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Coarsening dynamics in the Swift-Hohenberg equation with an external field
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We study the Swift–Hohenberg equation (SHE) in the presence of an external field. The application of the
field leads to a phase diagram with three phases, i.e., stripe, hexagon, and uniform. We focus on coarsening
after a quench from the uniform to stripe or hexagon regions. For stripe patterns, we find that the length scale
associated with the order-parameter structure factor has the same growth exponent (�1/4) as for the SHE with
zero field. The growth process is slower in the case of hexagonal patterns, with the effective growth exponent
varying between 1/6 and 1/9, depending on the quench parameters. For deep quenches in the hexagonal phase,
the growth process stops at late stages when defect boundaries become pinned.
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I. INTRODUCTION

This paper studies coarsening dynamics in the Swift–
Hohenberg equation (SHE) in the presence of an external
field. The SHE has been used extensively as a prototype model
to study spatially periodic patterns [1]. The model generates
simple stripe patterns and is useful to illustrate several basic
and universal features of pattern formation [2–4]. It is derived
from a Lyapunov or free-energy functional and leads to stable
static patterns.

In the presence of a uniform field, the SHE assumes the
following form:

∂ψ (�r, t )

∂t
= [ε − (∇2 + 1)2]ψ − ψ3 + h, (1)

where ψ (�r, t ) is the (real-valued) order-parameter field which
depends on space�r and time t . This model has two parameters,
ε and h, and we study its phase diagram in (ε, h) space.
The field h breaks the inversion symmetry (ψ → −ψ ) of
the SHE. It thus allows for hexagonal patterns which lack
parity symmetry. The overall phase diagram is richer and
has three patterns: stripe, hexagonal, and uniform. Similar
phase diagrams have been studied by introducing other parity-
breaking terms [2,5,6], but we find that the introduction of h
provides a simpler physical picture.

Our study is closely related to a physical situation of
great interest. Stripe patterns occur in thin magnetic films
with strong uniaxial anisotropy normal to the film [7–10].
They result from a competition between long-ranged dipolar
interactions and short-ranged exchange interactions. When a
strong field is applied perpendicular to the plane of the film,
the stripe pattern changes to a hexagonal pattern of bubble do-
mains. These bubble domains have been extensively explored
for their potential in information storage [7,8]. Theoretically,
this problem was first analyzed by Garel and Doniach [11]. It
has also been pursued in several recent studies [10,12–16].
Some recent experiments using Lorentz transmission elec-
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tron microscopy have also revealed exotic helicity structures
within the domain walls of bubbles [17].

The phase diagram of the d = 2 SHE with a field (see
Fig. 1) is very similar to that of a magnetic film in a
field [11,18,19]. Thus, we use the SHE to study the diverse
patterns (and their dynamics) seen in magnetic films. More
generally, stripe and hexagonal morphologies are ubiquitous
in the physical world. Thus, our study has rather general
applicability.

The subject of growth dynamics of patterns has a long
history [20,21]. For the SHE, there have been several studies
which have revealed interesting peculiarities associated with
the coarsening of equilibrium states with nontrivial spatial
structure [6,22–31]. This is natural as the order in these
systems requires specification of more properties, and the
order-parameter manifold is more complex [32]. For stripes in
two dimensions, we need to specify (a) the amplitude of order;
and (b) two angles, one denoting the orientation of the normal
to stripes and the other its phase of modulations. Furthermore,
one needs to study not only the correlations of ψ (�r, t ), but also
the orientational correlations associated with �∇ψ (�r, t ). The
latter may exist even when the full order, which is composed
of both phase and orientation, is absent [33].

In phase transitions involving uniform states, the growth
of the ordered phase obeys dynamical scaling [20,21]. More
precisely, the correlator of the order-parameter field ψ (�r, t )
obeys the property

Cψ (�r, t ) = 〈ψ (�R, t )ψ (�R +�r, t )〉 − 〈ψ (�R, t )〉〈ψ (�R +�r, t )〉
= f [r/L(t )]. (2)

Here, the angular brackets denote an average over a nonequi-
librium ensemble. The quantity L(t ) is a growing length scale,
which is a measure of the size of ordered domains. The length
scale grows at large times as a power law, L(t ) ∼ tφ , where φ

is the growth exponent.
For stripe patterns studied by using the SHE, similar scal-

ing has been established—for full order as well as orienta-
tional order. But two exceptional points have emerged from
the past studies [22–28,31]:
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FIG. 1. Phase diagram of Eq. (1) in dimensions d = 2. Here S, H,
U denote the stripe, hexagonal, and uniform phase, respectively. S1

(ε = 51ψ̄2) and S2 (ε = 15ψ̄2) are the spinodal boundaries between
stripes and hexagons. S3 (ε = 3ψ̄2) and S4 (ε = 12ψ̄2/5) are the
spinodal boundaries between hexagonal and uniform phases. [Recall
that ψ̄ is a function of h obtained from Eq. (5).] B1[ε = ψ̄2(3 +
12/[63/2 − 14])] is the boundary where stripes and hexagons have
the same free energy. B2[ε = 37ψ̄2/15] corresponds to the boundary
where hexagons and uniform phases have the same free energy. The
black circles show the parameter values studied in our simulations.

(a) Orientational correlations grow faster than those of full
order because orientations are not affected by certain kinds of
defects. For example, dislocations affect the stripe order but
do not disturb the orientational order [33].

(b) The growth slows down as ε increases, which can
largely be attributed to the pinning potential provided by
stripes on the larger-scale defect structures [26,31,34–36].

Coarsening in hexagonal patterns has been explored
through experimental and numerical studies on block copoly-
mer systems [37–40]. Again, the length-scale associated with
orientation correlations grows faster than other correlation
lengths [38]. However, the dynamics is very slow compared
with the stripe patterns. In some cases, coarsening freezes due
to pinning effects [40,41].

The goal of the present paper is to study the coarsening
process for different field values. With variation in h, one
moves across the phase diagram which leads to changes in
phase as well as the nature of dominant defects. These defects,
which depend on the order-parameter manifold, determine
the growth exponents in a crucial way. Our main results
address the coarsening of stripes and hexagonal patterns in
the region of the phase diagram where they are equilibrium
phases.

This paper is organized as follows: We discuss the phase
diagram of the SHE in Sec. II. In Sec. III, we provide the
details of our computational methods. The coarsening dynam-
ics of the stripe phase is discussed in Sec. IV. We present
a detailed discussion of the ordering dynamics of hexago-
nal patterns in Sec. V. Finally, we conclude our paper in
Sec. VI.

II. PHASE DIAGRAM

We want to understand the various phases obtained in
the SHE and transitions between them. Therefore, we have
obtained the phase diagram for the model using the standard
amplitude equation analysis [42–44], which is valid for small
values of ε and h. Since all the states generated by this model
are spatial modulations around a constant amplitude induced
by the field, it is useful to write the ψ field as

ψ (�r, t ) = ψ̄ (h) + �(�r, t ). (3)

Here, ψ̄ is an h-dependent constant and �(�r, t ) is the spatial
modulation around it. Substituting this into Eq. (1), we obtain

∂�(�r, t )

∂t
= [(ε − 3ψ̄2) − (∇2 + 1)2]� − 3ψ̄�2 − �3. (4)

The constant ψ̄ is determined by the cubic equation

ψ̄3 − (ε − 1)ψ̄ − h = 0. (5)

Equation (4) is similar to the SHE except for an additional
quadratic term. This term breaks the inversion symmetry of
the field � and therefore allows hexagonal patterns in addition
to stripes. The hexagonal order is locally characterized as

�H (�r, t ) = A1ei�q1·�r + A2ei�q2·�r + A3ei�q3·�r + c.c., (6)

where A1, A2, and A3 are the amplitudes of the three modes�q1,
�q2, and �q3. The modes �q1, �q2, and �q3 denote unit vectors with
each vector making an angle 2π/3 with the other two. The
amplitudes in Eq. (6) are complex in general, and c.c. denotes
the complex conjugate of the terms in the expression.

The amplitude equation analysis [42–44] is employed on
Eq. (4) to yield spacetime evolution equations for the three
amplitudes A1, A2, and A3. For deriving the phase diagram, the
spatial dependence of the amplitudes is not required. Ignoring
spatial variations, the amplitude equations are

dA1

dt
= ε̄A1 + γ A∗

2A∗
3 − g0[|A1|2 + G(|A2|2 + |A3|2)]A1,

dA2

dt
= ε̄A2 + γ A∗

3A∗
1 − g0[|A2|2 + G(|A3|2 + |A1|2)]A2,

dA3

dt
= ε̄A3 + γ A∗

1A∗
2 − g0[|A3|2 + G(|A1|2 + |A2|2)]A3.

(7)

The various parameters in Eq. (7) are

ε̄ = ε − 3ψ̄2, γ = −6ψ̄, g0 = 3, G = 2. (8)

We can make Eqs. (7) dimensionless by rescaling the ampli-
tudes and time as follows:

Ai = γ

g0
Ãi, i = 1, 2, 3, t = g0

γ 2
t̃ . (9)

This results in the following equations for the scaled ampli-
tudes:

dA1

dt
= ε̃A1 + A∗

2A∗
3 − [|A1|2 + G(|A2|2 + |A3|2)]A1,

dA2

dt
= ε̃A2 + A∗

3A∗
1 − [|A2|2 + G(|A3|2 + |A1|2)]A2,

dA3

dt
= ε̃A3 + A∗

1A∗
2 − [|A3|2 + G(|A1|2 + |A2|2)]A3, (10)
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where ε̃ = ε̄g0/γ
2. For simpler notation, we have dropped the

tilde on the amplitudes and time.
It is known that Eqs. (10) admit three classes of static

solutions [2,42,43].
(a) Uniform: Ai = 0, i = 1, 2, 3.
(b) Stripes: A1 = aSeiφ , A2 = 0, A3 = 0, where aS = √

ε̃

is the stripe amplitude and φ is the phase of the stripe
modulation. The phase φ is an arbitrary constant and we set it
to zero, without any loss of generality.

(c) Hexagons: Ai = aH eiφi , i = 1, 2, 3. There are two
types of stationary solutions corresponding to the following
conditions on the phases:

(1) φ1 + φ2 + φ3 = 0. We obtain the following expres-
sions for the amplitude:

aH = 1 ± √
1 + 4ε̃(1 + 2G)

2(1 + 2G)
. (11)

The solution with the + sign exists for ε̃ � −1/[4(1 +
2G)], whereas the solution with the − sign exists for
−1/[4(1 + 2G)] � ε̃ � 0.

(2) φ1 + φ2 + φ3 = π . In this case,

aH = −1 ± √
1 + 4ε̃(1 + 2G)

2(1 + 2G)
. (12)

Here, the only acceptable solution is the one with the +
sign and exists for ε̃ � 0.

To plot the phase diagram, we study the linear stability of
these solutions as a function of ε̃ in Eqs. (10). This analysis
is available in the literature [2,4,5]. When these results are
translated to parameters ε and h, using Eqs. (8) and ε̃ =
ε̄g0/γ

2, one obtains the phase diagram shown in Fig. 1.
In Fig. 1, the stripe (S) phase is linearly stable in the

region between the y axis (h = 0) and the spinodal curve
S2. Between S2 and S3, stripes are unstable and they cease
to exist after S3. The hexagonal (H) phase is linearly stable
between the spinodal boundaries S1 and S4, and it does not
exist to the right of S4. The uniform (U) phase exists for all
parameters. However, it is linearly stable only above the S3

boundary. Clearly, the linear stability regions are overlapping.
In the region between S1 and S2, both stripes and hexagons
are linearly stable. Similarly, in the region between S3 and
S4, the hexagonal and uniform phases are linearly stable. This
situation is resolved by computing the free energy, because
the equilibrium phase is the one with lower free energy.

To calculate the free energy within the amplitude equation
framework, we note that Eqs. (10) have potential dynamics
given by the free energy

F =
3∑

i=1

⎛
⎝−ε̄|Ai|2 + 1

2
|Ai|4 + G

2

3∑
j=1, j 
=i

|Ai|2|Aj |2
⎞
⎠

− (γ A1A2A3 + c.c.). (13)

By using the static solutions given above, the free energies
of the three states are easily computed. The curve B1 is the
boundary on which stripe and hexagonal phases have equal
free energy. On the left of this curve, stripes have lower free
energy, whereas hexagons have lower free energy on the right
of B1. Similarly, we compare the free energies of hexagonal

and uniform phases and obtain the curve B2 as the hexagon-
uniform phase boundary.

To summarize Fig. 1, the stripe phase is stable between the
ε axis and B1 (light-blue region), and it is metastable between
B1 and S2. Similarly, the hexagonal phase is stable between
B1 and B2 (light-green region), and metastable between S1-B1

and B2-S4. Finally, the uniform phase is stable to the right of
B2 (light-yellow region), and metastable between S3-B2.

III. COMPUTATIONAL METHOD

We have used a pseudospectral method to solve
Eq. (1) [45,46] in d = 2. (We impose periodic boundary
conditions in both directions.) For this purpose, we rewrite
Eq. (1) as

∂tψ = L[ψ] + N [ψ], (14)

where L[ψ] and N [ψ] represent the “linear” and “nonlinear”
parts:

L[ψ] = −(∇2 + 1)2ψ,

N [ψ] = εψ − ψ3 + h. (15)

In principle, one can include the εψ term in the linear part.
However, our simulations show that including this term in the
nonlinear part leads to a numerical scheme which is stable for
a much larger time step (	t = 1.0).

We take the Fourier transform of Eq. (14), which gives the
following equation for a given mode q in Fourier space:

∂tψ (q, t ) = L(q)ψ (q, t ) + N [ψ (q, t )]. (16)

Here, L(q) is the eigenvalue of the linear operator for a mode
q. We work in Fourier space and update ψ (q, t ) at each time
step. We have used the implicit Euler method [47]. In this
method, the linear part is calculated at the advanced time step
t + 	t , whereas the nonlinear part is calculated at time t . This
results in the following iterative scheme for Eq. (16):

ψ (q, t + 	t ) = ψ (q, t ) + 	tN [ψ (q, t )]

1 − L(q)	t
. (17)

Simulations were performed for three different system
sizes, viz., N2 with N = 512, 1024, 2048. The lattice spacing
and time step are taken to be 	x = π/4 and 	t = 1.0, re-
spectively. Smaller values of 	t also lead to the same results.
The Fourier transforms were calculated via the fast Fourier
transform technique using the FFTW3 package [48]. All the
simulations were carried out for ε = 0.1, starting from a
uniform random initial condition with ψ ∈ [−0.1, 0.1]. We
considered five different values of h. The (ε, h) values for
our simulations are shown by black circles in Fig. 1. All
statistical data presented here were obtained as an average
over Nr independent runs. The number of runs for different
lattice sizes was Nr = 200 (N = 512), Nr = 100 (N = 1024),
and Nr = 50 (N = 2048).

IV. COARSENING OF STRIPES

We first present results for the coarsening of stripes. This
has been earlier studied for the h = 0 case. Coarsening ex-
ponents in the range 1/3 to 1/5 have been reported for
the order-parameter structure factor [22,25,28,31], depending
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(a) t = 103

→

(b) t = 105

(c) t = 103

→

(d) t = 105

FIG. 2. Evolution of the order parameter ψ for stripes starting from a random initial state. The snapshots show a 5122 portion carved out
from the center of a 10242 lattice. The top and bottom rows show the evolution for h = 0.02 and h = 0.05, respectively (see Fig. 1).

on the quench depth ε. The effective exponent decreases
with increase in the quench depth, which is closely related
to the type of defects which characterize the coarsening
process [28,31]. The defects observed in stripe patterns are
isolated defects (disclinations, dislocations) and grain bound-
aries. These have been observed in experiments on anisotropic
magnetic films [7–10]. Dislocations break long-range trans-
lational order, whereas disclinations and grain boundaries
destroy orientational order [33].

Our simulations of stripe coarsening were primarily per-
formed for ε = 0.1, and for three different field values: h =
0.0, 0.02, 0.05 (see Fig. 1). For h = 0.0 and 0.02, stripes
are the only stable phase. As shown in Figs. 2(a) and 2(b),
stripe order grows through annihilation of defects such as
grain boundaries, dislocations, and disclinations.

We obtain a qualitatively different evolution for h = 0.05
[see Figs. 2(c) and 2(d)]. For this value of the field, stripes are
stable whereas hexagons are metastable. A typical evolution
shows that stripe domains are separated by grain boundaries
made of hexagonal spots with very few topological defects.
The spotted patterns result from the linear superposition of

two or more stripe modes. However, as we see later, this only
has a small effect on the growth of the length scale.

For purposes of comparison, we have also considered a
shallower quench with ε = 0.05 and h = 0.0. In an earlier
study [31], we investigated the role of defects in the stripe
coarsening process at h = 0.0 by varying the quench depth
ε. We showed that, for small ε, most of the defect regions
consist of grain boundaries with a low density of isolated
defects such as dislocations and disclinations. By increasing
ε, we observed that the density of grain boundaries decreases
whereas the density of isolated defects increases.

We analyze the patterns through the computation of the
order-parameter structure factor. This gives us a quantitative
measure of the coarsening process through the determination
of a length scale over which the patterns are coherent. The
structure factor is defined as the Fourier transform of the
correlation function:

Sψ (�q, t ) =
∫

d�rei�q·�rCψ (�r, t ), (18)
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where Cψ (�r, t ) is defined in the first line of Eq. (2). As
the patterns are isotropic, we spherically average the vector
function Sψ (�q, t ) to obtain the scalar function Sψ (q, t ), which
we show subsequently. The structure factor Sψ (q, t ) has two
dominant peaks: (a) at q = 1.0 (in our dimensionless units),
which is the basic periodicity of patterns, and (b) at q = 0,
which is due to the uniform background ψ̄ present when
h 
= 0. The relative strength of these peaks depends on the
value of h.

Let us discuss the evolution of Sψ near q = 1.0. As shown
in Fig. 3(a), the peak of the structure factor increases with
time, whereas its width decreases. This implies growth of
stripe order. To quantify the coarsening, we have fit the data
to a square Lorentzian fit [6,23,24]:

Sψ (q, t ) = a2

[(q2 − b)2 + c2]2
. (19)

Then, the full width at half maximum (δq) is defined as

δq = 0.322c√
b

. (20)

Here, q = √
b corresponds to the peak of the structure factor.

The fitting of the structure factor data shows that it has a peak
at b = 1.

The domain scale is determined as Lψ (t ) = 2π/δq. Its time
evolution (for a 20482 lattice) is shown in Fig. 3(b) on a
log-log scale. The data for ε = 0.1 and h = 0.0, 0.02, 0.05
shows an excellent power-law behavior for three decades up
to t = 106. A line of slope 1/4 on the log-log scale, parallel
to all three data sets, confirms that the growth exponents
are approximately 1/4, which is in accordance with earlier
studies [22,25,28,31]. The growth is somewhat faster for the
shallower quench with ε = 0.05 and h = 0.0.

We have also calculated the local coarsening exponent,
defined as

φ(t ) = d (ln L)

d (ln t )
= t

L

dL

dt
. (21)

To calculate φ(t ), we have used the central-difference formula

dL

dt
� L(t + 	t ) − L(t − 	t )

	t
. (22)

We estimate the statistical error in φ(t ) from the correspond-
ing error in determining L(t ). Using this, we find that the
maximum relative error in the estimation of φ(t ) is less than
4%. The variation of φ(t ) with t is shown in Fig. 3(c).

A closer look at the Lψ data [see Fig. 3(b)] suggests that
Lψ decreases slightly with increase in the external field when
ε = 0.1. This decrease is more prominent for h = 0.05. We
believe that this is related to the presence of hexagonal spots
in the defect regions [see Figs. 2(c) and 2(d)], which annihilate
slower than other defects. This slower growth also reflects
in the variation of the local exponent φ(t ), which remains
smaller than 1/4 for more time than for h = 0.0, 0.02 [see
Fig. 3(c)]. We also calculate the average exponent φav by aver-
aging φ(t ) over time, ignoring the initial transients. We obtain
φav = 0.276 (h = 0.0), 0.256 (h = 0.02), and 0.237 (h =
0.05). Thus, the average exponent also confirms the slowing
down of growth with increase in h.

FIG. 3. Evolution of (a) Structure factor Sψ (q, t ) for ε = 0.1,
h = 0.05. (b) Length scale Lψ (t ) for ε = 0.1, h = 0.0, 0.02, 0.05,
and ε = 0.05, h = 0.0, on a log-log scale. (c) Local exponent φ(t ) for
the length-scale data on a log-linear scale. The data sets are obtained
on 20482 lattices. The black lines in panel (a) represent the best fit
to the structure factor data by the square Lorentzian in Eq. (19).
The black lines in panel (b) denote power laws with exponents 1/4
and 1/3. The black lines in panel (c) correspond to the coarsening
exponents 1/4 and 1/3. The symbols in panel (c) have the same
meaning as those in panel (b).

As mentioned earlier, we also performed another simula-
tion for ε = 0.05 and h = 0.0. As shown in Fig. 3(b), the
average domain size exhibits a power-law growth similar to
the above study. However, the growth exponent is closer to
1/3, as compared with 1/4 for ε = 0.1. This is consistent
with earlier studies [26,27,31], as the dynamics in this case is

022136-5



TRIPATHI, KUMAR, AND PURI PHYSICAL REVIEW E 99, 022136 (2019)

(a) t = 103

→

(b) t = 105

(c) t = 103

→

(d) t = 105

FIG. 4. Evolution of hexagonal patterns starting from a random initial condition. Each snapshot corresponds to a portion of size 5122

carved out from the center of a 20482 lattice. The top and bottom rows correspond to h = 0.1 and 0.17, respectively (see Fig. 1).

dominated by the evolution of grain boundaries. This is also
confirmed by the average value of the local exponent φ(t ) over
time, which is φav = 0.31.

V. COARSENING OF HEXAGONS

We next focus on the coarsening of hexagonal patterns. We
again fixed ε = 0.1, and considered three field values, h =
0.1, 0.135, 0.17 (see Fig. 1). We performed simulations for
three different lattice sizes, the biggest being N = 2048. To
the best of our knowledge, this is the largest system size used
to study the coarsening dynamics of hexagonal patterns. As
we will see shortly, it allows us to investigate the kinetics up
to t = 106 without the occurrence of finite-size effects. For the
first two values of the field, only hexagons are the stable phase.
The third value lies on the boundary S3, where hexagons are
stable, and the uniform state is marginally stable (see Fig. 1).
We will now discuss in detail the evolution of the hexagonal
phase for these three field values.

Figures 4(a) and 4(b) show the morphological evolution of
hexagonal patterns for h = 0.1, starting from a random initial
condition. Here, fully formed hexagonal domains appear after
some transient evolution (typically t > 102). These domains
are separated by grain boundaries made of penta-hepta defect
pairs. The growth of domains occurs through the annihilation
of these defects. We observe a steady growth of domains until
t � 105. After that, the growth starts to slow down and stag-
nates in a metastable state at very late stages (t � 5 × 105).
A similar morphological evolution has also been observed for
h = 0.135 (not shown here).

Next, we discuss the growth of hexagonal patterns for h =
0.17 [see Figs. 4(c) and 4(d)]. At early times (t � 103), the
evolution is governed by the linear superposition of modes,
leading to the nucleation of small hexagonal regions. These
grow as hexagonal fronts propagate into the metastable uni-
form regions [49]. At a later stage, these hexagonal domains
coalesce leading to the formation of grain boundaries made
of penta-hepta defects. We do not observe any saturation of
the growth, and domains grow uniformly until the largest
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FIG. 5. Domain growth for h = 0.1, in the hexagonal phase.
Evolution of (a) structure factor Sψ (q, t ), (b) length scale Lψ on a
log-log scale, and (c) local exponent φ(t ) on a log-linear scale. The
data in panels (a) and (c) are obtained from 20482 lattices. The black
lines in panel (a) denote the best fit to the structure factor data by the
square Lorentzian in Eq. (19). The black line in panel (b) shows a
power law with exponent 0.167, which is also marked in panel (c).

time of our simulation, t = 106. However, as we show later,
the coarsening exponent is very small in this case (�1/9).
As mentioned earlier, h = 0.17 lies on the linear stability
boundary S3 of the uniform phase.

To characterize the coarsening process, we calculate Sψ

and its associated length scale Lψ (t ), defined in Sec. IV. We
first present results for h = 0.1. Figure 5(a) demonstrates the
evolution of Sψ . The width of Sψ becomes narrower, and its

peak gets larger with time, which implies domain coarsening.
However, at late stages (t > 5 × 105), the coarsening of the
peak stops. This is consistent with the morphological evolu-
tion shown in Figs. 4(a) and 4(b).

Next, we discuss the behavior of Lψ . As shown in Fig. 5(b),
we obtain an excellent power-law behavior for Lψ (t ) over two
decades of evolution (3 × 102 < t < 6 × 104). The black line
parallel to the data shows that the coarsening exponent is con-
sistent with φ � 0.167 = 1/6. However, Lψ (t ) start to slows
down after t = 105 and saturates at late stages. This is not due
to finite-size effects because different lattice sizes (N = 1024,
2048) show approximately the same saturation behavior. The
system is clearly becoming trapped in a metastable state at late
times. We also report the local coarsening exponent φ(t ). As
shown in Fig. 5(c) corresponding to N = 2048, φ(t ) shows a
good agreement with φ = 0.167 up to t = 6 × 104.

We present results for h = 0.17 in Fig. 6. In this case, we
see a uniform coarsening of Sψ over our simulation timescales
for the largest system size N = 2048 [see Fig. 6(a)]. This is
confirmed by the power-law growth for Lψ shown in Fig. 6(b).
(Here, the smallest system size of N = 512 shows a coarsen-
ing arrest at late times due to finite-size effects.) We obtain an
effective growth exponent close to 0.11 (� 1/9), smaller than
the corresponding exponent at h = 0.1. A plot of the local
exponent φ(t ) in Fig. 6(c) also confirms the presence of the
smaller coarsening exponent over almost three decades. We
should emphasize that power laws with small exponents are
difficult to distinguish from logarithmic growth laws. We also
attempted to fit the Lψ vs t data for N = 2048 by a logarithmic
law: Lψ ∼ ln(t/τ ), but this did not yield a reasonable fit.
This indicates the absence of logarithmic growth in the time
windows considered.

How do we reconcile these different exponents for coars-
ening in the hexagonal phase? Our intuitive expectation is
that the same exponent should apply in a given phase. To
understand this, we have to focus on the defects that drive
coarsening. For parameter values deep inside the hexagonal
phase (Fig. 1), the domain boundaries consist of penta-hepta
defects [see Figs. 4(a) and 4(b)]. On the other hand, in the
vicinity of phase boundaries, other defects also manifest them-
selves, e.g., grain boundaries near B1 and the uniform phase
near B2 [see Figs. 4(c) and 4(d)]. These additional defects
populate the domain boundaries, and must be accounted for
in any comprehensive understanding of coarsening in the
hexagonal phase.

As we have seen in Fig. 5, coarsening via penta-hepta
defects is arrested by trapping in metastable states. We under-
stand this saturation in terms of the pinning effects. In the case
of crystalline patterns, the underlying periodicity of the pat-
terns offers a potential barrier for the defects [27,34–36,41].
The pinning potential introduces a fixed length scale. Domains
get trapped by this potential when the average domain size
becomes comparable to this length scale. The pinning poten-
tial crucially depends on the quench parameters ε̄ and ψ̄ [41].
For quenches deep in the hexagonal phase, e.g., h = 0.1
(ε̄ � 0.064 and ψ̄ � 0.11) and h = 0.135 (ε̄ � 0.04 and ψ̄ �
0.15), defects face a large potential barrier. In the absence
of sufficient driving force or external fluctuations, the grain
boundaries get pinned in metastable states. On the other hand,
for h = 0.17 (ε̄ � 0 and ψ̄ � 0.18) in Fig. 6, the pinning
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FIG. 6. Domain growth for h = 0.17, in the hexagonal phase.
Evolution of (a) structure factor Sψ (q, t ), (b) length scale Lψ (t ) on
a log-log scale, and (c) local exponent φ(t ) on a log-linear scale. The
data in panels (a) and (c) are obtained from 20482 lattices. The black
lines in panel (a) denote the best fit to the square Lorentzian. The
black line in panel (b) shows a power law with exponent 0.11, which
is also marked in panel (c).

effects are very small. This parameter value lies on the linear
stability boundary S3 of the uniform phase and corresponds to
a shallow quench. Here, we observe an uninterrupted growth
of domains for the largest times of our simulations.

We have also studied the scaling of the structure factor data
according to the following scaling relation [22]:

Sψ (q, t ) = Lψ (t )g[(q − 1)Lψ ], (23)
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FIG. 7. Scaling of Sψ (q, t ) for hexagonal patterns in cases with
(a) h = 0.1, and (b) h = 0.17.

where g(x) is a universal function of its arguments.
Figures 7(a) and 7(b) show the scaling of Sψ for h = 0.1 and
0.17, respectively. We obtain an excellent data collapse which
confirms the scaling behavior in Eq. (23).

VI. CONCLUSION

In this paper, we studied coarsening in the Swift–
Hohenberg equation (SHE) in the presence of an external
field. The external field breaks the inversion symmetry of the
order parameter ψ . This allows the formation of hexagons, in
addition to stripe and uniform phases. We have obtained the
phase diagram in Fig. 1 from a linear stability analysis of these
phases by using an amplitude equation approach. The phase
diagram contains two spinodal regimes: one between stripes
and hexagons, and another between hexagons and the uniform
phase. For quenches deep inside a phase, coarsening is driven
by the primary defects associated with that phase. However,
for quenches into spinodal regions, we expect secondary
defects to also affect the coarsening process.

We have studied domain growth subsequent to a quench
from the disordered phase to the stripe and hexagon phases.
In the stripe phase, we have considered two parameter values:
(a) where the stripe phase is the only stable phase (between
ε = 0 and S1), and (b) where the stripe phase is stable,
and the hexagonal phase is metastable (between S1 and B1).
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In both cases, we obtain a growth exponent close to 1/4,
which is consistent with earlier studies. However, in the latter
case, the grain boundaries between two stripe domains also
contain hexagonal spots. These annihilate at a slower rate
compared with the standard defects associated with stripes.
The computation of time-averaged exponents from the local
exponent data confirms this behavior.

We have also studied domain growth in regions where
hexagons are the equilibrium phases. Again, we have con-
sidered parameter values where (a) hexagons constitute the
only phase, and (b) a metastable uniform phase may also be
present (see Fig. 1). Our study shows that hexagons have
much slower growth than stripes with an effective growth
exponent ranging between 0.167 and 0.11. We believe that
this slow growth is related to penta-hepta defects in the
domain boundaries, which annihilate much slower than dis-
locations and disclinations in stripe patterns. The presence
of a metastable uniform phase in the domain boundaries can
further complicate the growth scenario. For the deep quenches
(h = 0.1, 0.135), the growth started to slow down after t =
105, and even stops at late stages. This occurs because the
underlying periodicity of the patterns offers a potential barrier
for the defects. In the absence of the sufficient driving force to
overcome this barrier, defects remain pinned, which stagnates
the growth [41]. Thermal fluctuations may activate the motion
of the defects by overcoming this barrier to resume the growth
process [37,38,40].

Before concluding, it is important to summarize some
experimental results in this context. Block copolymers are
perhaps the most studied experimental systems for the coars-
ening of stripes [50–54] and hexagons [37–40,55]. For stripe
patterns, coarsening proceeds through the annihilation of mul-
tipoles of disclinations (on a smooth substrate) [50,51], or via
the annihilation of dislocations (on a patterned substrate) [53].
Here, the orientational correlation length has been shown to
grow as t1/4. This is consistent with our exponents for the
length scale associated with the structure factor. In exper-

imental studies on block copolymer films with hexagonal
order, it was shown that most of the defects are condensed in
grain boundaries [37,38]. This is also in agreement with our
simulations.

Several numerical simulations of block copolymers, using
a Cahn–Hilliard model, have also reported that the orien-
tational correlations grow through annihilation of disloca-
tions [38]. In addition, simulations have also shown that triple
junctions can slow the dynamics of defect annihilation and
lead to the formation of metastable configurations through the
pinning of the triple junctions [40,55]. It would clearly be
relevant to explore the role of triple junctions in the growth
of hexagonal order in our simulations.

In summary, our understanding of stripe coarsening is good
but that of hexagon coarsening remains incomplete. At the
same time, hexagon coarsening is experimentally very im-
portant and arises in myriad physical applications. Therefore,
this is clearly an important direction for future studies of
domain growth in the SHE. We identify some outstanding
issues which need to be addressed in this context:

(a) the role of metastable phases in modifying effective
growth exponents in hexagon ordering;

(b) the role of grain boundaries and triple junctions in the
coarsening of hexagons;

(c) the role of thermal fluctuations in preventing the trap-
ping of penta-hepta defects in local minima;

(d) the formulation of an analytic argument for the growth
exponent in hexagon coarsening, in analogy with those
for coarsening via domain walls [21], and disclinations or
dislocations [25].
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