock-
wise probability current. Approximately equal noise ampli-
tudes s1 ≈ s2 is close to detailed balance and yields a horizon-
tal slope [32]. The overall length of the time series is of order

0 0.5 1 1.5 2 2.5
Deterministic Time 104

-0.04

-0.02

0

0.02

0.04

0 1 2
-2

0

2
10-6

FIG. 3. Time-dependent ensemble-averaged stochastic area
showing linear dependence on time for three distinct pairs of noise
intensities at long times: s2

1 < s2
2 for upward-sloping curve (blue),

s2
1 > s2

2 for the downward-sloping curve (red), and s2
1 = s2

2 for the
horizontal curve (black). The inset shows quadratic time dependence
of the ensemble-averaged stochastic area at relatively short times for
the same pairs of noise intensities.

1 s, much longer than the relaxation time Rc � 40 μs. For all
three curves, the measured area curves are in close agreement
with the theoretical prediction based on (15). It is remarkable
that the experimental curves are so close to predicted behavior
and with a relatively small number of averages; this attests to
the robustness of the stochastic area as an experimental tool
and suggests that it may be usefully applied to other detailed
balance violating systems.

The inset of Fig. 3 shows the experimental behavior of
ensemble-averaged stochastic area at short times, i.e., times
smaller than the deterministic relaxation time. The transition
from quadratic to linear behavior as time increases is evident
and this behavior is consistent with earlier theoretical predic-
tions [23]. For these data we must use a smaller sampling time
τ = 50 ns and average over 1000 trials. To accurately capture
short time behavior which is more sensitive to the injected
noise, we find that it is typically necessary to average over a
much larger set of trials than for the long-time behavior.

Figure 4 compares the detectability of detailed balance
violation using the stochastic area versus probability current
for successively smaller values in the difference of the noise
intensities (i.e., s2

1 − s2
2). For a sufficiently large difference in

si values [see, e.g., the stochastic area curve with s1 = 1.5s2

in Fig. 4(a) and corresponding probability current density of
Fig. 4(b)] the violation of detailed balance is clear in both sets
of data. However, as the difference is reduced, the detection
of detailed balance violation becomes much more challeng-
ing when based on probability current density measurement
alone. This is illustrated by comparing the stochastic area
curve with s1 = 1.11s2 in Fig. 4(a) with the corresponding
probability density current in Fig. 4(d). The area curve shows
a clear positive slope (with only 25 averages.) while the proba-
bility current density and curl are essentially indistinguishable
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(a)

(b) (c)

(d) (e)

FIG. 4. (a) Time-dependent ensemble-averaged stochastic area
for four distinct pairs of noise intensities at long times. [(b)–
(e)] Corresponding experimental probability densities and currents,
where insets show the measured axial components of the curl of the
probability current.

from the detailed balance case shown in Fig. 4(e). In principle,
the probability current histograms can be improved by averag-
ing over more trials, but the effort becomes prohibitive as the
mesh of pixels is progressively refined.

IV. DEPENDENCE OF DETAILED BALANCE VIOLATION
ON COUPLING CAPACITANCE

The central object of fluctuation statistics in the v1-v2 plane
is the second moment tensor M. In (8), the theory predicts that
the stationary probability density is a Gaussian whose level
curves in the v1-v2 plane are level curves of the stochastic ac-
tion quadratic form of M−1. The experimental determination
of the second moment tensor consists of direct computation of
averages 〈viv j〉 from the recorded voltage time series. Given
the experimental second moment tensor, we construct the
level curve ellipse which contains 98% of the sample points of
the original voltage time series. Figure 5(a) depicts a typical
example in which the probability density histogram is nicely
framed by the “98% ellipse.” A similar bounding ellipse is
superpositioned on the histogram of Fig. 1(a). Such graphics
verify the elliptical shape of probability density level curves,
but are the orientations and shapes of the ellipses consistent
with predictions according to theory?

Given the second moment tensor in the form

M =
(

m̄ + δ μ

μ m̄ − δ

)
, (20)

the tilt angle θ , i.e., the angle between the ellipse major axis
and the line v1 = v2, is given by

tan θ =
√

μ2 + δ2 − μ − δ√
μ2 + δ2 + μ − δ

. (21)

The aspect ratio r of a level curve ellipse, the ratio of major
to minor axrs, is given by

r2 = m̄ +
√

μ2 + δ2

m̄ −
√

μ2 + δ2
. (22)

Theoretical predictions of parameter dependence for tilt angle
and aspect ratio are expressed in terms of the second moment
tensor. The theoretical prediction of second moment tensor
according to the fluctuation-dissipation relation leads to M as
in (20), with

μ = γ

2(1 + 2γ )

s2
1 + s2

2

Rc
, (23)

m̄ = 1 + γ

γ
μ, (24)

δ = 1

2

1

1 + γ

s2
1 − s2

2

Rc
, (25)

(a) (b) (c) (d)

FIG. 5. (a) Experimentally determined elliptical probability distribution for s2
1 = 8.53 × 10−10 V2 s and s2 = 5.30 × 10−11 V2 s, depicting

tilt angle definition and aspect ratio determination. (b) Tilt angle of probability ellipse vs. coupling capacitance. (c) Probability ellipse aspect
ratio vs. coupling capacitance. (d) Dimensionless stochastic area vs. coupling capacitance.
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where γ denotes the capacitance ratio,

γ := C

c
. (26)

Substituting (23)–(26) for μ, m̄, δ, and γ , respectively, into
(21) and (22), we obtain the tilt angle and aspect ratio as
functions of the circuit parameters and noise amplitudes. Here
we focus on their dependencies on the coupling capacitance
C with all the other parameters fixed: The fixed resistances
R1 and R2 and the capacitors c1 and c2 have the same values
as in preceeding sections, and the noise amplitudes are s2

1 =
8.53 × 10−10 V2 s and s2

2 = 5.30 × 10−11 V2 s. The curves in
Figs. 5(b) and 5(c) are the predicted graphs of tilt angle and
aspect ratio as functions of C. In the limit C

c → 0, the two
RC circuit elements are decoupled, and the ellipse axes are
parallel to the coordinate axes. Since the noise acting on RC
element 1 is stronger, the major axis aligns with the v1 axis,
so θ → −π

4 as C
c → 0. A large coupling capacitance forces

the voltage difference v2 − v1 to be small, in which case we
have a narrow ellipse aligned with the line v1 = v2. Hence
θ → 0 and r → 0 as C

c → ∞. The solid black circles in
Figs. 5(b) and 5(c) denote experimental determinations of tilt
angle and aspect ratio from long running voltage time series,
one for each coupling capacitance in a sequence ranging from
C = 100 pF to C = 880 nF. The measurement errors fall
within the size of the data points.

The time rate of change of stochastic area is specified by
the second moment tensor according to (20) and (15). This
leads to its theoretical dependence on circuit parameters and
noise amplitudes,

〈Ȧ〉 = 1

2

γ

(2γ + 1)(γ + 1)

s2
1 − s2

2

(Rc)2
. (27)

This may also be written in nondimensional form by measur-

ing 〈Ȧ〉 in units of (s2
1+s2

2 )
Rc , resulting in

〈Ȧ〉 = γ

(2γ + 1)(γ + 1)

s2
1 − s2

2

s2
1 + s2

2

. (28)

From (28) we see that equality of noise amplitudes, s2
1 = s2

2,
implies 〈Ȧ〉 = 0, which in turn implies that the probability
current is identically zero. Figure 5(d) compares the the-
oretical and experimental dependencies of nondimensional
〈Ȧ〉 with coupling capacitance. The dimensionless growth
of stochastic area achieves its maximum for γ = C

c = 1√
2
.

The black dots represent experimentally determined values

of 〈Ȧ〉 in units of (s2
1+s2

2 )
Rc and agree closely to the theoretical

prediction. Physically, this value of coupling capacitance γ is
interpreted to provide the maximum rate at which stochastic
area is generated by the system for a given difference in
applied noise intensity. Equivalently, one can say that the rate
at which fluctuation loops (described in Sec. V) are swept
out by the system is maximized. On the other hand, when
one examines the γ dependence of the energy transfer rate
(calculated in Sec. VI) one finds a monotonic dependence
with no local maximum. In general, the extremal behavior ob-
served for stochastic area does not necessarily apply to other
metrics that also characterize detailed balance violation in this
system.

V. DIRECT OBSERVATION OF EXPERIMENTAL
FLUCTUATION LOOPS

The notion of a fluctuation loop arises from the large
deviation theory of stochastic dynamical systems [23,25–28].
Consider trajectories in the basin of a stable critical point a. A
displacement from a to a destination point b—also assumed
to lie in the basin of a—is a large deviation if its magnitude
is much larger than the standard deviation from a. These large
deviations are rare, but when they do occur, they very nearly
follow a well-defined most-probable fluctuation path from a to
b. After arrival in a small neighborhood of b, the most prob-
able continuation of the trajectory follows the deterministic
relaxation path back to a. If the stochastic dynamics violates
detailed balance, then the fluctuation segment is not the time
reversal of the relaxation segment. Additionally, the union
of fluctuation and relaxation segments forms a closed loop
containing both a and b and enclosing some nonzero area
[28].

Previous related observations that discern the differences
between fluctuation and relaxation segments in experimental
nonlinear systems have been reported for driven microme-
chanical oscillators [18,33] and also in analog electronic
circuit systems [26,34]. Such experiments rely essentially on
the collection of time series of sufficiently long trajectories
that reach a small neighborhood δR of a remote destination
point multiple times. Then the fluctuation segment is obtained
by averaging over back histories prior to entering δR, and the
relaxation path is obtained by averaging over forward histories
after entering δR.

This program is straightforward to implement for the long
voltage time series recorded in our circuit experiment. Fig-
ure 6(a) shows four experimentally constructed fluctuation
loops. The circuit parameters and noise amplitudes are the
same as for the probability density and current histograms
in Fig. 1(c). The nonoverlap of fluctuation and relaxation
segments in Fig. 6(a) indicate detailed balance violation,
demonstrating that the construction of fluctuation loops is
another diagnostic tool. The required data processing is com-
parable to constructing the probability current in a single
pixel; this follows since both constructions involve averaging
over trajectories that enter a given pixel, i.e., a destination box
(these are indicated in the figure). The fluctuation segments
are obtained by averaging 1000 back histories for seven Rc
relaxation times, and the relaxation segments, by averaging
1000 forward histories, also for seven relaxation times. Since
orientations of fluctuation segments is outward from the ori-
gin, and the relaxation segments, inward, the sense of circu-
lation about the loops is clockwise. This is consistent with
the clockwise circulation of probability current in Fig. 1(c). In
contrast to the smooth fluctuation loops of Fig. 6(a), Fig. 6(b)
shows a single trajectory segment conditioned such that it
passes through the upper right-hand target box. While one
can see that this individual trajectory tends to fluctuate out
from the stable equilibrium before hitting the target box,
and to subsequently fall back toward the equilibrium after
reaching the target box, the structure of the fluctuation loop
is completely obscured by noise.

It is interesting to note the striking differences between the
geometric structure of the measured fluctuation loops versus

022143-6



EXPERIMENTAL METRICS FOR DETECTION OF … PHYSICAL REVIEW E 99, 022143 (2019)

(a)

(b)

FIG. 6. (a) Most probable fluctuation paths (gray trajectories)
and relaxation paths (black curves) determined by averaging in-
dividual experimental trajectories that pass through the indicated
four target boxes. Each curve is the result of averaging over 1000
individual trajectories that are conditioned by going forward and
backward in time by 7 Rc time units. (b) One typical individual
trajectory passing through the upper right target box and plotted
backward and forward in time by 7 Rc time units.

the flow lines of measured probability current. Furthermore,
it should be possible to construct the dynamical tensor L
and diffusion tensor D from fluctuation loop measurements
(in the subspace spanned by measured dynamical variables).
This might provide useful new information, for example, in
experimental systems where L and D are not known a priori.

We remark that the destination boxes in Fig. 6 represent
displacements from the origin between 1 and 10 mV. As
such, they are comparable to the voltage variances evident
in the histogram of Fig. 1(c). The loops in Fig. 6(a) are
not, strictly speaking, “large deviations.” Nevertheless, the
averaging process resolves them with striking clarity and
the measured loops agree closely with predictions of large
deviation theory [23]. This is remarkable since predictions
based on large deviation theory are expected to be strictly
valid only in the small noise limit, whereas the experimental

noise levels here are quite large. These measurements thus
suggest that fluctuation loops derived from large deviation
theory are relatively robust and likely observable in a wide
array of experimental noise-driven systems.

VI. RELATIONSHIP OF STOCHASTIC AREA
TO OTHER METRICS FOR CHARACTERIZING

NONEQUILIBRIUM SYSTEMS

The literature presents several different metrics for charac-
terizing nonequilibrium dynamics. Among these, the cycling
frequency or phase-space torque [6,11,12], like stochastic
area, are directly related to the geometry of the stochastic
dynamical system and its trajectories in phase space. Another
set of metrics are related to the physical processes of energy
transfer and entropy production [14,15]. In this section, we
discuss the relationships between these different metrics in the
context of our experimental circuit system.

Recently, Mura et al. [12] have shown that any two state
variables of a large linear network satisfy a reduced two-
dimensional stochastic dynamics, and the probability current
in the plane of any two variables is given by

j = Bvρ. (29)

Here v = (v1
v2

) is the two-vector of state variables, ρ is the
stationary probability density of v, and the tensor B has pure
imaginary eigenvalues iω,−iω. The real number ω is called
the cycling frequency. Comparing (29) with (11), we make the
identification

B =
(

0 −�

� 0

)
M−1 =

(
0 −�

� 0

)(
m̄ + δ μ

μ m̄ − δ

)−1

.

(30)
The eigenvalues are readily computed to be iω,−iω, with

ω = �√
m̄2 − δ2 − μ2

= �√
det M

, (31)

and we see that the cycling frequency ω can be expressed as
the rate of change � of stochastic area [cf. (15) above] divided
by

√
det M.

It is also possible to demonstrate the proportionality of
the cycling frequency to the phase-space torque [12]. For
two-dimensional stochastic dynamics [e.g., the circuit model
studied in this paper (4)], this torque is defined to be

τ := 〈v2(Lv)1 − v1(Lv)2〉, (32)

where Lv can be viewed as the “deterministic force” acting in
the v1-v2 plane. We calculate

τ21 := L1 j〈v jv2〉 − L2 j〈v jv1〉 = (LM )12 − (LM )21

= (LM + D)12 − (LM + D)21 = 2�. (33)

Hence, the phase-space torque is twice the rate of change of
stochastic area.

For linear stochastic dynamics with dimension N greater
than two, the phase-space torque τ is an N × N antisymmetric
tensor [12], and it is straightforward to show that the general-
ization of (33) can be written as the tensorial relation

τ = 2(LM + D). (34)
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In Ghanta et al. [23], it was shown that −(LM + D) is the
long-time asymptotic time rate of change of the stochastic
area tensor

A(t ) :=
∫ t

0
〈(vv̇T − v̇vT )(t ′)〉dt ′. (35)

The notion of cycling frequency has its natural gener-
alization to N dimensions as well. The current density on
N-dimensional phase space is given by (29) with v now
interpreted as the state vector in RN , and

B := (LM + D)M−1, (36)

where the identification of B in terms of L, M, and D follows
from (11). We now show that the eigenvalues of B are pure
imaginary. We can reformulate the eigenvalue problem for B,
i.e., Bv = λv, as

(LM + D)v = λMv. (37)

Assuming that the symmetric second moment tensor M is
nonsingular, it has a nonsingular square root. We introduce

y := M
1
2 v (38)

in place of v and reformulate (37) as

B′y = λy, B′ := M− 1
2 (LM + D)M− 1

2 . (39)

The antisymmetry of LM + D implies that B′ is antisymmet-
ric. The antisymmetry (and reality) of B′ implies that all eigen-
values are pure imaginary and that the nonzero imaginary
parts occur in complex conjugate pairs [35]. In general, this
gives rise to a collection of cycling frequencies for the N-
dimensional system. To summarize, we see that the stochastic
area tensor, the cycling frequency, and the phase-space torque
are all related to the tensor LM + D, whose antisymmetry
is the direct expression of the fluctuation-dissipation relation
[5,23].

Next, we discuss how physically based metrics of detailed
balance violation such as energy transport and entropy pro-
duction also have their immediate connection to LM + D,
hence to stochastic area, phase-space torque, and cycling
frequency. In the circuit model (4), the energy in all the
capacitors is

E = c

2

(
v2

1 + v2
2

) + C

2
(v1 − v2)2. (40)

Time differentiation of (40) and use of the stochastic ODE (4)
leads to the energy identity

Ė = p1 + p2, (41)

where

p1 := v1s1w1

R
− v2

1

R
, (42)

and p2 is defined analogously. We recognize −v2
1/R as energy

dissipated by the Joule heating of the resistor in Rc circuit
one. It is natural to interpret v1s1w1/R as the work done on
the whole circuit by the channel one noise. For stationary
statistics, we have 〈Ė〉 = 0, so 〈p1〉 + 〈p2〉 = 0. We interpret
the common value p of 〈p1〉 and −〈p2〉 as the average rate of
energy transfer from circuit one to circuit two.

We now relate p to the rate of change of stochastic area.
The one-component of the stochastic ODE (4) may be written
as

−v1

R
+ s1w1

R
= C(v̇1 − v̇2) + cv̇1. (43)

Multiplying by v1 and taking the ensemble average, we have

p = −C〈v1v̇2〉 = C

2
〈v2v̇1 − v1v̇2〉 = C〈Ȧ〉. (44)

Substituting for 〈Ȧ〉 from (27), we have

p = 1

2

γ 2

(2γ + 1)(γ + 1)

1

Rc

(
s2

1

R
− s2

2

R

)
. (45)

This connection between stochastic area and heat transfer
rates extends to network with many degrees of freedom
connected to an assortment of thermal baths, all with their
associated dissipation and noise. In analogy with (44), it is
the stochastic area tensor which informs heat transfer rates
between the different nodes. This is the subject of ongoing
work by the authors [31].

Ciliberto et al. [14,15] have studied energy and entropy
transport both experimentally and theoretically for a simi-
lar coupled circuit that utilizes only intrinsic thermal noise
sources of the resistances. To make a connection with this
work, we may quantify energy transport and entropy produc-
tion in terms of effective temperatures T1, T2 of the resistors in
circuits one and two. These effective temperatures are related
to noise amplitudes s1, s2 according to the Nyquist formula,
s1 = √

RkBT1, s2 = √
RkBT2. Thus, one may rewrite (45) for

the average energy transfer rate in terms of these effective
temperatures as

p = 1

2

γ 2

(2γ + 1)(γ + 1)

kB(T1 − T2)

Rc
. (46)

The entropy production rate associated with this energy trans-
fer is

−p

T1
+ p

T2
= 1

2

γ 2

(2γ + 1)(γ + 1)

kB

Rc

(T1 − T2)2

T1T2
. (47)

We note that, unlike the expression for γ dependence of
stochastic area [cf. (17) above], neither energy nor entropy
production rates exhibit a local maximum as coupling capaci-
tance is varied. Instead, they both increase monotonically with
coupling capacitance C or, equivalently, γ .

In this section, we have shown that several metrics for
characterizing nonequilibrium dynamics are closely related to
one another, at least for relatively simple noise-driven linear
systems (e.g., two-dimensional coupled linear circuits) with
well-understood theoretical descriptions. For systems such as
these, the choice as to which metric or combination of metrics
to use for analysis of experimental data largely depends on
the properties to be measured and characterized. On the
other hand, for experimental systems where the underlying
dynamics may be unknown or for which an energy function
is not available, the use of geometric metrics (e.g., cycling
frequencies, phase-space torque, and stochastic area tensor)
should remain feasible as these techniques rely only the
capability to measure time series of (at least) two independent
dynamical variables.
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VII. CONCLUSIONS AND A HISTORICAL CONNECTION

In this paper, we have presented data and analysis from a
real circuit experiment that shows detailed balance violation
when driven by external noise generators. A central result of
this paper concerns the utility of the stochastic area as a quan-
titative indicator of detailed balance breaking in experimental
noise-driven linear dynamical systems. This metric can likely
be implemented for a wide range of noise-driven systems. The
application to any system requires the measurement of the rate
of change of area swept out in the plane of any two indepen-
dent observables. A nonzero average rate of change indicates
violation of detailed balance. In this sense, stochastic area
provides a widely applicable means for quantifying detailed
balance violation.

In Sec. IV we showed that the rate of change of stochastic
area has its largest magnitude for parameter choice γ = 1√

2
.

One might ask whether this parameter choice also maximizes
the rate of energy transfer from one Rc circuit element to
the other, since nonzero energy flow is also an indicator of
detailed balance violation. Like the stochastic area, the energy
transfer rate vanishes only if there is detailed balance. How-
ever, unlike the stochastic area, we have seen that the energy
transfer and entropy production rates are both monotonically
increasing with the coupling capacitance.

The stochastic area has a compelling connection to On-
sager’s theoretical characterization of thermodynamic fluctua-
tions. Onsager [29] proposed that thermodynamic equilibrium
upholds a certain symmetry of temporal correlations as fol-
lows: Let x(t ) and y(t ) be stationary random processes rep-
resenting fluctuations of two state variables. For equilibrium
statistics, the correlation function 〈x(t )y(t ′)〉 is invariant under
translation of times t and t ′ by the same constant (stationary
stochastic processes) and also invariant under interchange of
t and t ′. Onsager calls this exchange symmetry the principle
of microscopic reversibility. Due to the exchange symmetry,
equilibrium statistics does not betray the forward direction
of time. The connection to stochastic area is immediate:
According to microscopic reversibility, we have

1

2τ
〈x(t )y(t + τ ) − x(t + τ )y(t )〉 = 0 (48)

for all t and τ . In the limit τ → 0, the left-hand side reduces
to

1
2 〈(xẏ − yẋ)(t )〉. (49)

This is none other than the ensemble-averaged time rate of
change of stochastic area

A(t ) = 1

2

∫ t

0
(xẏ − yẋ)(t ′)dt ′. (50)

Hence, ensemble-averaged stochastic area has zero rate of
change for equilibrium statistics. Nonzero growth of stochas-
tic area indicates violation of Onsager’s microscopic re-
versibility.

We conclude by posing a related open question concerning
applicability of these methods to higher-dimensional systems.
Experiments typically probe only a few of many independent
state variables. This is certainly the case for the experiments
on active biological systems as in Refs. [9,10]. Probability

density histograms constructed from time series of observ-
ables are obviously projections of the probability density on
the whole state space. The formal algorithms to construct
probability current histograms on the subpace of observables
generally remain operable, but what do these formal proba-
bility currents really mean? Do they really describe transport
of the reduced probability density in the space of observables
or is there a mismatch which reflects the presence of ignored
dimensions?
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APPENDIX A: EXPERIMENTAL DETERMINATION
OF EFFECTIVE NOISE AMPLITUDES

Recall that the filtered noise voltages s1(t ) and s2(t ) in-
jected into the circuit are modeled as multiples s1w1(t ) and
s2w2(t ) of unit white noises w1(t ) and w2(t ). Here we present
the determinations of the effective noise amplitudes s1 and s2

from recorded time series of s1(t ) and s2(t ). Letting s(t ) refer
to a stationary stochastic process such as s1(t ) or s2(t ), and
assuming that s(t ) has zero mean, its integral

B(t ) :=
∫ t

0
s(t ′)dt ′ (A1)

also has zero mean. Its variance is

〈B2(t )〉 =
∫ t

0

∫ t

0
c(t ′ − t ′′)dt ′dt ′′, (A2)

where c(t ) is the correlation function such that

c(t ′ − t ′′) = 〈s(t ′)s(t ′′)〉. (A3)

Assuming c(t ) is integrable, we define the correlation time t∗
as

t∗ := 1

2c(0)

∫ ∞

−∞
c(t ′)dt ′, (A4)

which characterizes the width of the main support of c(t )
about the origin. In the limit t � t∗, (A2) reduces asymptoti-
cally to

〈B2(t )〉 ∼
{ ∫ ∞

−∞
c(t ′)dt ′

}
t . (A5)

Variance proportional to time is the signature feature of
Brownian motion. Hence, we say that B(t ) is asymptotic to
a Brownian motion for t � t∗. If we replace the actual noise
s(t ) in (A2) by the multiple sw(t ) of unit white noise w(t ),
then B(t ) is exactly Brownian motion, with

〈B2(t )〉 = 2s2t . (A6)

Comparing (A5) and (A6), we identify the effective noise
amplitude of s(t ),

s2 = 1

2

∫ ∞

−∞
c(t ′)dt ′. (A7)
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An alternative characterization of noise amplitude,

s2 = 1

2
lim

t→∞
〈B2(t )〉

t
, (A8)

follows from (A5) and (A7) and is the basis for its experimen-
tal determination.

Practical implementation starts with the recording of a
long time series of s(t ). The sampling interval τ should be
much smaller than the noise correlation time t∗. Here we use
the smallest sampling interval permitted by the multichannel
analog-to-digital converter, τ = 2 ns 
 t∗ ≈ 400 ns. We di-
vide the complete time series into a large number N � 1 of
subseries, each of which consists of n � 1 sequential data
points, such that nτ � t∗. Indexing each of the subseries by
integer k, we have an ensemble of discrete analogs of the
integral (A1),

Bk (t = nτ ) =
n−1∑
j=0

s( jτ + knτ )τ, (A9)

for k = 1, . . . , N . For each subseries, we calculate the mean-
square displacement normalized by elapsed time nτ ,

1

2

B2
k (nτ )

nτ
. (A10)

The average of these values over all subseries pro-
vides an experimental determination of the effective noise
amplitude s2.

APPENDIX B: THE DISCRETE STOCHASTIC
AREA FORMULA

For what range of sampling intervals is the ensemble-
averaged finite difference 〈(DA)(t )〉 in (16) a good approxima-
tion to the corresponding theoretical expression 〈Ȧ〉, cf. (15)?
One concern is that the voltage time series with sampling

time larger than the noise correlation time, τ � t∗ ≈ 400 ns,
does not detect the short time fluctuations between successive
sample points. Does this matter? A simple analysis settles this
question. For any realization of the noise vector w(t ) in (4),
the corresponding trajectory in the stationary ensemble is

v(t ) =
∫ ∞

0
eLt ′

σw(t − t ′)dt ′. (B1)

We calculate

〈v(t )v(t + τ )T 〉

=
∫ ∞

0

∫ ∞

0
eLt ′

σ 〈w(t − t ′)w(t + τ − t ′′)T 〉σ T eLT t ′′
dt ′dt ′′

=
∫ ∞

0

∫ ∞

0
eLt ′

σδ(τ − t ′′ + t ′)σ T eLT t ′′
dt ′dt ′′

=
∫ ∞

0
eLt ′

σσ T eLT (t ′+τ )dt ′

=
(∫ ∞

0
eLt ′

DeLT t ′
dt ′

)
eLT τ = MeLT τ . (B2)

Similarly,

〈v(t + τ )v(t )T 〉 = eLτ M. (B3)

Hence,

〈(DA)(t )〉 = 1
2

(
MeLT τ − eLτ M

)
12. (B4)

If the sampling time τ is much shorter than the relaxation
time Rc associated with the dynmical matrix L, then (B4)
asymptotically reduces to

〈(DA)(t )〉 ∼ 1
2 (MLT − LM )12 = −(LM + D)12 = �. (B5)

Thus, we see that it is the relaxation time Rc and not the much-
shorter noise correlation time t∗ which sets the upper bound
on the sampling interval.
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