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Quantum heat distribution in thermal relaxation processes
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We analyze the heat exchange distribution of open quantum systems undergoing a thermal relaxation process
with a time-dependent effective temperature. We show that such processes arise, for example, if the dynamics
maximizes the entropy production. Using a two-point measurement scheme, we find an expression for the heat
moment generating function that depends solely on the system’s partition function and on the thermalization
function (i.e., the law of cooling) describing the effective temperature. Applications include the relaxation of
free bosonic and fermionic modes, for which closed-form expressions for the time-dependent heat distribution
function are derived. Multiple free modes with arbitrary dispersion relations are also briefly discussed. In the
semiclassical limit our formula agrees with previous results of the literature for the heat distribution of an
optically trapped nanoscopic particle far from equilibrium.
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I. INTRODUCTION

In recent years significant results related to the nonequi-
librium statistics of entropy production in open systems have
been obtained [1-5]. A cornerstone of the field is the entropy
fluctuation theorem (FT), which states that there is a special
constraint in the asymmetry of the entropy production. In its
integral form, the entropy FT reads (¢e=2) = 1, where A;S is
the entropy produced in some nonequilibrium thermodynamic
process and the average is over all of the system’s stochastic
trajectories. From Jensen’s inequality, the fluctuation theorem
implies the Clausius inequality A;S > 0. Important particular
cases of the FT are the Jarzynski equality [1], the heat ex-
change fluctuation theorem [5], and other less general forms
[6,7], thus making the integral FT (and its detailed-balance
versions [2]) a central result in stochastic thermodynamics
[8-10].

Nonequilibrium thermodynamics was also applied to open
quantum systems, including the analysis of time-dependent
statistics of quantities such as heat and work [8,11-14], as
well as quantum heat engines [15] and refrigerators [16,17].
Some exact nonequilibrium results have already been ob-
tained experimentally [18] and a few analogous phenomena
have been reported in the quantum information literature
[19,20]. The extension of the FTs to open quantum systems
is particularly subtle because of the role played in the theory
by the measurement scheme [21-23]. For instance, there are
different definitions of thermodynamic work depending on the
methods used to account for the measurement effect, such as
two-point-measurement (TPM) schemes and quantum jump
methods [24-30], besides the fact that work is not a proper
quantum observable [31]. It was only very recently that a
path-integral formulation of quantum work [32] allowed its
consistent definition in the presence of strong coupling.

There are also nonequilibrium situations, such as thermal
relaxation processes, in which the quantity of interest is the
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quantum heat [33]. In those cases, one can unambiguously
argue that the thermodynamic work performed by or over
the system is zero [22,32,34,35]. In such a situation, the
heat Q exchanged with the reservoir can be identified by the
energy variation between two projective measurements. In
other words, if E,, (att = 0) and E,, (att > 0) are the energies
obtained in two consecutive measurements, then the heat ab-
sorbed by the system is Q = E,, — E,. The quantum heat Q is
a stochastic quantity and obtaining a closed-form expression
for its time-dependent distribution P, (Q) is not a trivial task.
In fact, we are unaware of any previous exact result for the
time-dependent heat distribution in quantum open systems.
Furthermore, the current literature does not even offer a
general qualitative understanding of nonequilibrium quantum
heat distributions since they may depend on system specific
properties [22]. Knowledge of the distribution P, (Q) is of both
practical and conceptual importance in that it may help to
address fundamental questions arising from nonequilibrium
thermodynamics, as in the description of quantum engines
[36,37], single-ion measurements [38—40], and the estimation
of the probability of an apparent violation of the second law
of thermodynamics in small systems [41,42].

In this paper we compute the distribution P, (Q) for a wide
class of thermalization processes satisfying a rather general
law of cooling. To be specific, we consider a TPM scheme (see
Fig. 1) where the system is initially in thermal equilibrium
with a reservoir of inverse temperature f; = 1/7). (Here
the Boltzmann constant is set to unity kg = 1.) Atr =0 a
measurement is made yielding, say, an energy E,,, after which
the system is placed in contact with a second reservoir with
inverse temperature f,. At some later time ¢t > 0 a second
measurement is performed yielding an energy E,,. Repeating
this procedure several times allows one to construct the heat
probability distribution P;(Q), where Q = E,, — E,. Here we
are interested in quantum processes that map thermal states
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FIG. 1. A system (po, H) is initially prepared in thermal equi-
librium with the first (blue) reservoir at temperature 77. At t = 0,
a projective energy measurement is performed, yielding the value
E,. Then the system is placed in contact with a second (red) reser-
voir at temperature 75. At time ¢ > 0, a second projective energy
measurement is performed, yielding the value E,. In this two-
point measurement scheme, the heat exchanged between the system
and the second reservoir is a time-dependent stochastic quantity
O, = E,, — E, described by a nonequilibrium probability distribution
F(0).

onto thermal states, characterized by a time-dependent effec-
tive temperature B(t) = ¢:(B1, B2), for some thermalization
function ¢, that describes the specific law of cooling of the
system in question. Note in particular that ¢, must obey the
following relations: (i) ¢o(x,y) = x, (il) ¢o(x,y) =y, and
(>iii) ¢, (x, x) = x.

This general type of thermalization function has been
found in several dynamics, such as in quasistatic processes
[43—46], in Lindblad’s dynamics of free bosonic [47] and
fermionic modes [48], in general time evolution of glassy
systems [49], in dynamical models for sheared foam [50],
in the classical dynamics of optically trapped nanoparticles
with experimental confirmation [51-53], and in the dynamics
of some graphene models [54]. Furthermore, we will show
below that under the assumption that the net heat transfer
(Q); is fixed, the maximum entropy production implies that
the system’s density matrix po(¢) remains thermal for ¢ > 0,
with an effective temperature B(¢) as described above. This
corroborates that such thermalization processes are indeed
quite general in open quantum systems.

For such a broad class of systems that evolve through
thermal states, we show that the nonequilibrium quantum
heat statistics is, quite surprisingly, entirely determined by
the equilibrium partition function Z(8) = Y_, e #f. More
precisely, we demonstrate that the time-dependent moment
generating function (MGF) M (s, 1) = (¢'¢), = [ ¢*°P,(Q)dQ
of the quantum heat Q satisfies the remarkable identity

Ms.1) = Z(Br+5) Z(p(P1 + 5, ﬁz)—S)' 0
Z(B1)  Z(g(Br+5,B2)
Two special cases of relation (1) are worth noting. First,
setting s = 0 yields M (0, t) = 1, as required from the normal-
ization condition ffoooP,(Q)dQ = 1. Second, for s = AB =
B> — B1 we recover the integral fluctuation theorem [5]

M(AB,t) = (e*FP2) =1, 2)

which follows immediately from the fact that ¢, (8>, B2) =
B, for all . Furthermore, for systems that satisfy detailed
balance, meaning that P,(n — m) = e #~E—EIP,(m — n),
where P, (n — m) denotes the transition probability from state

|n) to |m), one can show that the MGF possesses the symmetry
M(AB —s,t) =M(s, 1), 3)

which is a direct manifestation of the detailed fluctuation
theorem [55,56] P,(Q)/P,(—Q) = e~2P2. Note, however, that
the detailed FT, as expressed in Eq. (3), is a general property
of systems obeying detailed balance, whereas Eq. (1) is a
stronger result that relates nonequilibrium fluctuations with
the equilibrium distribution for systems that obey a thermal-
ization dynamics (not necessarily satisfying detailed balance).
Relation (1) can thus be seen as a generalized fluctuation
theorem that shows that the time-dependent heat distribution
is fully encoded in the equilibrium partition function and in
the underlying law of cooling, which accounts for the weak
coupling with the reservoir. This result has important practical
consequences, as it allows us to compute the nonequilibrium
heat distribution P, (Q) for several systems of interest, as will
be shown later.

II. THERMAL RELAXATION PROCESSES

We consider open quantum systems [57] whose time
evolution is described by a linear dynamical map p(t) =
®,(pp) with the semigroup property ®,(D,(p)) = P,4,(p) for
s,t > 0. This implies in practice that for # > 0 the system is
weakly coupled to the heat bath and that the evolution is mem-
oryless (i.e., Markovian). The system starts at a thermal state
with an inverse temperature Bi: py = pp, = e PH /Z(B)) =
[ZB)I'S, e P1Ei|n)(n]. We analyze relaxation processes
@, with target state pg,, representing the second heat bath at
inverse temperature B, so that ®,(pp,) = pg, for all . We
will consider that the dynamics @, is such that the thermal
relaxation @, satisfies a generic law of cooling of the type

D (pp) = Loy (p1.p2)- (4)

which maps an initial thermal state at inverse temperature
B1 onto a thermal state with an effective (time-dependent)
inverse temperature B(t) = ¢;(B1, B2). It has been recently
shown that thermalization is a rather general mechanism in
quantum systems under a measurement process [58], and so
the existence of an effective temperature applies to a broad
class of open systems. In particular, we show below that if
the dynamics @, is such that the entropy production in the
interval [0, 7] is maximal, then @, obeys the relation (4).
Notice, however, that the property (4) comprises a wider class
of dynamics in which the thermal relaxation is a particular
case of interest. Other experimental setups satisfying (4) still
benefit from the result (9) and they are left for future studies.

III. MAXIMUM-ENTROPY PRODUCTION

To establish (4) under the assumption of maximum-entropy
production, first we consider that the system is in thermal
equilibrium with a reservoir at temperature 7; at + = 0 and
subsequently placed in contact with another heat bath at
temperature 75, whose dissipative dynamics is represented by
the map ®,. At time r > 0, the nonequilibrium density matrix
p(t) = ®,(pp) has an associated von Neumann entropy varia-
tion AS = S[p] — S[po], where S[p] = —tr(p log p). One can
write the entropy variation as AS = A;S + A.S, where A;S is
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the entropy production (i.e., the irreversible component of the
entropy change) and A,S = B,(Q), is the entropy exchanged
with the environment (reservoir 2), corresponding to the re-
versible contribution to the entropy variation, with (Q), =
(H); — (H)o = tr(p,H) — tr(ppH) the net heat absorbed by
the system. According to Clausius inequality, the entropy pro-
duction is positive A;S > 0. (We remark parenthetically that
sharper lower and upper bounds for the irreversible entropy
production have been recently established for open quantum
systems [59,60].) Here we will require A;S to be maximal
for a constant heat exchange (Q);. Thus, maximizing A;S
is equivalent to maximizing AS. This optimization problem
may be written in the usual form §(S, — a,(H), + b,(1)) = 0,
where §F (p) is understood as the functional derivative of
F (p) with respect to the distribution p, and the Lagrangian
multipliers g, and b, are needed to account for the constraint
on the heat flux (Q), (and hence on (H), since (H)q is
fixed by the initial condition) and the normalization condi-
tion, respectively. Solving the optimization with these con-
straints results in a time-dependent thermal density matrix
p(t) = e M /Z(a,), where Z(a,) = tr[e” %], with ay = B
and a,, = f>. From the constraint on (H);, one can define
a; for any ¢t > 0 from the formula (H); = —d1nZ(a,)/0qa,.
Solving for a, yields the law of cooling a, = ¢, (B, B>). Note
that this is equivalent to the property defined in Eq. (4), which
states that the dynamical map @, evolves initial thermal states
onto thermal states for all # > 0.

It is perhaps worth pointing out that the above argument
remains valid if instead of the von Neumann entropy one
uses the Wigner entropy production, yielding the same law of
cooling as (4), with the advantage that the entropy flux stays
finite for 7 — 0 [61] (see Supplemental Material also [62]).

IV. HEAT DISTRIBUTION

Starting from the generic thermalization dynamics given
in Eq. (4), we now prove that the heat distribution obeys the
fluctuation relation given in Eq. (1). We recall that in the
TPM scheme, the system starts at thermal equilibrium with
the first reservoir at temperature 77, and at ¢+ = O an energy
measurement is performed yielding the value E, with proba-
bility p, = e #1£/Z(B,), thus projecting the system onto the
energy eigenstate |n) (n|. Subsequently, the system is placed in
thermal contact with a second reservoir at temperature 75, rep-
resented by the map @, with the cooling property (4). A sec-
ond energy measurement is then performed on the system at
some time ¢ > 0, now with the time propagated density matrix
®,(|n)(n]), yielding the value E,, and projecting the system
onto the energy eigenstate |m)(m|. The moment generating
function of the exchanged heat Q = E,, — E, is defined as

(€C) = e EnED p, (m| @, (In) (n])|m). (5)

Using the linearity of ®, and combining the terms in p, and
e~*Er we can rewrite the sum over n in Eq. (5) in terms of
a new thermal state that depends on the real parameter s
(provided s 4+ 1 > 0), thus obtaining

Z(B1+s)

sQy
=26

> et ml @i (pg)lm)  (6)

m

(see details in Supplemental Material Ref. [62]). Finally, we
apply the property (4) to write ®,(08,45) = 0, (Bi+s.) =
e 0Bt PO 17(0,(B) + 5, B2)), which inserted into (6) and
summing over m results in Eq. (1). Next we will make use of
the MGF (1) to compute explicitly the heat distribution P, (Q)
for a variety of systems.

V. BOSONIC MODES

Here we apply (1) to a system composed of a single
bosonic mode coupled to a thermal bath. The system is
described by the Hamiltonian of the harmonic oscillator
H = hw(a'a+ 1/2) and its partition function is Z(B8) =
(1/2)csch(Bhw/2). In this representation, the system satisfies
a Lindblad equation [61]

4o =~ 1H. o1+ Dilp) )
with the dissipator
Di(p) = y(@; + D[apa’ — 3{a'a, p}]
+yiia’pa— 3{a‘a, p}] ®)

and an average number of excitations n; = [exp(iw/kpT;) —
117, i =1, 2, that depends on the temperature of the reservoir
coupled to the system. One can verify, using the operator
formalism [47,63], that the dynamics (7) does indeed satisfy
a law of cooling of the type shown in Eq. (4). This result
can be obtained more directly using the Wigner function
representation and its associated stochastic parametrization.
More specifically, one can show (see Supplemental Material
[62]) that the dynamics given by (7) and (8) propagates
any thermal distribution with inverse temperature §; to an-
other thermal distribution with an effective time-dependent
temperature defined by i, = (1, — nz)e” "' + i, where i, =
[exp(fiw/kgT,) — 117", which can be solved to yield 8(¢) =
1/kgT; = ¢ (B1, B2).

It is worth mentioning that in the semiclassical limit, where
hw(n; + 1/2) — kpT;, one recovers Newton’s law of cool-
ing T, = T, + (T} — T)e™"". Note that although the effective
temperature 7; evolves from 77 (at t = 0) and reaches T
for t — oo in both the quantum and the classical cases, the
transient behaviors differ considerably, as depicted in Fig. 2.

Having found that the system (7) satisfies a law of cooling
as in Eq. (4), a remarkably elegant expression for the heat
MGF M(s,t) can now be obtained by using Eq. (1) with
Z(B) = (1/2)csch(Bhiw/2). We find

. . _l
smh. (%wz) sinh [ga)(sr — AB)] 1—er)| .
sinh (Jwp1) sinh (Swps)

M(s,t) = [1—
9

where AB = B, — B;. This equation reproduces, after some
algebra, a recent result reported in Ref. [64]. As a check, note
that M(0,t) = 1, whereas for s = AB we indeed obtain (2).
Furthermore, Eq. (9) displays the symmetry (3), as expected,
since the system is known to satisfy detailed balance.
Remarkably, we are also able to find (see Supplemen-
tal Material [62]) the nonequilibrium probability distribution
of the exchanged heat, Q = E,, — E, = hw(m — n) = hwk, a

022133-3



SALAZAR, MACEDO, AND VASCONCELOS

PHYSICAL REVIEW E 99, 022133 (2019)

FIG. 2. Different laws of cooling (effective temperatures) of the
bosonic mode (solid blue line) and the fermionic mode (dotted
red line) and the classical Newton law of cooling (dashed black
line) as a function of time. The descending lines represent cooling
from kgT; /hiw = 1to kzTs/fiw = 1073, The rising lines represent the
heating process from kT /fiw = 103 and kT, /hiw = 1. Note that
the bosonic line (blue) decays slower in the cooling process and rises
faster in heating when compared to its semiclassical limit (dashed).
The fermionic starts by heating faster, but then becomes slower than
the semiclassical limit. In the cooling process, the fermionic mode
starts close to the classical case, but eventually slows down.

task that was deemed not possible in Ref. [64]. We obtain

2 hwA
P(Q = hiwk) = 2 exp(—|k|1nu[—k“’—ﬁ> (10)
mi =1 2
for any integer k={...,—1,0,+1,...}, with time-

dependent parameters (v;, i,) given by v, = 2 sinh(hwp;/2)
sinh(iwBy/2)/(1 — e "), = ++/Q2—1, and Q, =
v; + cosh(iwAB/2). Note in particular that the detailed FT
holds: P,(Q = hiwk)/P,(Q = —hwk) = e~ 228, Notably, we
may also use (10) to find the probability of a heat flow from
lower to higher temperature. To see this, suppose that 7, > T;.
In this case, one expects a positive heat (Q > 0) absorbed by
the system. However, since Q is a random variable, there is a
probability of a reverse heat flow (Q < 0) given by

2v 4 1

P(QO<0)= . 11
Q<0 = o (11)

This apparent violation of the second law of thermodynamics
is indeed observed in small systems [65]. Before leaving this
section, we remark that a perturbation in the Hamiltonian
which is linear in a and a', such as in the case of a single
mode cavity pumped by a radiation field, does not change the
heat MGF (9) since the pump only shifts the spectrum E, by a
constant, which keeps the energy variations (AE = E,, — E,,)
invariant (see Supplemental Material [62]). Thus, the relation
(9) can in principle be tested in optical cavities far from
equilibrium.

VI. UNDERDAMPED CLASSICAL OSCILLATORS

The semiclassical limit of Eq. (9) is obtained by taking
hwB; — 0 and iws — 0. We find

~1
M(s,t)=<1—%(1—eﬂ)> (12

Note in particular that in the case of f/2 independent har-
monic oscillators we have Mz (s,t) = [M(s, 1)}//?, which,

combined with (12), reproduces the result for the heat distri-
bution of f/2 classical nanoscopic particles optically trapped
in the highly underdamped limit [51-53].

VII. FERMIONIC MODE

Consider a free fermionic mode with Hamiltonian H =
hwa'a and the usual anticommutating relation {a'i', a} = 1.
The system has two eigenstates {|0), |1)}. Given an initial
state v = (1 — 7, ), suppose its dynamics is Markovian and
satisfies detailed balance. Then, starting at an initial tem-
perature 7, the evolution of the state is given by the same
law of cooling found in the bosonic case, namely, n; = np +
(m; — mp)e™ ", but where now n; is the fermionic occupation
number 7; = [exp(Bifiw) + 117!, i = 1, 2, for some damping
constant y > 0, obtained from the unique free parameter in
the dynamics (see Supplemental Material [62]). The fermionic
law of cooling is also depicted in Fig. 2. In this case, the heat
exchange MGF reads

sinh(hws/2) sinh[Ahw(s — AB)/2]
cosh(fiwpBy/2) cosh(fiwp,/2)

M(s,t) = 1+ (1—e".

(13)

Note the striking similarities between this result and that for
the bosonic case shown in Eq. (9). In particular, Eq. (13) has
the expected behavior for s = 0 and s = AS and satisfies (3)
as well. The heat probability distribution is found straightfor-
wardly from (13) to be

(1 _ e—yt)eq:thﬁ/Z

P(Q = thw) = 4 cosh(fiwpB;/2) cosh(hwpBy/2)’

(14)

with A(Q = 0) =1 — [F(hw) + P (—hw)].

VIII. CONCLUSION AND PERSPECTIVES

We have shown that a thermal relaxation process that
maximizes the entropy production (for fixed heat exchange)
satisfies a law of cooling of the form shown in Eq. (4). We
proved that any system relaxing in this way has a heat moment
generating function given by Eq. (1), which depends only
on the equilibrium partition function Z(8) and the cooling
function ¢, (81, B2). We used this general result to find the heat
distribution of a number of experimentally relevant systems,
such as a single bosonic mode, the semiclassic limit of opti-
cally trapped nanoparticles, and a single fermionic mode. We
emphasize that the maximum-entropy production principle
may also be useful in deriving approximate cooling laws for
a large class of systems with tight bounds on the entropy
production [59], where a nonequilibrium effective tempera-
ture can be defined. As a closing remark, we point out that
the framework derived here can be easily generalized to
include the study of quantum heat statistics of a system
with multiple independent modes, such as Bose-Einstein con-
densates and the relaxation dynamics of spin chains. The
development of this interesting perspective is left for future
work.
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