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Bond-counting potentials: A classical many-body model of covalent bonding with exact
solutions in one dimension
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We introduce “bond-counting” potentials, which provide an elementary description of covalent bonding.
These simplistic potentials are intended for studies of the mechanisms behind a variety of phase transitions
in elemental melts, including the liquid-liquid phase transitions (LLPTs) in phosphorus and bismuth. As a first
study employing such potentials, an analytic solution of a one-dimensional model system is presented, including
its thermodynamic properties and its structure factor. In the simplest case, the chemical valency of each atom is
1, and either single atoms or diatomic molecules are present. At low temperatures and moderate pressures, the
system consists almost exclusively of molecules, and single atoms act as topological defects. A slightly more
complicated case involves a valency of 2, with either single or double bonding. This system exhibits a first-order
LLPT from a molecular to a polymeric phase as in phosphorus. In this case, the one-dimensional model system
exhibits phase separation for finite-sized systems at low temperatures. A variant of this system also exhibits
a nonequilibrium phase transformation upon heating the molecular condensed phase, qualitatively similar to
boiling in white phosphorus.
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I. INTRODUCTION

Many liquids and solids are well described within the
van der Waals picture: Their structure and dynamics are
determined primarily by strong repulsive forces that give
rise to severe constraints on the particles’ motion, whereas
the overall density is largely determined by weaker long-range
attractive forces [1,2]. The packing constraints dominate the
short-range order characteristic of the liquid state and lead to
a quasiuniversal structure of simple liquid metals and noble
gases, at least in the vicinity of the melting curve, with
a structure close to that of a system of hard spheres and
coordination numbers of z = 9–11 [1,3–5].

On the other hand, covalent-bonded elements with
open crystalline structures—mainly group IV–VI elements—
exhibit liquid structures characterized by low coordination
numbers. The fact that such a liquid structure may be
highly nontrivial is reflected by intricate phase diagrams,
which include thermodynamic anomalies and/or liquid-liquid
phase transitions (LLPTs) [6–9]. Indeed, a growing number
of LLPTs have been observed in elemental liquids during
the past three decades, e.g., in phosphorus [10–12], sele-
nium [13,14], sulfur [14–17], bismuth [18–21], and tellurium
[22,23].

In some cases, there exists a general understanding of
the mechanism behind a LLPT. The most well-known exam-
ple is phosphorus, which at temperatures of about 1300 K
and moderate pressures exhibits a fluid state consisting of
pyramid-shaped P4 molecules. As the pressure is increased to
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about 1 GPa, the volume occupied by the pyramidal molecules
becomes prohibitive, and the liquid collapses to a much
denser polymeric structure [10,11]. This LLPT is first order
and reversible with a coexistence line ranging from (P, T ) ≈
(0.9 GPa, 1300 K) to (P, T ) ≈ (0.3 GPa, 2450 K) [12].

A further consequence of strong covalent bonds is the
observation of nonequilibrium phase transitions between
metastable states [24]. A prominent example of an element
with such states is, again, phosphorus [25]. The P4 molecules
can be condensed from the vapor, and the resulting material
is known as white phosphorus. White phosphorus exists in
several different molecular phases as a function of tempera-
ture and undergoes solid-solid melting and boiling transitions
between these metastable phases, despite the fact that the
thermodynamically stable phase under these conditions is the
nonmolecular black phosphorus state. In the vicinity of room
temperature, the lifetimes of the metastable phases are exceed-
ingly long, but near boiling, at ≈550 K, polymerization of
phosphorus begins to occur [26], and the original P4 molecules
do not reform upon subsequent cooling to room temperature
conditions. The present description of the phase behavior of
phosphorus does not do justice to the complexity of the topic
(e.g., we have not even mentioned red phosphorus). Instead,
it focuses exclusively on those aspects—the LLPT and the
existence of a nonequilibrium boiling transformation—which,
as we will see below, can be qualitatively reproduced within a
simplistic model for covalent bonding in one dimension (1D).

In other cases, the mechanisms behind observed LLPTs
have not yet been identified. For example, different types of
evidence for several LLPTs in bismuth have been reported,
both at high pressures [18,21] and at ambient pressure [19,27].
A recent set of experiments presents further challenges for
an understanding of the behavior of this elemental liquid
[20,28,29]. In these studies, bismuth is compressed to ∼2 GPa
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and heated to ∼2000 K, and then cooled and decompressed
back to ambient conditions. The resulting solid contains struc-
tural defects and displays a variety of anomalies, including
the following peculiarity at melting: Upon heating at ambient
pressure, this material undergoes a transformation similar to
standard melting of Bi I (as evidenced by an endothermic
peak, which has the appropriate magnitude and temperature,
and is largely reversible), but the material does not flow
and instead retains its shape as a solid (see the insets in
Fig. 1 of Ref. [29]). Identifying the mechanism behind such a
phenomenon is a challenge which requires significant experi-
mental and theoretical work. We will present some speculative
ideas on this in Sec. IV and explain in what sense the present
paper may serve as a preliminary step in a three-dimensional-
(3D-) simulation approach to this problem.

Several theoretical approaches have been used to investi-
gate LLPTs. On the phenomenological level, the two-state
model [30,31] was used to give a simple explanation of LLPTs
for both liquids and amorphous solids [6,32,33]. According to
this model, a LLPT is a result of competition between two
kinds of clusters which differ in their short-range order. One
liquid phase consists predominantly of entropically favorable
clusters of high density, and the second phase consists of a
large concentration of energetically favorable clusters of low
density (i.e., with a more open structure) [34]. The model
assumes an energy cost J for mixing the two types of clusters
and yields a first-order phase transition line, terminating at a
critical point at a temperature of J/(2kB). At lower tempera-
tures, the two types of clusters exhibit phase separation despite
being made of the same substance (i.e., exhibit a miscibility
gap). This type of modeling can describe the thermodynamics
of the system without requiring a microscopic understanding
of the mechanisms of formation and interaction of the two
distinct clusters involved.

More elaborate theoretical analyses employ molecular dy-
namics simulations, either combined with ab initio density
functional theory calculations [35,36] or based on empirical
potentials [37,38]. Most of these simulations strive to achieve
a quantitative understanding of the phenomena in specific
materials and are often successful but are limited by com-
putational power for the first type of simulation and by the
accuracy of the potentials for the latter type. For example,
the predictions of LLPTs by such simulations sometimes
contradict experimental observations (see, e.g., the case of
nitrogen in Ref. [39]), indicating possible gaps in our un-
derstanding. A complementary approach in seeking a better
understanding of LLPTs is based on simplistic potentials with
very few parameters where the goal is to reproduce observed
phenomena qualitatively rather than quantitatively.

The canonical example of such a simplistic approach to
the liquid state of matter is the hard-sphere potential with
only one parameter (the spheres’ diameter), which provides an
elementary prototype of the melting transition [40–42]. More
recently, a variety of simple soft-core isotropic pair potentials
have been investigated extensively and have been shown to ex-
hibit a wide range of nontrivial phenomena, including LLPTs,
polyamorphism in glasses, anomalous melting, and waterlike
liquid anomalies (see Ref. [43] and references therein). In
some cases, such as the density maximum in water, the phe-
nomenon of interest could be qualitatively reproduced even

within a simplified 1D model by an analytic solution of the
thermodynamics of the system [44–46].

In the present paper we introduce bond-counting many-
body potentials in order to provide a simple description of
covalent bonding. In the simple cases studied in detail, each
atom is characterized by two size parameters—a “core di-
ameter” which is impenetrable, and a larger “bonding zone
diameter” which may be penetrated by up to z neighbors, each
forming a bond with a binding energy of one unit. The case
z = 1 corresponds to atoms which form diatomic molecules,
such as hydrogen or fluorine; z = 2 describes atoms which can
polymerize, such as sulfur, and z = 3 may describe bismuth
and phosphorous (in 3D). The present contribution is limited
to 1D, where analytical solutions are possible. The thermo-
dynamics and structure of the simplest model with z = 1 are
analyzed in detail. Subsequently, a qualitative description of
the above-mentioned phenomena observed in phosphorus is
obtained for z = 2. This is performed by allowing for double
bonds between identical atoms, which opens the possibility
for competing molecular and polymeric configurations even
in a very simple 1D system.

The paper is organized as follows. Section II provides the
general definition of potentials, which count the number of
bonds. The exact solution of this model in 1D is discussed in
Sec. III. In Sec. IV we summarize the results and discuss pos-
sible extensions of this paper, including higher dimensions.

II. BOND-COUNTING MODEL POTENTIALS FOR
COVALENT BONDING

Before providing the definition of a new family of po-
tentials, it is appropriate to mention a few more general
facts regarding existing empirical potentials [1]. First, it is
noteworthy that both qualitative and remarkable quantitative
accuracies in the description of simple liquids, consisting
of atoms with van der Waals, metallic, or ionic interactions
can be achieved using simple pair potentials, such as the
Lennard-Jones or (possibly screened) Coulomb potentials.
For molecular liquids, models which combine pair potentials
between atoms in different molecules with rigid connections
within each molecule are also successful as long as breaking
and reformation of the covalent bonds is not relevant. Of the
very many multiparameter many-body empirical potentials
developed to improve the quantitative accuracy of simula-
tions, we will mention only two: the embedded-atom method
(EAM) [47] to which we will return below and reactive force
fields [48], which were developed expressly in order to allow
simulations of covalent bond breaking and formation.

Liquids of the latter type, for which the bonds within each
molecule are evolving (as in polymerization), are referred to
as “associating liquids”. A simple model for these describes
each atom or monomer as a hard sphere, augmented by several
much smaller off-center spheres with attractive square-well
potentials [49,50]. If the attractive potential is sufficiently
short ranged, the formation of more than one bond at each off-
center site is excluded. Approximations appropriate for such
models have been developed [49] and have seen considerable
success in the framework of the statistical associating fluid
theory [51]. The bond-counting potentials introduced here ex-
press the idea of chemical valency directly rather than relying
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on geometric constraints and pair potentials. In particular, the
extension to double or triple bonds is straightforward within
the bond-counting approach, see below.

In order to define bond-counting potentials, consider a sys-
tem of N classical particles (atoms) of mass m and positions ri.
Distinguishing distances shorter than the bond-range a from
longer distances, each atom is associated not only with its
position, but also with the number of its bonds,

qi =
∑
k �=i

θ (a − rik ), (1)

where rik = |ri − rk| is the distance between atoms i and k and
θ (x) is the step function. The valency z of each atom cannot be
exceeded, namely, qi � z. This constraint enforces the many-
body character of the potential since the interaction between a
pair of atoms depends on the number of their bonds with other
atoms. For instance, for z = 1 atoms i and j cannot create a
bond (move from ri j > a to ri j < a) if one of them is already
bonded to a third atom (i.e., if qi = 1 or q j = 1). Consider a
potential Vi j between each pair of atoms i and j which may,
in general, depend on the number of bonds of both, namely,
Vi j = V (ri j, qi, q j ). In the simple cases to be studied here, the
potential is taken to be independent of qi and q j , provided that
both are not larger than z,

V (ri j, qi, q j ) =
{
v(ri j ) qi, q j � z
∞ qi > z or q j > z

, (2)

where

v(r) =
⎧⎨
⎩

∞ r < d
vbond(r) d < r < a
vnonbond(r) r > a

. (3)

Here, d is an impenetrable core diameter (which is optional in
the sense that d = 0 is allowed), and vbond(r), vnonbond(r) are
the interaction potentials inside and outside the bonding zone,
respectively.

Double bonds can be taken into account in a straightfor-
ward manner within this approach by introducing an addi-
tional diameter ã < a such that the region d < r < ã corre-
sponds to a double bond. The number of bonds of atom i is
then,

qi =
∑
k �=i

[θ (a − rik ) + θ (ã − rik )], (4)

and the potential v(r) in Eq. (2) is replaced by

v(r) =

⎧⎪⎪⎨
⎪⎪⎩

∞ r < d
vdouble bond(r) d < r < ã
vsingle bond(r) ã < r < a
vnonbond(r) r > a

. (5)

Similarly, triple bonds can be described by introducing yet
another diameter.

Note that LLPTs and liquid anomalies were found in one-
component fluids with isotropic pair potentials characterized
by two repulsive length scales and are expected to appear in
corresponding cases of the bond-counting potentials as well.
For example, for the simplest case of z = 1 in 1D discussed
in Sec. III, a repulsive potential vbond(r) in the bonding zone
results in a phase transition at a finite pressure (at T = 0),

similar to that discussed in Refs. [43,45]. However, due to the
many-body nature of the potential, more complicated cases
of bond-counting potentials are expected to give rise to a
richer behavior with LLPTs qualitatively different from those
obtained in a system of particles interacting via pair potentials
(as a specific example in 1D, see Sec. III C).

We also note that, just as hard spheres can be viewed as
a limiting form of pair potentials, the bond-counting poten-
tials can be represented as limiting forms of more elaborate
many-body potentials. For example, using the EAM with the
notation,

VEAM(r1, . . . , rN ) =
N∑

i=1

F

⎛
⎝∑

j �=i

ρ(ri j )

⎞
⎠ +

N∑
i=2

i−1∑
j=1

U (ri j ),

(6)
one obtains the above potentials by using the choice ρ(ri j ) =
θ (a − ri j ) for a model with single bonds [ρ(ri j ) = θ (a −
ri j ) + θ (ã − ri j ) for a model with double bonds] with the
embedding energy F and pair potential U given by

F (x) =
{

0 x � z
∞ x > z

,

U (r) = v(r). (7)

Thus, simulation software with an EAM option can be used
to obtain results for the present family of potentials, provided
that numerical issues associated with the use of step functions
are resolved. Note that this limiting case is unconventional in
the sense that the embedding energy is purely repulsive with
all the attraction in the pair potential. This is the opposite
of the customary use of the EAM, which was originally
developed for metals.

It should be emphasized that the family of potentials
defined above is isotropic—there is no explicit dependence
on bond angles. As appropriate for liquids, it is suited for
identifying mechanisms which rely exclusively on the notion
of chemical valency and are not sensitive to the details of
the geometry. Adding angular dependencies as in the devel-
opment of the modified EAM [52] is a natural possibility for
future studies.

III. EXACT SOLUTION IN 1D

In this section we briefly review the Takahashi solution
for a classical system with nearest-neighbor interactions in
1D (Sec. III A) and then use the transfer matrix method to
generalize and apply the solution to two models of bond-
counting potentials: (1) a model with z = 1 for which we
study in detail the equilibrium statistical mechanics and
the resulting structure (Sec. III B); (2) a model with z = 2
which allows for double bonds, exhibiting a polymerization
transition (Sec. III C).

A. The Takahashi solution for 1D systems with
nearest-neighbor interactions

We summarize the Takahashi solution [53,54] for a 1D
classical system of N particles of mass m with a Hamiltonian
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of the form

H(x, p) = 1

2m

N∑
i=1

p2
i +

∑
〈i, j〉

u(|xi − x j |). (8)

Here, xi and pi are the position and momentum of the ith
particle, and u(x) is the nearest-neighbor interaction potential
(the sum in the last term is over nearest-neighbors i, j) [55].

The canonical partition function for a system of length L at
temperature T reads

ZN (L, T ) = 1

N!hN

∫
dN x dN pe−βH(x,p)

= 1

N!λN
T

∫
dN x e−β

∑
〈i, j〉 u(|xi−x j |), (9)

where β = 1/kBT and λT = h/
√

2πmkBT with kB and h
as the Boltzmann and Planck constants. The crucial step in
deriving the exact solution is that in 1D the last integral
in (9) is N! times the integral over the domain D, defined
by 0 � x1 � x2 � · · · � xN � L. The canonical partition
function then takes the form

ZN (L, T ) = 1

λN
T

∫
D

dN x exp

[
−β

N−1∑
i=1

u(xi+1 − xi )

]
. (10)

The evaluation of the partition function is simple in the
isobaric-isothermal (PT N) ensemble for which

ZN (P, T ) = 1

l0

∫ ∞

0
dL ZN (L, T )e−βPL, (11)

where l0 is a basic unit of length required to render the
partition function ZN (P, T ) dimensionless. In the thermody-
namic limit the choice of l0 is not important; below l0 =
(βP)−1 is used so that the condition ZN=0(L, T ) = 1 implies
ZN=0(P, T ) = 1. Substituting Eq. (10) into (11) and chang-
ing variables to y1 = x1, yi = xi − xi−1 for i = 2, . . . , N and
yN+1 = L − xN (such that

∑N+1
i=1 yi = L), one obtains

ZN (P, T ) = 1

l0λN
T

∫ ∞

0
dy1e−βPy1

(∫ ∞

0
dy e−β[u(y)+Py]

)N−1

×
∫ ∞

0
dyN+1e−βPyN+1 . (12)

All thermodynamic properties can then be calculated ex-
actly from the Gibbs free energy per particle (or chemical
potential), which in the thermodynamic limit is

g(P, T ) = lim
N→∞

GN (P, T )

N

= − 1

β
lim

N→∞
ln ZN (P, T )

N

= − 1

β
ln

(
1

λT

∫ ∞

0
dy e−β[u(y)+Py]

)
. (13)

An example to be used below as a reference is the hard-
sphere model,

uHS(x) =
{∞ x < a

0 x > a
, (14)

for which Eq. (12) yields

Z (HS)
N (P, T ) = 1

βPλT

(
e−βPa

βPλT

)N−1

. (15)

The corresponding Gibbs free energy per particle [Eq. (13)] is

gHS(P, T ) = Pa + 1

β
ln(βPλT ). (16)

B. Bond-counting potential with z = 1

Using the transfer matrix method, the Takahashi solution
may be generalized to solve for a system with a z = 1 bond-
counting potential in 1D. The relevant potentials for z = 1
are given by Eqs. (1)–(3). Each atom can have at most a
single bond with one of its nearest neighbors, and the system
consists of a mixture of single atoms and diatomic molecules
(i.e., paired atoms separated by a distance of d < y < a). We
note that a similar method was used in Ref. [56] to solve
a 1D model involving two types of atoms (or rather, two
orientations of molecules). In the solution below the index of
the transfer matrix specifies the type of bond rather than the
type of atom as in Ref. [56].

1. Thermodynamics

In the PT N ensemble each molecular bond will contribute
to the partition function a factor,

A =
∫ a

d
dy e−β[vbond (y)+Py], (17)

whereas each pair of adjacent atoms which are not bound to
each other will contribute a factor,

B =
∫ ∞

a
dy e−β[vnonbond (y)+Py]. (18)

The partition function for N atoms is then l0λ
−N
T times a

sum of all possible products of N − 1 factors of this type
(such as ABABBA for N = 7) where the only restriction on
the products is that two consecutive bond factors A cannot
occur. An appropriate recursion relation is available, ZN =
λ−1

T BZN−1 + λ−2
T ABZN−2, expressing the fact that the last

atom in the chain can be either unbound or bonded to the
preceding atom: One can add to shorter chains either a single
atom or a molecule. This relation is similar to the recursion
relation for the Fibonacci sequence, providing a hint that
expressions in terms of powers of a 2 × 2 matrix may be
possible.

The calculation of the partition function can be simplified
by closing the 1D chain such that the N th atom becomes a
neighbor of the first atom. One may define the bond variables
{σi}N

i=1, where σi = 1 if atoms i and i + 1 are bonded (i.e.,
d < yi+1 < a) and σi = 0 otherwise. With this definition, the
contribution of the ith bond to the partition function is B if
σi = 0 and A if σi = 1. The restriction that two adjacent bonds
are not allowed implies that the contribution vanishes if σi =
σi+1 = 1 for some value of i. The partition function can thus
be written in the form

ZN (P, T ) = 1

λN
T

∑
{σi}

N∏
i=1

Tσiσi+1 = 1

λN
T

Tr[T N ], (19)
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where σN+1 ≡ σ1 and the transfer matrix T is

T =
(

B B
A 0

)
. (20)

The eigenvalues of this transfer matrix are �± = (B ±√
B2 + 4AB)/2 and since �+ > �−, in the thermodynamic

limit the Gibbs free energy per particle reads

g(P, T ) = − 1

β
ln

(
�+
λT

)

= gTak(P, T ) − 1

β
ln

[
1

2

(
1 +

√
1 + 4A

B

)]
, (21)

where gTak(P, T ) = −kBT ln(B/λT ) is the Gibbs free energy
of the Takahashi model [Eq. (13)] with an interaction potential
u(y) between a paired and a single nearest-neighbor atom,

u(y) =
{

∞ y < a

vnonbond(y) y > a
. (22)

The length 	(P, T ) and entropy s(P, T ) per particle are,
therefore,

	 =
(

∂g

∂P

)
T

= 	Tak −
2

β

∂

∂P

(
A

B

)
T(

1 +
√

1 + 4A

B

)√
1 + 4A

B

, (23)

s = −
(

∂g

∂T

)
P

= sTak + kB ln

[
1

2

(
1 +

√
1 + 4A

B

)]

+
2

β

∂

∂T

(
A

B

)
P(

1 +
√

1 + 4A

B

)√
1 + 4A

B

, (24)

where 	Tak = (∂gTak/∂P)T and sTak = −(∂gTak/∂T )P.
As a simple example, let us consider the cases

vnonbond(x) = 0 and vbond(x) = −ε, where ε > 0 is a constant
energy. Then u(y) [Eq. (22)] reduces to the hard-sphere poten-
tial uHS(y) [Eq. (14)], and thus gTak = gHS. From Eq. (16) we
obtain

	Tak = 	HS = a + 1

βP
, (25)

sTak = sHS = kB

[
3

2
− ln (βPλT )

]
. (26)

Note that Eq. (26) is also the entropy per particle of a 1D ideal
gas at fixed pressure P and temperature T and that the hard-
sphere diameter in Eq. (25) is the bond range a rather than the
core diameter d .

The ratio A/B for this system is

A

B
= eβε[eβP(a−d ) − 1]. (27)

In the high density (i.e., low-temperature or high-pressure)
limit βP(a − d ) � 1 Eqs. (23)–(27) give

	 = a + d

2
+ 1

βP
+ (a − d )O(e−βP(a−d ) ),

(28)
s = sHS + kBO(e−βP(a−d ) ).

This limit corresponds to a close-packed arrangement of N/2
molecules, each of diameter a + d . The system then behaves
effectively as N hard spheres each of diameter (a + d )/2.
In the low density and low-temperature limit e−βε � βP
(a − d ) � 1, we obtain

2	 = 3a + d

2
+ 1

βP
+ (a − d )O[βP(a − d )]. (29)

In this limit the length of each molecule follows the equation
of state (25) of hard spheres with diameter (3a + d )/2, cor-
responding to the average diameter of each molecule. In the
low density and high-temperature limit βP(a − d ) � e−βε,
we find

	 = a(1 − eβε ) + deβε + 1

βP
+ (a − d )O[βP(a − d )eβε],

(30)
s = sHS + kBO[βP(a − d )eβε],

which, if the temperature is also high in the sense that
βε � 1, corresponds to a system of N hard spheres of
diameter d .

The length per atom 	(P, T ) is plotted in Fig. 1(a) as a func-
tion of pressure at various temperatures for d/a = 0.5. The
various limits discussed above are more easily observed in a
plot of the length difference 	(P, T ) = 	(P, T ) − 	HS(P, T )
as a function of βPa. Figure 1(b) shows such a plot for
the same data as in Fig. 1(a). For βP(a − d ) � 1 all curves
approach the value of 	/a = (d/a − 1)/2 = −0.25 inde-
pendent of the value of βε, in agreement with Eq. (28). For
e−βε � βP(a − d ) � 1 Eq. (29) gives 	/a ≈ −(2βPa)−1

which appears as a straight line on a log-log scale. This
behavior is demonstrated by the black (light solid) curve in
Fig. 1(b). Finally, in the limit βP(a − d ) � e−βε the correc-
tion to Eq. (30) of order βε gives 	/a ≈ −eβε(1 − d/a).
This is the value approached by the curves in Fig. 1(b) for
βP(a − d ) � e−βε.

Figure 2 shows the entropy difference per atom s(P, T ) =
s(P, T ) − sHS(P, T ) as a function of βPa. The entropy dif-
ference approaches zero in the limits βP(a − d ) � 1 or
βP(a − d ) � e−βε, in accordance with Eqs. (28) and (30).
It is also interesting to note that for P = (a − d )/ε one has
A/B = eβε(eβε − 1), and g = g − gHS [Eq. (21)] becomes
independent of temperature. Thus s = 0 for P = (a − d )/ε,
irrespective of the temperature.
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FIG. 1. (a) Length per atom (in units of the bond-range a) as a
function of pressure (in units of ε/a) at various inverse temperatures
(in units of ε/kB) for d/a = 0.5. (b) Length-per-atom difference
	(P, T ) = 	(P, T ) − 	HS(P, T ), relative to hard spheres of diameter
a as a function of βPa.

Another quantity of interest is the fraction of molecules,

〈m〉 = A lim
N→∞

1

N/2

∂ ln ZN (P, T )

∂A

= 2A
∂ ln �+

∂A

=
4A

B(
1 +

√
1 + 4A

B

)√
1 + 4A

B

. (31)

This quantity approaches 1 in the limit βP(a − d ) � e−βε and
approaches 0 for βP(a − d ) � e−βε as shown in Fig. 3. The
first case contains the two limits βP(a − d ) � 1 or e−βε �
βP(a − d ) � 1 discussed in Eqs. (28) and (29) in which the
system consists of N/2 molecules.

βPa
10-3 10-2 10-1 100 101 102

Δ
s/

k
B
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βε = 10
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βε = 1
βε = 0.5
βε = 0.1

FIG. 2. Entropy difference per atom s(P, T ) = s(P, T ) −
sHS(P, T ) as a function of βPa at various temperatures for d/a = 0.5.

2. The structure factor

The transfer matrix method also enables the calculation of
the structure factor of the system,

S(q) = 1

N

N∑
i, j=1

〈e−iq(xi−x j )〉

= 1

N

⎛
⎝N +

N∑
i=1

i−1∑
j=1

〈e−iq(xi−x j )〉 + c.c.

⎞
⎠. (32)

The interatomic distance can be written as a sum over bond
lengths xi − x j = ∑i

k= j+1 yk , and therefore one can factor the
oscillatory term here and use a variant of the transfer matrix
method to calculate this quantity. Adding the appropriate

βPa
10-3 10-2 10-1 100 101 102

m

0

0.2

0.4

0.6

0.8

1

βε = 10
βε = 5
βε = 2
βε = 1
βε = 0.5
βε = 0.1

FIG. 3. Fraction of molecules as a function of βPa at various
temperatures for d/a = 0.5.
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oscillatory factor to the expressions for A and B results in

Aq =
∫ a

d
dy e−iqye−β[vbond (y)+Py],

Bq =
∫ ∞

a
dy e−iqye−β[vnonbond (y)+Py], (33)

together with an analog of the transfer matrix,

t =
(

Bq Bq

Aq 0

)
. (34)

In terms of these quantities, one obtains

〈e−iq(xi−x j )〉 = Tr[T jt i− jT N−i]

Tr[T N ]

= Tr[T N+ j−it i− j]

Tr[T N ]
. (35)

The eigenvalues of the matrix t are λ± = (Bq ±√
B2

q + 4AqBq)/2. Substituting the similarity transformations

T = MW M−1 and t = mwm−1, where

W =
(

�+ 0
0 �−

)
,

w =
(

λ+ 0
0 λ−

)
,

(36)

M =
(

1 1
A

�+
A

�−

)
,

m =
(

1 1
Aq

λ+
Aq

λ−

)
,

we obtain from Eq. (35),

〈e−iq(xi−x j )〉 = Tr[MW N+ j−iM−1mwi− jm−1]

Tr[T N ]

= Tr[m−1MW N+ j−iM−1mwi− j]

Tr[T N ]
. (37)

In the thermodynamic limit N → ∞, only the mode with
eigenvalue �+ survives, and one ends up with

〈e−iq(xi−x j )〉 = r+

(
λ+
�+

)i− j

+ r−

(
λ−
�+

)i− j

, (38)

where

r+ = (m−1M )11(M−1m)11

= �+λ+ + �−λ− − �+�−Aq/A − λ+λ−A/Aq

(�+ − �−)(λ+ − λ−)
,

(39)
r− = (m−1M )21(M−1m)12

= �+�−Aq/A + λ+λ−A/Aq − �+λ− − �−λ+
(�+ − �−)(λ+ − λ−)

.

With the form (39), the limit N → ∞ of Eq. (32) gives

S(q) = 1 + 2
[

r+λ+/�+
1 − λ+/�+

]
+ 2

[
r−λ−/�+

1 − λ−/�+

]
. (40)
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βε = 10 and βPa = 1.07
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βε = 2 and βPa = 1.33
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(b)

FIG. 4. (a) Structure factor S(q) (q in units of a−1) at a constant
density na = 0.75 at various pressures and temperatures. (b) The
corresponding radial distribution function g(x) (x in units of a).

The corresponding radial distribution function g(x) is given
by the Fourier transform,

g(x) = 1

2πn

∫
dq eiqx[S(q) − 1], (41)

where n = 	−1 is the particle density.
The structure factor and radial distribution function for

the cases d/a = 0.5, vnonbond(x) = 0, and vbond(x) = −ε dis-
cussed above are shown in Fig. 4 for a constant density
na = 0.75 (note that at a constant density the values of βPa,
which are given in the figure, vary only to a limited extent; a
plot of the structure factors at a fixed value of βPa ≈ 1 will
be qualitatively similar). At low temperatures the structure
factor shown in the upper panel has a pronounced first peak,
which decreases in height and develops into a shoulderlike
feature as the temperature is increased. The radial distribution
function displayed in the lower panel has two main features
corresponding to neighbors at distances x = d and x = a with
discontinuities reflecting the discontinuities of the potential.
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At high temperatures these two features are distinct peaks,
and the height of the second one is larger since molecules
are dissociated into individual atoms. At lower temperatures,
the number of bonded molecules increases, and the height of
the first peak becomes dominant. Interestingly, at low enough
temperatures the discontinuity at x = a changes sign, and
there is no longer a peak at this value of x. The evolution of
this discontinuity with temperature is reflected in the strong
oscillations observed in the upper panel for large q.

3. Phases and boundaries

The above, especially Fig. 3, shows how this system
transforms continuously between a purely atomic fluid and
a molecular fluid. It is intuitively clear that a qualitatively
similar crossover will occur also in two dimensions (2D) and
3D. In particular, in this 1D model the P → 0 and the T → 0
limits are different and do not commute, and there is in this
sense a discontinuity at T = P = 0. A similar discontinuity
has been identified in previous studies of 1D systems as
representing the liquid-gas critical point of 3D fluids (see,
e.g., Sec. VII A of Ref. [45]). It is worth noting that, for a
system defined just as above but with a negative value of ε,
this critical point occurs at a finite pressure PC = |ε|/(a −
d ) as follows from Eq. (31). In this case, at low pressure
the atoms repel each other and are separated by distances
longer than a, but a pressure P > PC causes pairs of atoms
to overcome their mutual repulsion. This transition is similar
to that found in a system of particles interacting through
soft-core pair potentials, see Refs. [43,45], and references
therein.

Returning to the present system with a positive binding
energy, one can identify additional features related to phase
behavior. If the temperature is low enough, the fraction of
molecules approaches 100%, and only very few unpaired
atoms remain. The system then consists of large domains
of molecules, separated by “boundary defects,” which are
unbound atoms, and which can only be created or annihilated
in pairs. In this sense, the single atoms act as topological
defects in the system.

The dynamics of these defects may be of interest. If the
temperature or pressure is slightly changed, the density of
defects will adjust and approach the new equilibrium very
slowly due to the need to break the strong covalent bonds for
any change to occur. After the kinetic energy of all the atoms
has relaxed to the new temperature, changes in the position of
a defect along the chain require ∝exp(βε) attempts because of
the large barrier for breaking these bonds. Such bond-breaking
events enable just a single step along the chain, but in order to
annihilate two defects must approach each other by diffusing
significant distances along the chain.

Conversely, it is not enough to break a single molecular
bond in order to create a pair of defects because there is
an overwhelming probability for the two single atoms just
created to recombine, leaving the system in the original state.
Two adjacent molecules in a given domain must simultane-
ously have broken bonds in order for a single novel molecule
to form, nucleating a new domain, and creating two boundary
defects. The probability of this happening is ∝exp(−2βε)
per attempt, and it must further be taken into account that

once the two newborn defects begin diffusing, the probability
that they will recombine is relatively large because of their
proximity to each other. Only after a long relaxation process
will the concentration of defects reach its new equilibrium
value, and the creation and annihilation processes reach equal
rates (detailed balance).

C. Bond-counting potential with z = 2 and double bonds

We now extend the treatment of the previous subsection to
a model with two bonds per atom where each atom can have
up to two single bonds (one on each side) or one double bond
with one of its nearest neighbors. We assume that d > a/2
so that next-nearest neighbors cannot penetrate the bonding
zone and two single bonds on the same side are forbidden
[57]. Each single bond has an energy −ε with bond length
ã < x < a, and a double bond contributes an energy −ε̃ with
bond length d < x < ã. The appropriate transfer matrix is

T =
⎛
⎝C C C

B B 0
A 0 0

⎞
⎠, (42)

where A, B, and C are defined in analogy with Eqs. (17)
and (18). Powers of this matrix contain terms where double
bonds A are always flanked by nonbonds C, whereas single
bonds B are not limited in this manner (but cannot, of course,
be adjacent to a double bond A). The phase in which each
pair of atoms has a double bond (i.e., the state whose con-
tribution to the partition function is · · · ACACAC · · · ) corre-
sponds to the molecular phase, whereas the phase in which
each atom is bonded to its two neighbors by single bonds
(i.e., the state whose contribution to the partition function is
· · · BBBBBB · · · ) corresponds to a polymeric liquid.

Consider a possible transition between these two phases
at T = 0. The enthalpies associated with each of these bonds
are HA(P) = −ε̃ + Pd, HB(P) = −ε + Pã, and HC (P) = Pa
(this is the minimum enthalpy obtained for the minimum bond
length in each case). The corresponding enthalpies per atom
are

Hmol(P) = HA(P) + HC (P)

2

= − ε̃

2
+ P

(d + a)

2
, (43)

Hpol(P) = HB(P) = −ε + Pã.

A transition will occur for the cases ε̃ > 2ε and (d + a) >

2ã for which the molecular phase is energetically favorable,
but the polymeric phase becomes favorable as the pressure is
increased. The enthalpies of the two phases are equal at the
critical pressure,

PC = ε̃ − 2ε

d + a − 2ã
. (44)

This model has sufficient detail to have a finite free-energy
cost for a domain boundary. In order to calculate this cost,
consider replacing a double bond by a single one, namely,
replacing one of the A’s in the term · · · ACACAC · · · by B.
Introducing a larger domain of B’s at T = 0 and P = PC will
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cost the same free energy,

H = HB(PC) − HA(PC)

= −ε + ε̃ + PC(ã − d )

= ε + (ε̃ − 2ε)
a − ã

d + a − 2ã
> ε. (45)

Thus, the two phases are not mixed—for any length per atom
in the range of ã < 	 < (d + a)/2, the system will have a
clear tendency to phase separate at zero temperature.

As per Landau’s argument for the absence of phase transi-
tions in 1D systems, entropic effects will always be dominant
in the thermodynamic limit, and the resulting finite concen-
tration of phase-boundary defects will round off the phase
transformation. However, as the energy scales for covalent
bonds can easily be more than an order of magnitude larger
than room temperature, it makes sense to also consider the
behavior of finite systems; for a system of N atoms, the
whole system will be predominantly in one phase for kBT �
H/ ln N (in principle, at finite temperatures H should be
replaced by G).

This transition between a molecular phase and a poly-
meric phase, obtained for a 1D model system, is closely
analogous to the known LLPT in phosphorus discussed in
the Introduction [10–12]. Due to the phase separation just
discussed, the signature of a first-order phase transition is
clearer in this case when compared to the signatures of phase
transitions in the Takahashi solution to simpler 1D models
with nearest-neighbor pair potentials [45]. The reason for this
is that, in such solutions, the type of bonding between two
neighboring atoms has no effect on their other neighbors,
and thus no mechanism for forming a finite domain-boundary
energy exists.

A variant of the present model can also reproduce a
nonequilibrium phase transition, closely analogous to boiling
of white phosphorus. In order to obtain a boiling transition,
one must include weak attractive forces between molecules (in
vnonbond). The polymerization transition can be dynamically
hindered at low temperatures by preparing the system as a low
density molecular gas and then bringing about condensation,
i.e., increasing the density in a nonequilibrium manner. If
the binding energy of each doubly bonded molecule is much
larger than the temperature (say, by a factor of 50), one can
reach the condensed molecular phase, even if the polymeric
phase is the thermodynamically stable one because nucleation
events of the polymeric phase will be exceedingly rare. Next,
one may fix the pressure and change the temperature. In 3D,
one may have different solid, liquid, and gaseous molecular
phases, but for molecules in 1D, only a fluid phase exists.
The transition between a liquidlike and a gaslike system is
gradual in 1D, rather than abrupt, but one may still define
a characteristic temperature for this transition. If this tem-
perature is no longer very low compared to the molecular
binding energy, nucleation of the polymeric phase is expected
to occur at a rate which is no longer negligible. This is qualita-
tively what happens in actual experiments on boiling of white
phosphorus [26].

IV. SUMMARY AND DISCUSSION

We have suggested a simple type of classical many-body
model potential, which imposes constraints on (i.e., counts)
the number of bonds allowed for each atom, thus describ-
ing the essence of chemical valency. An analytical solution
of the equilibrium statistical mechanics of a one-bond-per-
atom model (z = 1) in 1D using the transfer matrix method,
including the relative density of diatomic molecules and
the structure factor, was presented. Our solution generalizes
the Takahashi solution for nearest-neighbor pair potentials.
The results for the specific case of a constant attractive
potential −ε; (ε > 0) inside the bonding zone (d < x < a,
where d and a are the hard-core and bonding zone di-
ameters) and zero outside of it (x > a) were displayed in
detail.

The case of z = 2 with double bonds was also discussed.
This model exhibits a first-order phase transition (at T =
0 in the thermodynamic limit) between a molecular phase
and a polymeric phase, reminiscent of the LLPT observed
in phosphorus. Furthermore, this model can also describe a
nonequilibrium phase transformation analogous to the boiling
of white phosphorus.

There are many open directions for future work with
bond-counting potentials. One may introduce greater variety
by considering different valencies z and mixtures of several
different species of atoms. One may study more realistic
separation-dependent potentials rather than constants or the
more complicated qi, q j dependence of Vi j (see Sec. II). In
particular, the potential felt by a single atom approaching
another single atom could be attractive and continuous at
y = a, whereas at the same time the potential for an atom
approaching a molecule could be repulsive already for y > a.
On the other hand, one may study even simpler systems by
considering, e.g., the case d = ε = 0 (or ε → ∞), resulting
in a system which has only the integer z parameter in addition
to the length parameter a. As for the hard-sphere model, the
temperature dependence in such a system is trivial, and the
properties, including phase transitions, depend only on z and
the reduced density na3.

An extension of the model potentials proposed in this paper
to 2D and 3D using molecular dynamics simulations may help
to gain further insight into the mechanisms responsible for
LLPTs and liquid state anomalies. A particularly interesting
question is the mechanism behind the LLPTs in bismuth.
In fact, one of the present authors has speculated that the
covalently bonded bilayer sheets of crystalline bismuth be-
come only partly disordered at melting (545 K) and fully
disintegrate only at the LLPT at 1010 K [58]. This would
mean that the phase obtained by melting of solid bismuth
consists of 2D polymers (the bilayers), which are unable to
pass through each other but able to glide in the transverse
directions, possibly becoming crumpled, thus adding to the
disorder.

This suggested mechanism also provides a reasonable
context for the explanation of the recently observed anoma-
lies of Refs. [20,28,29], concerning bismuth samples which
underwent a high-pressure and high-temperature treatment.
The 2D polymers which could result form the cooling and
solidification procedure at 2 GPa, a pressure at which there
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is hardly any difference in density between the liquid and
the solid, would perhaps have nontrivial topologies—possibly
the sheets are rolled up into tubes which are entangled on
larger scales. This assumes that the covalent bonds are strong
enough to remain intact during the phase transitions from
the melt to the “bismuth II” and then to the “bismuth I”
solid phases (the quotes are a reminder that these samples
contain significant structural defects [28]; the character of
these defects is consistent with this type of explanation). The
stability of the complex topology of these sheets could then
also be responsible for the absence of flow in the meltedsam-
ples [29]. An encouraging hint comes from additional studies
of the phase behavior of bismuth at ∼2 GPa and elevated
temperatures, which may be interpreted as indicating that at
these pressures and at temperatures near melting the bonds
retain a certain degree of stability even while the sample
undergoes a phase transition. These studies identified cases

in which the type of phase observed in this range of P and
T depended on the path previously followed, i.e., on which
phase the sample was previously in [59,60].

It is natural to study the qualitative aspects of such sug-
gested mechanisms using a z = 3 bond-counting potential
in 3D. The complex topology of crumpled 2D polymers
suggests that topological defects will play an important role
in molecular dynamics or Monte Carlo simulations of such
systems. In this sense, the present 1D work may be viewed
as a preliminary step in developing this approach, involving
topological defects which are particularly simple.
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