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We study the residual entropy of the nearest-neighbor spin-ice model in a magnetic field along the [111]
direction using the Wang-Landau Monte Carlo method, with a special attention to dilution effects. For a diluted
model, we observe a stepwise decrease of the residual entropy as a function of the magnetic field, which is
consistent with the finding of the five magnetization plateaus in a previous replica-exchange Monte Carlo study
by Peretyatko et al. [Phys. Rev. B 95, 144410 (2017)]. We find large peaks of the residual entropy due to
the degeneracy at the crossover magnetic fields, 4./J =0, 3, 6, 9, and 12, where h and J are the magnetic
field and the exchange coupling, respectively. In addition, we also study the residual entropy of the diluted
antiferromagnetic Ising models in a magnetic field on the kagome and triangular lattices. We again observe large
peaks of the residual entropy, which are associated with multiple magnetization plateaus for the diluted model.
Finally, we discuss the interplay of dilution and magnetic fields in terms of the residual entropy.

DOLI: 10.1103/PhysRevE.99.022138

I. INTRODUCTION

Frustrated spin systems have recently drawn considerable
interest. The discovery of the spin-ice compounds, such as
Dy,Ti,O; and Ho,Ti;O; on a pyrochlore lattice, has ac-
celerated studies into the mechanism related to frustration
[1,2]. The existence of the residual macroscopic entropy is
one of the areas of interest in frustrated systems, which was
first discussed by Pauling for water ice [3]. In the spin-
ice materials, the magnetic ions (Dy>* or Ho’") occupy a
pyrochlore lattice formed by corner-sharing tetrahedra. The
local crystal field environment aligns the magnetic moments
in the directions connecting the centers of two tetrahedra at
low temperatures [4,5]. In the low-temperature spin-ice state,
the magnetic moments are highly constrained locally and obey
the so-called “ice rules” as in a water ice, that is, two spins
point in and two spins point out of each tetrahedron of the
pyrochlore lattice.

Magnetic field effects, especially the existence of magne-
tization plateaus, have been studied theoretically [6—8] and
experimentally [9-13]. Isakov et al. [8] found a large peak
in the entropy between the two plateaus.

The dilution effect on frustration is another topic of spin-
ice materials, and Ke e al. [14] studied the dilution effects by
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replacing the magnetic ions Dy** or Ho’* by nonmagnetic
Y3+ ions. Nonmonotonic zero-point entropy as a function
of dilution concentration was observed experimentally, and a
generalization of Pauling’s theory of the residual entropy was
discussed [14]. Detailed experimental studies combined with
Monte Carlo simulations have been reported [15,16].

Recently, Peretyatko et al. [17] studied the effect of mag-
netic fields on diluted spin-ice models to elucidate the in-
terplay of dilution and magnetic fields. Five plateaus were
observed in the magnetization curve of the diluted nearest-
neighbor (NN) spin-ice model on the pyrochlore lattice when
a magnetic field was applied in the [111] direction. This effect
is in contrast with the case of a pure (i.e., undiluted) model,
which displays two plateaus.

In this paper, we present the diluted spin-ice model on the
pyrochlore lattice, focusing on the entropy, when a magnetic
field is applied in the [111] direction. To investigate the
entropy, we use the Wang-Landau (WL) Monte Carlo method
[18], which directly calculates the energy density of states
(DOS), g(E). The precise estimates of the residual entropy
for the diluted spin-ice model with no magnetic field were
reported by Shevchenko er al. [19]. If we use a canonical
Monte Carlo simulation such as the Metropolis algorithm,
the estimate of the entropy is obtained by the numerical
integration of the specific heat. Instead, using the WL method,
we can compute the entropy in a straightforward way.

As a theoretical model of the spin-ice material, in this
study, we treat the NN antiferromagnetic (AFM) Ising model
on the pyrochlore lattice. A more complicated model, such
as the dipolar model, may be required to make connections
to actual materials. However, Isakov et al. [20] discussed the
reason for which the low-temperature entropy of the spin-ice
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compounds is well described by the NN AFM Ising model on
the pyrochlore lattice, i.e., by the “ice rules.”

In this paper, we also deal with the diluted AFM Ising
model on the kagome and triangular lattices as other frustrated
systems. We study the magnetic-field dependence of the resid-
ual entropy for the diluted model. The study of the kagome
lattice is instructive for the comparison with the model on
the pyroclore lattice. The pyrochlore lattice can be regarded
as alternating kagome and triangular layers, and the magnetic
field in the [111] direction effectively decouples these layers.
The spins in the triangular layers are fixed when the magnetic
field is applied in this direction. The behavior of the spins in
the kagome layers is therefore of significant interest, and is
sometimes referred to as the “kagome-ice” problem. Thus, the
comparison of the dilution effects of the magnetization curve
and the residual entropy between the “kagome-ice” state in
the pyrochlore lattice and the two-dimensional (2D) kagome
lattice is interesting.

This paper is organized as follows: Secs. I and III describe
the model and the simulation method, respectively. The results
are presented and discussed in Sec. IV. Section V is devoted
to the summary and discussions. A review of the theory of the
pure models is presented in the Appendix. There, we give the
exact numerical estimates of the magnetization and entropy
up to 16 digits at the crossover field for the pure AFM Ising
model on the triangular lattice in a magnetic field.

II. MODEL

We investigate the AFM Ising model with NN interaction
on the pyrochlore lattice, which is displayed in Fig. 1. For the
simulation, we use the 16-site cubic unit cell of the pyrochlore
lattice. The systems with L x L x L unit cells have N = 16 *
L? sites. When a magnetic field & is applied in the spin-ice

FIG. 1. Illustration of the 16-site cubic unit cell of the pyrochlore
lattice.
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FIG. 2. Illustration of the kagome (left) and triangular (right)
lattices.

model, the Hamiltonian is given by [8]
HZJZUiGj_Zh'dK(i) a;, (1)
(i) i

where J(> 0) is the effective AFM coupling, o; are the
Ising pseudospins (0; = +1), and (i, j) stands for the NN
pairs. The unit vectors d,; represent the local easy axes
of the pyrochlore lattice, and explicitly described as d ;) =
{do.dy,d>,ds}, where do=(1,1,1)//3, d;=(1,—1,
—1)/+/3,dy=(=1,1,-1)/¥/3, and d3 = (-1, —1, 1)//3.
When the magnetic field & is along the [111] direction,
that is, h = hdo, h - d ;) becomes h for apical spins where
diy =do, but —(1/3)h for other spins. We calculate the
magnetization M along the [111] direction using the relation

M =Y do-doi. 2)

In the case of the site dilution of spins, the Hamiltonian
becomes

H ZJZC,'C]'O',‘O']' —Zh 'd,((,') Cioj, (3)
(i,J) i
where c; represent the quenched variables (¢; = 1 or 0), and
the concentration of vacancies is denoted by x. Then, the
magnetization becomes

M = Zdo -d,((,') Ci0;. (4)

In addition, we treat the diluted AFM Ising models on the
kagome and triangular lattices; these lattices are illustrated in
Fig. 2. In these models, the Zeeman term of the Hamiltonian
is simply given by —hM, where the magnetization is calcu-
lated by

M = ZC[G,‘. (5)

III. SIMULATION METHOD

We used the complete enumeration over all possible con-
figurations of system, which is the most straightforward but
computationally expensive way to obtain the information of
the system entropy.

For bigger systems we used the WL method that directly
calculates the energy DOS to obtain precise numerical in-
formation on the entropy of the system with hight accuracy.
To treat the effects of an external field in the WL method,
one may consider two types of approaches. On one hand, the
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Zeeman term, which is the second term in Eqs. (1) and (3),
is directly included in the calculation of the energy DOS. On
the other hand, the joint DOS g(Ey, M) of the Hamiltonian
without the Zeeman term for two variables, the exchange
energy Ey and the magnetization M, can be calculated. The
single DOS g(E) can be calculated using the constraint of
E = Ey — hM. The latter approach was employed for a pure
model by Ferreyra et al. [21]. However, this approach has a
disadvantage in that it is too computationally intensive, and
the calculations are therefore limited to smaller system sizes.
In Ref. [21], the authors treated up to L = 3 (N = 432). Here,
we used the direct approach of calculating the DOS of the
Hamiltonian including the Zeeman term, and the system sizes
increase up to L =35 (N =2000), and up to L =6 (N =
3456) for a pure model.

In the WL algorithm, a random walk in energy space is
performed with a probability proportional to the reciprocal
of the DOS, 1/g(E), which results in a flat histogram of
energy distribution. We make a move based on the transition
probability from energy level E) to E;:

(6)

mm-»EgznmnP,“E”}

8(Er)

Since the exact form of g(E) is not known a priori, we deter-
mine g(E) iteratively by introducing the modification factor
fi- Then, every time the state is visited, g(E) is modified by

Ing(E) —> Ing(E) + In f;. @)
At the same time the energy histogram A(E) is updated as
hE)— h(E)+ 1. (8)

The modification factor f; is gradually reduced to unity by
checking the “flatness™ of the energy histogram. Then f; is
modified as

Infiy =1nf, ©)

and the histogram A(E) is reset. As an initial value of f;, we
choose fy = e; as a final value, we choose In f; = 2722, that
is, f2 >~ 1.00000024.

The ratio of g(E) for different energies E; and E,
g(E1)/g(E>), can be calculated in the WL algorithm. If we are
interested only in the temperature dependence of the physical
quantities, such as the total energy or the specific heat, the
ratio of g(E) is sufficient. However, to determine the absolute
value of the entropy, the normalization of g(E) is necessary. In
the case of the Ising model, each spin takes one of two states;
thus, the normalization condition becomes

> g(E) = 2N, (10)
E

where Ngpi, is the number of spins. In the case of dilution, the
number of spins Ny is different from the number of sites N.

Here, we describe the technical details of the WL method.
The system with the magnetic field is asymmetric for the
inversion of the whole spins. Thus, the states with totally dif-
ferent spin configurations may have the same energys; it takes
long time to adjust g(E) for such a case. If we separate the
states into two parts, one part where the total magnetization

is positive, and the other where the total magnetization is
negative, the convergence becomes much faster. In the system
of pyrochlore lattice, we had better use the total magnetization
of Ising pseudospins,

Mp = ZO’,‘,
i

instead of M, Egs. (2) and (4), for this purpose. We normalize
the DOS as

Zg+—(E) =2NSpin/2 (11)
E

for each configuration space. Precisely speaking, we should
consider the contribution of the number of the states that the
total magnetization is equal to zero for even Ny, However,
this contribution is negligibly small for large Npyi. When we
restrict the space of the random walk to only the positive
magnetization space or the negative magnetization space, we
should consider the treatment of the boundary. It was argued
in the case of the restricted energy interval [22] that when
the suggested spin flip is out of range, we should reject the
suggested spin flip and count the current energy level once
more in Egs. (7) and (8).

For a pure system, we have the information on the ground
state based on theoretical analysis, such that the ground state
is the two-in, two-out configuration for a certain range of the
magnetic field. However, for a diluted case, we do not know
the ground state. The search for the ground state is a difficult
problem for random frustrated systems, such as spin glasses
[23]. In this paper, we follow a two-step process for some
diluted systems where the convergence is very slow. First,
we search for the ground state by simulating the restricted
range of energy. Then, as a second step, we perform the WL
simulation for a full range of energy using the information
obtained in the first step to estimate the absolute value of the
entropy based on the normalization condition, i.e., Eq. (11).

The convergence and refinement of the WL algorithm have
been discussed by many researchers [24-26]. However, most
of the works aim to obtain very good convergence of sym-
metric systems, for example, the pure Ising model. Several
approaches employed in this paper are also useful for other
asymmetric or random frustrated systems [27].

Here, we summarize the conditions of our simulation. The
system sizes of the pyrochlore lattice are L = 3, 4, and 5; the
numbers of sites is N = 432, 1024, and 2000, respectively. For
a pure system, we also treated L = 6 (N = 3456). The simula-
tion of the AFM Ising model on the kagome lattice considered
systems of size L x (3/2)L with L =36 (N = 1944) and L =
48 (N = 3456). For the triangular lattice of size L x L, we
used L = 36 (N = 1296) and L = 48 (N = 2304). In all of the
cases we used the periodic boundary conditions. With respect
to the dilution concentration x, we treat x = 0.0 (pure), 0.2,
0.4, 0.6, and 0.8. For each calculation, we took an average of
10 samples. For a pure system, this means that we performed
simulations with different random-number sequences. For a
diluted system, different random configurations of dilution
were treated.
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FIG. 3. Plot of Ing(E) as a function of E of the Ising model
on the pyrochlore lattice for several values of magnetic field 4. The
system size is L = 5 (N = 2000). The DOS of positive pseudospin
magnetization configurations, g, (E), and that of negative magneti-
zation configurations, g_(E), are plotted by dotted and solid curves,

respectively. The positions of the ground state are encircled in the
figure.

IV. RESULTS
A. Pure models

We first show the results of pure (i.e., undiluted) systems
(x = 0). The theory of pure AFM Ising models in a magnetic
field on frustrated lattices is summarized in the Appendix.
There, we give the results obtained for the triangular lat-
tice, the kagome lattice, and the pyrochlore lattice. For the
pyrochlore lattice, the magnetic field is applied in the [111]
direction.

In the WL simulation, we directly calculate the energy
DOS. As an example, in Fig. 3, we plot In[g(E)]/N, essen-
tially the entropy, as a function of E (in units of J) of the
Ising model on the pyrochlore lattice for several values of
magnetic field A. The system size is L = 5 (N = 2000), and
the plot is of one sample for each h. The magnetic field
was chosen as a multiple of (3/8)J because we are making

06—
pyrochlore [111]
A T
0.4f . |
z | 3 '
=
02} |
| | —e— theory, complete enum. (L=1)
[ =< WL data (L=5)
OF @ \ | . 1 . L ’ L
0 2 4 6 8
h/J

integer calculation for a refined interval of the magnetic field.
The energy takes a value from —N(J + h/3) to 3NJ for
h/J < 6 and from —N(h/2) to N(h/2) for h/J > 6. The DOS
of positive pseudospin magnetization configurations, g+ (E),
and that of negative pseudospin magnetization configurations,
g_(E), are plotted by dotted and solid curves, respectively.
The positions of the ground state are encircled in the figure.

In Fig. 4, we plot the numerical results of the ground-state
magnetization (M/N) and the residual entropy (S/N) of the
AFM Ising model on the pyrochlore lattice for L = 1 and 5.
For WL data we took an average over 10 data. In the figure,
we compare the numerical results with the theoretical values
and complete enumeration. The ground-state magnetization
values obtained by the complete enumeration for L = 1 coin-
cides with the theory. There are two magnetization plateaus of
M/N =1/3 and M/N = 1/2. For 0 < h/J < 6, which is the
so-called “kagome-ice” state, the residual entropy is around
0.08, and there is no macroscopic degeneracy for h1/J > 6. At
h/J = 6, the two-in two-out configurations and the three-in
one-out configurations coexist, and a large peak of the residual
entropy is observed. The theoretical values are presented in
Table I in the Appendix.

There is a small size dependence in the numerical estimate
of the residual entropy for large enough systems. To check the
accuracy of the calculation in detail, we examined the size de-
pendence of the entropy in Fig. 5. We utilized the data of L =
3(N =432),L=4(N =1024),L =5 (N =2000),and L =
6 (N = 3456). We plot the residual entropy for the pure sys-
tem as a function of 1/N?/3 (N = Nyyn), because this system
is essentially a 2D one. We show the data of the “kagome-ice”
state (0 < h/J < 6) and those of the crossover magnetic field
(h/J = 6). With respect to the data of the “kagome-ice” state,
we averaged the values of 2 % (3/8) < h/J < 14 % (3/8). The
exact theoretical value for the “kagome-ice” state [7,28] and
the estimate for /. obtained by the Bethe approximation [8,29]
are shown by blue and red arrows, respectively. We observe
that our results agree well with the theoretical values of the
residual entropy, s; /4 = 0.808 for the “kagome-ice” state and
(3/4)ss = 0.291 for h., which are presented in Table I in the
Appendix.

B pyrbchlo're [11'1] ] l
—e— theory
0.4F .o complete enum. (L=1) 7
£ —— WL data (L=1)
z‘” o ——<— WL data (L=5) .
%) L ! T
0.2f%® i T
U 1 1
]S | | | KRR
0 2 4 6 8

h/J

FIG. 4. Comparison of the theory and the numerical results of the complete enumeration (L = 1) and the WL method (L = 1 and 5) for
the ground-state magnetizations and residual entropies per spin as a function of ./J for the AFM Ising models on the pyrochlore lattice. The

theoretical values are tabulated in Table I in the Appendix.
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FIG. 5. Plot of the residual entropy per spin of the pure AFM
Ising model on the pyrochlore lattice under a magnetic field as a
function of 1/N?/3 (N = Ngn). The system size is L = 3 (N = 432),
L=4(N=1024),L =5 (N =2000) and L = 6 (N = 3456). The
data for the “kagome-ice” state (0 < h/J < 6) are given by blue
marks, whereas those at the crossover magnetic field (h/J = 6) are
shown by red marks. The exact theoretical value for the ‘“kagome-
ice” state [7,28] and the estimate for /. by the Bethe approximation
[8,29] are shown by blue and red arrows, respectively.

In Figs. 6 and 7, we also show the data of the pure models
of the AFM Ising model on the kagome and triangular lattices
in a magnetic field. We give the ground-state magnetizations
per site and residual entropies per spin as a function of h/J.
We obtained two magnetization plateaus and large entropy
peaks between the two plateaus. The data obtained from the
numerical simulation agree well with the theoretical values.

B. Diluted model on the pyrochlore lattice

Next, we focus on the dilution effect, which is the main
subject of this paper. In Fig. 8, we plot the magnetic-field (/)
dependence of the ground-state magnetization per site and the

‘ .
kagome

M/N

—oe— theory, complete enum. (L=4)

I +——<— WL data (L=48)

Ot ® . L .

0 2 4
h/J

residual entropy per spin of the diluted AFM Ising model on
the pyrochlore lattice. The system size is L = 5 (N = 2000).
The average was taken over 10 random samples. With the
scale of this plot, the size dependence is observed to be small.
The dilution concentrations are x = 0.0, 0.2, 0.4, 0.6, and 0.8.

We observe a stepwise increase of the magnetization for
the diluted case (x # 0). For the diluted case, there are five
magnetization plateaus instead of two, which is consistent
with the result of the previous replica-exchange Monte Carlo
study [17]. The magnetization steps are observed at 7/J = 3,
6,9, and 12, which are contrary to the pure case in that there
is only a magnetization step at #/J = 6. The saturated values
of the magnetization per site become (1/2) * (1 — x).

In the right figure of Fig. 8, we see a stepwise decrease
of the residual entropy as a function of the magnetic field 4.
The results for the case with no magnetic field (h = 0) are
of course the same as the previous study [19]. The value for
0 < h/J < 3 and that for 3 < h/J < 6 are different, and a
peak appears at h/J = 3, where there is no peak for a pure
system (x = 0). We observe another large peak at 1/J = 6, as
in a pure system, and the residual entropy for 6 < h/J < 9 is
not zero. There is a peak at h/J = 9, and the residual entropy
becomes zero for #/J > 9. We observe a small peak at h/J =
12. The positions of the peaks in entropy, at h/J = 3, 6,9, and
12, are where the magnetization steps appear. At the crossover
magnetic field &, the states with different magnetization are
degenerate, which results in the large peak of the residual
entropy. It is interesting to note that there are nonzero residual
entropies at 6 < h/J < 9 for the diluted case, although the
residual entropy is zero for the pure case. We may call this
phenomenon as the residual entropy induced by dilution.

There is a dilution concentration (x) dependence in the
behavior of the ground-state magnetization and the residual
entropy. We can understand this dependence from an analysis
of the origin of the five magnetization plateaus given in the
previous study [17]. The energy analysis at the spin flip for
two corner-sharing tetrahedra is given in Fig. 6 in Ref. [17],
and the proportions of the types of spin configuration in the
tetrahedron were investigated, as shown in Fig. 5 in Ref. [17].

To summarize this subsection, we obtain the same multi-
ple magnetization plateaus as the previous replica-exchange

é kagome

L e theory

0.4 ---e--- complete enum. (L=4) 7
£ | | —+— WLdata (L=4) !
2 | —=— WL data (L=48) i
5 | |
02f | .
},,+,+,+,4.,*,+,+,+,+,+,+,+,*,+,+,,i 1
LX X MK |
O I I j 7
0 2 4
h/J

FIG. 6. Comparison of the theory and the numerical results of the complete enumeration (L = 4) and the WL method (L = 4 and 48) for
the ground-state magnetizations and residual entropies per spin as a function of #/J for the AFM Ising models on the kagome lattice. The

theoretical values are tabulated in Table I in the Appendix.

022138-5



PETR ANDRIUSHCHENKQO et al.

PHYSICAL REVIEW E 99, 022138 (2019)

T T T T ! T
triangular
1+ ]
< L —e— theory, complete enum. (L=6) :
= | —— WL data (L=48) 1
°
05} .
OL® 1 1 1 =
0 2 6

4
h/J

' trian'gularI
—e— theory
04 o complete enum. (L=6) 7
£ - e —+— WL data (L=6) .
=2 L E —=— WL data (L=48) i
) ' !
0.2 i
I E,+,*,+,+,+,+,+,+,+++++++++++++*+,§
O | A 1 A 1 A ; 7
0 2 4 6
h/J

FIG. 7. Comparison of the theory and the numerical results of the complete enumeration (L = 6) and the WL method (L = 6 and 48) of
the WL method for the ground-state magnetizations and residual entropies per spin as a function of &/J for the AFM Ising models on the
triangular lattice. The theoretical values are tabulated in Table I in the Appendix.

Monte Carlo study [17]. We observe peaks of the entropy at
h/J =3,6,9, and 12, which correspond to the positions of the
magnetization steps. The large peak at 4/J = 6 is the same as
the pure case, but other peaks appear only for diluted models.
The peak at 7/J = 12 is very weak. We sometimes observe
the residual entropy induced by dilution.

C. Diluted model on the kagome lattice

In Fig. 9, we plot the magnetic-field (%) dependence of the
magnetization per site and the residual entropy per spin of the
diluted AFM Ising model on the kagome lattice. The system
size is L = 48 (N = 3456). The dilution concentrations are
x=0.0,0.2,0.4, 0.6, and 0.8.

We observe five plateaus in the magnetization, which is the
same as the pyrochlore lattice. The saturated magnetization is
N * (1 — x). There are magnetization steps at h/J = 1, 2, and
3 in addition to h/J = 4 of the pure case. The magnetic fields
of additional steps are smaller than that of the pure model,
which is different from the situation of the pyrochlore lattice.
The magnetization plateaus result from the competition be-
tween the exchange and Zeeman energies. We can understand

T T

the origin of the multiple magnetization plateaus using the
same analysis as in the case of the pyrochlore lattice [17]. We
consider the spin configuration in the triangle for the kagome
lattice instead of the tetrahedron. The detailed analysis of
the similarities and dissimilarities between the magnetization
curves of the diluted model for the “kagome-ice” state and
for the kagome lattice given in Ref. [30] together with the
replica-exchange Monte Carlo simulation of the model on the
kagome lattice.

We observe peaks of the residual entropy at h/J = 1, 2,
3, and 4, where the magnetization steps appear. The states
with different magnetization are degenerate at the crossover
magnetic fields /.. The origin of the large peaks in the entropy
is the same as the case of the pyrochlore lattice.

D. Diluted model on the triangular lattice

In Fig. 10, we present a plot of the magnetic-field (k)
dependence of the magnetization per site and the residual
entropy per spin of the diluted AFM Ising model on the
triangular lattice. The system size is L = 48 (N = 2304). The
dilution concentrations are x = 0.0, 0.2, 0.4, 0.6, and 0.8.
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FIG. 8. Magnetic-field (h) dependence of the ground-state magnetization per site (left) and the residual entropy per spin (right) of the AFM
Ising model on the pyrochlore lattice. The magnetic field is applied in the [111] direction. The system size is L = 5 (N = 2000). The dilution
concentrations are x = 0.0, 0.2, 0.4, 0.6, and 0.8.
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Seven magnetization plateaus are observed. New magne-
tization steps appear at h/J =1, 2, 3, 4, and 5 in addition
to h/J = 6 of the pure case. The saturated magnetization
is N * (1 —x). Such multiple magnetization plateaus were
previously reported for weak magnetic fields [31,32]. We can
understand the origin of the multiple magnetization plateaus
in terms of the spin configuration in the basic unit of triangle,
which can be found in Ref. [30].

We find a nonzero entropy for the diluted model for h/J <
6, which can be regarded as the residual entropy due to the
dilution. We again observe peaks of the residual entropy at
h/J =1,2,3,4,5, and 6, which correspond to the positions
at which the magnetization steps appear. The states with dif-
ferent magnetization are degenerate at the crossover magnetic
fields &, which is a common origin of the large peaks of the
entropy.

E. Explanation of the origin of large entropy peaks and
magnetizations plateaus in the pyrochlore lattice

In previous studies, authors investigated the origin of mul-
tiple magnetization plateaus by considering the local spin con-
figuration of triangles in the diluted antiferromagnetic Ising
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models on the pyrochlore, triangular, and kagome lattices
[17,30]. The qualitatively different behavior of the plateaus re-
sults from the competition between the exchange and Zeeman
energies, which differ in the pyrochlore (Table I of Ref. [17]),
triangular, and kagome lattices (Tables I and II of Ref. [30]).

In the present study, we show that when system is reaching
the critical field, several states with the different magnetiza-
tion acquire the same total lowest energy value, which leads
to the degeneracy of these states, i.e., large residual entropy
peaks. The dilution effect leads to the new additional residual
entropy peaks. For example, in Fig. 4 we see two large peaks
of the residual entropy in the absence of the magnetic field
and at the field 4/J = 6. In Fig. 8 one can notice peaks of
the residual entropy at the same critical field values, and new
peaks at h/J = 3,9, 12 appear due to the dilution.

In Fig. 11 we show the density of states of the pyrochlore
lattice unit cell (L = 1, N = 16) for pure (left column) and
diluted (right column, x = 3/16) systems in the magnetic
fields h/J =0, 3, 6,9, 12. Color scale on the top of the figure
displays the logarithm of the degeneracy of states per spin,
arrow marks pointing to lowest energy states.

In Figs. 11(a) and 11(f) we see five different
lowest energy states for pure system and six lowest
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FIG. 10. Magnetic-field (k) dependence of the ground-state magnetization per site (left) and the residual entropy per spin (right) of the
AFM Ising model on the triangular lattice. The system size is L = 48 (N = 2304). The dilution concentrations are x = 0.0, 0.2, 0.4, 0.6,

and 0.8.
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energy states for diluted system. We can calculate
ground-state magnetization per site as averaging over
all different ground state points as M/N =[(0+ 1/3 +
1/6 —1/3 -1/6)/5]1/16 = 0 for pure system and M/N =
[(3/16 +7/48 +1/48 — 1/48 —7/48 —3/16)/6]/16 =0
for diluted system. Also, we can obtain the residual
entropy per spin of the pure system as S/Ngpi, =
In(24 +9+24 +24+9)/16 = 0.281 and S/Ngpin =
In(112 4 96 4- 160 4 160 + 96 + 112)/13 = 0.508 for
diluted case. The summation of the degeneracy of these
states leads to a peak of the residual entropy with the zero
value of the average ground-state magnetization. Even the
small external magnetic field leads to abrupt change in the
ground-state magnetization and the residual entropy.

Figure 11(b) shows that with an addition of the magnetic
field #/J = 3, ground state has a magnetization value M/N =
1/3 and residual entropy is S/Ngpin = In(9)/16 = 0.137 for
pure system. This state continues to be a ground state in all
fields from O < h/J < 6, which corresponds to the plateau
of ground-state magnetization and residual entropy, as shown
in Fig. 4. Energy states which also were lowest at #/J = 0,
were increased due to the addition of Zeeman energy. In
contrast, Fig. 8 displays a peak of the residual entropy and a
step in the ground-state magnetization at 4/J = 3 for diluted
systems. This effect appears due to the summation of the two
lowest energy states with different magnetizations M/N =
(—3/16 — 11/48)/2 = —0.208, as can be seen in Fig. 11(g).

When reaching the critical field #/J = 6, we see another
five different lowest energy states for the pure system in
Fig. 11(c), and two lowest energy states for the diluted system
in Fig. 11(h). The multiplicities of the degeneration of these
states are summarized, which leads to the peak of residual
entropy and magnetization step for the pure and diluted sys-
tems. Since there are five multiplicities of the ground states
with different magnetizations for a pure system and the only
two for diluted, the peak of the pure system will be much
higher than in any diluted case. If we further increase the field,
the energies of these states increase due to their addition of
Zeeman energy, and only one true ground-state configuration
remains for pure system [Figs. 11(d) and 11(e)]. Residual
entropy in pure system for all fields above the critical value
h/J = 61is equals to In(1)/N = 0.

In contrast, in the diluted systems [Figs. 11(i) and 11(j)]
we see the degeneracy of the ground states in two critical
fields h/J =9, h/J = 12. As seen in Fig. 8, the peaks of the
residual entropy and the steps of the ground-state magnetiza-
tion appear at these values of the field. A further increase of
the field leads to such a strong dominance of Zeeman energy
over the exchange energy that only one ground state with the
maximum absolute value of the magnetization remains. Thus,
the residual entropy peaks and the ground-state magnetization
steps in the diluted pyrochlore lattices appear due to the
discrete structure of the density of states, which transforms
when an external magnetic field excites the system.

V. SUMMARY AND DISCUSSIONS

We studied the diluted spin-ice model on the pyrochlore
lattice when a magnetic field is applied in the [111] direction.

To investigate the entropy, we use the WL Monte Carlo
method [18], which directly calculates the energy DOS.

We obtained the multiple magnetization plateaus for the
AFM Ising model on the pyrochlore lattice with a magnetic
field in the [111] direction, which is consistent with the
previous calculation using the replica-exchange Monte Carlo
simulation [17]. We observed the stepwise decrease of the
residual entropy, and large peaks at the crossover magnetic
fields.

We also observed the multiple magnetization plateaus for
the AFM Ising model on the kagome lattice in a magnetic
field. Although the pyrochlore lattice can be considered as the
alternative layers of kagome and triangular lattices, and the
kagome layers are the subject of interest when the magnetic
field is applied in the [111] direction, the effect of dilution
is different. The positions of the magnetization steps for the
AFM Ising model on the kagome lattice are 1/J = 1, 2, 3, and
4, as shown in Fig. 9. Large peaks in the entropy are observed
at the magnetic fields where the magnetization steps appear.

We observed seven magnetization plateaus in the AFM
Ising model on the triangular lattice with the magnetization
steps at h/J =1, 2, 3, 4, 5, and 6. Although there is no
macroscopic residual entropy for the pure triangular lattice,
we found a residual entropy for the diluted model, which
can be regarded as the residual entropy due to the dilution.
We observed the large peaks in the entropy at the crossover
magnetic fields for the triangular lattice.

In the Appendix, we summarize theoretical results of the
magnetization plateaus and the residual entropy for the pure
AFM Ising model on the triangular, kagome, and pyrochlore
lattices in magnetic fields. In the case of the pyrochlore
lattice, the magnetic field is applied in the [111] direction.
As a byproduct, we give the exact numerical estimates of the
magnetization, as given in Eq. (A1), and entropy, as given in
Eq. (A2), up to 16 digits at the crossover field i./J = 6 for the
pure AFM Ising model on the triangular lattice in a magnetic
field based on the exact solution reported by Baxter [33].

We observed large residual entropy peaks for the diluted
systems, and these peaks correspond to the multiple magneti-
zation plateaus. Isakov et al. [8] reported such an entropy peak
in the pure spin-ice model in a magnetic field, and queried
the generality of this phenomenon for finite temperatures.
In this paper we have shown that large entropy peaks do
appear even for random systems, such as diluted systems. At
the crossover magnetic fields, higher-magnetization states and
lower-magnetization states are degenerate. The mixture of the
local spin configuration of both states yield macroscopic large
entropy. The change of the states comes from the competition
between the exchange and Zeeman energies. Such competi-
tion is more complicated in the diluted model than in the pure
model, which was analyzed previously [17].

The magnetic field and dilution offer a rich variety of
effects in frustrated systems, and the application of the present
study to other models of frustration is currently in progress.
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APPENDIX: THEORY OF PURE SYSTEMS

We review the theory of pure AFM Ising models in a
magnetic field on the frustrated lattices in the Appendix.
We start with the triangular lattice. The AFM Ising model
on the 2D triangular lattice without a magnetic field was
exactly solved by Wannier [34], and it was shown that at all
the temperatures this system has no long-range order due to
frustration. The residual entropy of the AFM Ising model on
the triangular lattice without magnetic field was calculated to
be 0.323066 [34]:

Shmo 2 [/
Sp=o = —— = —/ In(2 cos w) dw = 0.323066.
N T Jo

When a magnetic field is applied, the system takes the “up-
up-down” spin configuration in a basic triangle, which results
in the 1/3 magnetization plateau. This is the case of a weak
magnetic field (0 < h/J < 6). For a strong magnetic field
(h/J > 6), the magnetization jumps to the saturated value,
m = M/N = 1, and the jump becomes smoother with increas-
ing temperature.

As another example of the 2D frustrated lattice, the AFM
Ising model on the kagome lattice without magnetic field was
exactly solved by Kano and Naya [35]. The residual entropy
of the AFM Ising model on the kagome lattice was calculated
to be 0.50183 [35]:

Sh=0

Sh=0 =

1 2 2
= In{21 — 4
N Y fo /0 n{ [cos wy

+ cos wy + cos(wy + wy)]} dwdw, = 0.50183.

When a magnetic field is applied, the system shows the same
behavior of the magnetization plateau as in the triangular lat-
tice. The crossover magnetic field is /. /J = 4 for the kagome
lattice.

The behavior of the residual entropy is interesting. In the
weak magnetic field region (0 < h/J < 6) for the triangular
lattice, all the spin configuration is determined once the
“down” spin in one basic triangle is selected because of the
closed packed structure of the triangular lattice, which means
that the system has a threefold degeneracy and there is no
macroscopic degeneracy. On the contrary, for the kagome
lattice, there is a macroscopic degeneracy for 0 < h/J < 4
because of the loose packed structure. It is shown that the
AFM Ising model of the kagome lattice in the 1/3 magneti-
zation plateau region is equivalent to the dimer problem in
the honeycomb lattice [7,8,28]. The entropy is calculated to
be one-third of the Wannier value of the residual entropy of
the triangular lattice without magnetic field, that is, 0.107689
[36].

For a strong magnetic field region, i.e., h/J > 6 for the
triangular lattice and h/J > 4 for the kagome lattice, all of
the spins are fixed as “up,” and there is no degeneracy. At the
crossover magnetic field, A, all of the spin configurations of

the “up-up-down” configuration or the “up-up-up” configura-
tion in each triangle have the same energy. Thus, there appears
to be a large macroscopic degeneracy, which is associated
with the large peak in the entropy [8].

The AFM Ising model on the triangular lattice at i/J = 61s
equivalent to the hard hexagon model with the activity z = 1.
The hard hexagon model [33,37] is a 2D lattice gas model,
where particles are allowed to be on the vertices of a triangular
lattice but no two particles may be adjacent. The condition that
z =1 1is applied when the chemical potential is zero. Metcalf
and Yang [38] performed approximate numerical studies us-
ing the transfer matrix, and they obtained the average magne-
tization and residual entropy per spin as m = 0.6751 and s =
0.3333, respectively. They conjectured that the exact value of
the entropy is 1/3. Baxter and Tsang [39] extended numerical
studies using the corner-transfer matrix (CTM) method, and
they obtained a more accurate numerical estimate, namely
0.333242721976, which contradicts the conjecture. Finally,
Baxter exactly solved the hard hexagon model, and confirmed
their assertion [33,37]. The partition function « and the ac-
tivity z are expressed by infinite products of a variable x, but
the explicit expressions of the magnetization and the entropy
were not given in the literature. Thus, here we show the exact
numerical estimates of the magnetization and the entropy. By
solving the infinite products numerically, we obtain

m = 0.6751341572050237 (Al)

and

s = 0.3332427219761819 (A2)

up to 16 digits. The CTM estimate of the entropy [39] is
shown to have been correct up to 12 digits.

The AFM Ising model on the kagome lattice at #/J = 4 is
equivalent to the monomer-dimer mixture with the activities
2 /zf = 1, where z; and z, are the activity of monomers and
that of dimers, respectively, in the honeycomb lattice [8]. In
the dimer problem, which is equivalent to the kagome lattice
AFM Ising model for 0 < h/J < 4, all of the vertices in the
honeycomb lattice consist of dimers. If there are vertices that
are not part of any dimer, they are called monomers. The
weights of monomers and dimers are the same for the problem
of h, of the kagome lattice, which yields z,/z3 = 1. The Bethe
approximation of this model was discussed by Nagle [29].
The grand partition function was given as a function of the
coordination number of the lattice g. When we use g = 3 for
the honeycomb lattice, we obtain the magnetization m = 3/5
and the entropy s = (1/3)In(16/5) = 0.388 [8].

The pyrochlore lattice can be regarded as an alternating
sequence of kagome and triangular layers that become effec-
tively decoupled by a magnetic field oriented along the [111]
direction. The behavior of the spins in the kagome layers is
of significant interest, and is sometimes referred to as the
“kagome-ice” problem. The problem of the three-dimensional
pyrochlore lattice in the [111] magnetic field is essentially
the same as that of the 2D kagome lattice in the magnetic
field. Because the number of contributed spins is different, the
entropy per spin of the pyrochlore lattice is related to that of
the kagome lattice as

Spyrochlore = (3/4)Skagome-
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The relation between the magnetization of the pyrochlore
lattice problem and that of the kagome lattice problem is

Mpyrochlore = (mkagnme + 1)/4

The magnetization plateau for the weak magnetic field is 1/3,
whereas the saturated value of the magnetization becomes 1/2
for the pyrochlore lattice in the magnetic field along the [111]
direction. The equivalence of the pyrochlore lattice and the
kagome lattice is only for the systems with magnetic field. The
residual entropy of the pyrochlore lattice without magnetic
field was calculated by Nagle [41] as 0.20501, which is close
to Pauling’s estimate (1/2)1n(3/2) = 0.20273 [3].

We tabulate the theoretical results of the ground-state
magnetization and residual entropy as a function of 4 for the
AFM Ising models on the triangular, kagome, and pyrochlore
lattices in Table I, where h. = 6J for the triangular and
pyrochlore lattices and . = 4J for the kagome lattice.

We also show the plots of the magnetization and residual
entropy as a function of 4 for the AFM Ising models on the
pyrochlore, kagome and triangular lattices in Figs. 4, 6, and 7,
respectively. We plot the numerical data using the WL method
in the figure. We can see that the WL method agrees well with
the theoretical values.

TABLE I. Ground-state magnetization and residual entropy per
spin as a function of & for the AFM Ising models on the triangular,
kagome, and pyrochlore lattices, where h. = 6J for the triangular
and pyrochlore lattices and i, = 4J for the kagome lattice.

lattice h=0 O0<h<h h=h, h > h,
m (triangular) 0 1/3 m 1

s (triangular) 1 In(3)/N S In(1)/N
m (kagome) 0 1/3 my 1

s (kagome) $2 s1/3 S5 In(1)/N
m (pyrochlore) 0 1/3 (my+1)/4 1/2

s (pyrochlore) 53 51/4 (3/4)ss In(1)/N
s1 = 0.323066 (exact) [34].

s, = 0.50183 (exact) [35].

s3 = 0.20501 [41], which is close to Pauling’s estimate

(1/2)In(3/2) = 0.20273 [3].

my = 0.6751341572050237 (exact) [33,37,40], and a previous nu-
merical estimate was given in Ref. [38].

sy = 0.3332427219761819 (exact) [33,37,40], and previous numeri-
cal estimates were given in Refs. [38,39].

my = 3/5 (Bethe approximation [8,29]).

ss = (1/3)In(16/5) = 0.388 (Bethe approximation [8,29]).
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