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Spin-reorientation critical dynamics in the two-dimensional XY model with a domain wall
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In recent years, static and dynamic properties of non-180◦ domain walls in magnetic materials have attracted
a great deal of interest. In this paper, spin-reorientation critical dynamics in the two-dimensional XY model
is investigated with Monte Carlo simulations and theoretical analyses based on the Langevin equation. At
the Kosterlitz-Thouless phase transition, the dynamic scaling behaviors of the magnetization and the two-time
correlation function are carefully analyzed, and critical exponents are accurately determined. When the initial
value of the angle between adjacent domains is slightly lower than π , a critical exponent is introduced to
characterize the abnormal power-law increase of the magnetization in the horizontal direction inside the domain
interface, which is measured to be ψ = 0.0568(8). In addition, the relation ψ = η/2z is analytically deduced
from the Langevin dynamics in the long-wavelength approximation, well consistent with numerical results.
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I. INTRODUCTION

In recent years, much of the effort of physicists has been
devoted to understanding the domain-wall dynamics of fer-
roic materials (ferroelectrics, ferromagnets, ferroelastics) in
both experiments and theories [1–8], due to their possible
applications in high-density magnetic memories, spin logic
devices, and shift registers by means of switching and de-
tecting the polarization orientations of the domains [9–12].
The dynamic properties of domain walls in the macroscopic,
mesoscopic, and microscopic scales have been investigated
with different numerical methods, such as the Edwards-
Wilkinson equation with quenched disorder [4,13,14], the
Monte Carlo method in Ising-type lattice models [15–18],
and the Landau-Lifshitz-Gilbert equation in Heisenberg-like
models [19–22].

Driven by a constant external field in the presence of
quenched disorder, a pinning-depinning dynamic transition
occurs at zero temperature, separating the regimes of static
pinning and friction-limited viscous sliding [22–24]. At low
temperatures, the sharp depinning transition is softened and a
thermally activated creep motion appears [25–28]. Under an
oscillating driving field, the situation of domain-wall motion
becomes more complicated. Four dynamic states (relaxation,
creep, sliding, and switching) and the dynamic phase tran-
sition between them have been found in ultrathin ferromag-
netic and ferroelectric films [29,30]. Recently, domain-wall
motions induced by spin-polarized currents and spin waves
have attracted much attention as well [5,19,31,32].

The structure of the domain wall is very important to the
topic of domain-wall dynamics. It is of Neél (Bloch) type,
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where the magnetization rotates in (out) of plane across the
domain wall. Thanks to spin-polarized scanning tunneling mi-
croscopy and spin-polarized low-energy electron microscopy,
direct determination of the domain-wall structure is possi-
ble by imaging the local in-plane magnetization direction
[33–35]. To characterize the domain arrangements, an an-
gle between polarization directions in adjacent domains is
introduced (as depicted in Fig. 1) that is equal to π (180◦)
for the simple case of easy-axis magnetization. In recent
experiments, spin configurations with non-180◦ domain walls
have also been found, but relevant theoretical explanations are
still primitive [8,36–38]. Very recently, a spin-reorientation
transition has been revealed in epitaxial NdCo5 thin film
with temperature-dependent domain-wall orientations [39].
However, the dynamic properties have not been addressed as
of yet.

On the other hand, the dynamic relaxation of a single
domain wall at a standard ordered-disordered phase transition
has already been addressed in magnetic systems [28,40,41].
Understanding such domain-wall dynamics is theoretically
and practically important. Theoretically, it is quite interesting
to investigate the nonequilibrium critical dynamics starting
from the semiordered state possessing a single domain wall,
in comparison with that starting from the ordered or random
state. Practically, predicting and controlling the movements of
the domain walls play a crucial role in designing new classes
of magnetic devices. Moreover, the dynamic approaches can
be developed to study the pinning-depinning and other dy-
namic phase transitions of domain walls at zero or low tem-
peratures, to understand the nonstationary properties of the
dynamic systems, and to determine the static and dynamic
exponents as well as the transition points [18,22,24,25]. How-
ever, most of the efforts were focused on the 180◦ domain wall
in earlier studies of domain dynamics, and the dynamics of the
non-180◦ domain wall was rarely mentioned.
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FIG. 1. The initial spin configuration of a semiordered state is
shown for the two-dimensional XY model. Spins of both sides form
an angle of 2φ ∈ [0, π ]. The vertical and horizontal components of
the spins, shown in the enlargement of two arrows on the right, are
denoted by S⊥ and S‖, respectively.

In this paper, we aim to study the spin-reorientation dy-
namics with a domain wall at the Kosterlitz-Thouless (KT)
phase transition, taking the two-dimensional (2D) XY model
as an example. To be specific, the dynamic relaxation starting
from the semiordered state which consists of two fully ordered
domains with different spin orientations is carefully inves-
tigated with Monte Carlo simulations, in comparison with
the theoretical analysis based on the Langevin equation in
the long-wavelength approximation [42–44]. Different values
other than π are set to the angle 2φ between spins in the
two domains, and an abnormal increase can be found in
the time evolution of magnetization when the angle is very
close to π , e.g., 0.988π . The critical scaling behaviors of the
magnetization are worked out analytically, in comparison with
the results obtained by Monte Carlo simulations. In Sec. II,
the models and scaling analysis are described. In Secs. III
and IV, Monte Carlo simulations and theoretical analysis of
the critical behaviors of magnetization are presented, respec-
tively. Finally, Sec. V includes the conclusions.

II. MODEL AND SCALING ANALYSIS

The two-dimensional XY model is one of the sim-
plest models for magnetic materials, exhibiting a Kosterlitz-
Thouless (KT) phase transition. The Hamiltonian is given by

− 1

kT
H = K

∑
〈i j〉

�Si · �S j, (1)

where �Si = (Si,x, Si,y ) is a planar unit vector at the site i
in a two-dimensional lattice, the sum is over the nearest
neighbors, and K represents the inverse temperature 1/T .
In this paper, we investigate the relaxation dynamics of the
domain walls at the KT phase transition. Since the critical

temperature Tc is reported to be between 0.89 and 0.90 [45],
and the system remains critical in the low-temperature phase,
we set the temperature T = 0.89 in the numerical simulations.
Following Refs. [41,46], we adopt the “heat-bath” algorithm
with a standard single-spin flip, in which a trial move is
accepted with the probability 1/[1 + exp(δE/T )], where δE
is the energy change associated with the move.

A rectangular lattice is used in this work with the linear
size 2L in the x direction and L in the y direction. Peri-
odic boundary conditions are used in both directions. The
semiordered state with a perfect domain wall is built by two
ordered sublattices L2, in which all spins of �Si− in the same
orientation on the left side and those of �Si+ on the right side
form an angle of 2φ as depicted in Fig. 1. For convenience, we
reset the x-axis such that the domain wall between the positive
and negative spins is located at x = 0. So the x coordinate of
a lattice site is a half-integer.

Due to the semiordered initial state, the time evolution
of the dynamic system is inhomogeneous in the x direction.
Therefore, the magnetization and its second moment should
be calculated as functions of x and t ,

�M (k)(t, x) = 1

Lk

˝⎡
⎣ L∑

y=1

�Sxy(t )

⎤
⎦

k̨

, k = 1, 2, (2)

where �Sxy(t ) is the spin at time t on site (x, y), L is the lattice
size in the y direction, and 〈· · · 〉 represents the statistical
average. For convenience, we also use �M(t, x) ≡ �M (1)(t, x)
to denote the magnetization. As with the spin �Sxy, �M(t, x)
also consists of two orthogonal components M⊥(t, x) and
M‖(t, x) in the vertical and horizontal directions, respectively.
For example, one has the initial values M⊥(0, x) = ±1 and
M‖(0, x) = 0 of the 180◦ domain wall.

In addition, the two-time correlation function is introduced
to describe the pure temporal correlation of the domain inter-
face at different times,

C(t ′, t, x) = 1

L

〈
L∑

y=1

�Sxy(t ′) · �Sxy(t )

〉
− �M(t ′, x) · �M(t, x),

(3)
where t ′ and t denote the waiting and observation times,
respectively, and one has t > t ′ in general.

In the critical regime T � Tc, general scaling arguments
lead to the scaling form of the dynamics far away from
the equilibrium state. Similar to that in the Ising model, the
vertical component M⊥ reads

M (k)
⊥ (t, x, L) = ξ (t )−kη/2

eM
(k)
⊥ (ξ (t )/x, ξ (t )/L), (4)

where η is the static exponent, k = 1 and 2 correspond to
the magnetization and its second moment, respectively, and
ξ (t ) denotes the spatial correlation length. In simple cases,
one has ξ (t ) ∼ t1/z with z being the dynamic exponent, and
the magnetization is independent of L in thermodynamic limit
L → ∞. Then the scaling form of the vertical magnetization
can be simplified as

M⊥(t, x) = t−η/2z
eM⊥(t1/z/x). (5)

Inside the domain interface, i.e., s = t1/z/x → ∞, the scaling
function obeys eM⊥(s) ∼ s−η0/2. The vertical magnetization

022129-2



SPIN-REORIENTATION CRITICAL DYNAMICS IN THE … PHYSICAL REVIEW E 99, 022129 (2019)

M⊥(t, x) then appears to exhibit a power-law behavior,

M⊥(t, x) ∼ t−(η+η0 )/2zxη0/2. (6)

It decays much faster than that at bulk, i.e., s → 0, where
eM⊥(s) remains constant, and M⊥(t, x) behaves as

M⊥(t, x) ∼ t−η/2z. (7)

The bulk and interface exponents, η/2 = 0.117(2) and
η0/2 = 0.997(7), have already been measured accurately in
Ref. [41].

Unexpectedly, the other component M‖(t, x) evolves quite
differently. When the initial value of the 2φ between the
orientations of the two domains is strictly set to π , M‖(t, x)
should always be zero according to the antisymmetry of the
semiordered initial state. When 2φ deviates slightly from π ,
e.g. 0.988π , the dynamic scaling form of M‖ is expected,

M‖(t, x) = ξ (t )ψz
eM‖(ξ (t )/x) = tψ

eM‖(t1/z/x), (8)

where the exponent ψ is introduced to characterize the ab-
normal increase of the horizontal magnetization. At bulk,
however, it decays with the time M‖(t, x) ∼ t−η/2z, the same
as that of the vertical one, M⊥(t, x). On the right side of
Eqs. (5) and (8), both of the overall factors, t−η/2z and tψ ,
indicate the scaling dimensions of the two components of
�M(t, x) inside the domain interface, and the scaling function
eM⊥,‖(ξ (t )/x) represents the scale invariance of the dynamic
system. In general, they hold in the macroscopic short-time
regime [18,25,40,41,47], after a microscopic time scale tmic

that is 100–200 Monte Carlo time steps (MCS) in this work.
Similarly, we may write down the dynamic scaling form of

the two-time correlation function,

C(t ′, t, x) = ξ (t ′)−η
eC(ξ (t )/ξ (t ′), ξ (t ′)/x). (9)

Since the scaling function depends on two scaling variables
ξ (t )/ξ (t ′) and ξ (t ′)/x, the dynamic behavior of C(t ′, t, x)
is relatively complicated. Let us denote s′ = ξ (t ′)/x and
r = ξ (t )/ξ (t ′) for simplicity. Theoretically, in the large-r
limit, the scaling function eC(s) is expected to exhibit power-
law behavior both at bulk and inside the domain interface.
Careful analysis leads to

eC(r, s′) ∼
{

r−λb at bulk,

r−λs inside the domain interface,
(10)

where λb = d + η/2 and λs = η0/2 − zψ are the decay expo-
nents for the bulk and domain interface, respectively. In the
small-r regime, however, it shows a slight deviation from the
power-law behavior. The logarithmic form of the correction
should be considered in the growth of the spatial correlation
length ξ (t ) due to the dynamic effect of the vortex-pair
annihilation at the KT transition [46,48],

ξ (t ) ∼ [t/(ln t + c)]1/z. (11)

In this paper, a more complicated correction form to scaling is
taken,

ξ (t ) ∼ [t/(ln t + c1)]1/z(1 + c2/t ), (12)

where c1 and c2 are fitting parameters.

III. MONTE CARLO SIMULATION

For the 2D XY model, our main results are presented with
L = 512 at T = 0.89, and the maximum updating time is
tmax = 25 600. The total number of samples for average is
10 000. The statistical errors are estimated by dividing the
total samples into two or three subgroups. If the fluctuation
in the time direction is comparable with or larger than the
statistical error, it will be taken into account.

First, we focus on the time evolution of the magnetization
of the 2D XY model starting from the semiordered states,
where the values of the angle 2φ are very close to π , including
0.984π, 0.986π, 0.988π, 0.990π , and 0.992π . Only the
results of 2φ = 0.988π are shown in this paper, and those
of the others behave quite similarly. As shown in Fig. 2(a),
the vertical component M⊥(t, x) seems to be the same as that
starting from a domain wall formed by the strictly opposite
spins (2φ = π ) [41]. According to Eqs. (5)–(7), M⊥(t, x)
shows the power-law decay for a sufficiently small s, e.g.,
x = 255.5 and t < 10 000, which makes eM⊥(s) a constant at
bulk when s → 0. For a sufficiently large s, e.g., x = 0.5 and
t > 100, M⊥(t, x) decays much faster, and we have eM⊥ ∼
s−η0/2 inside the interface when s → ∞. The critical exponent
η/2z = 0.0587(3) measured from the slope of the curve at
x = 255.5 is well consistent with η = 0.234(2) and z = 2
reported in the literature [45,47], and the other exponent (η +
η0)/2z = 0.521(6) from the case at x = 0.5 gives η0/2 =
0.93(1) by taking z = 2 as input. Considering there exists a
strong correction to scaling in the growth of ξ (t ) as shown in
Eq. (12), one refines the interface exponent η0/2 = 1.00(2),
in good agreement with the results in Refs. [40,41].

The horizontal component of the magnetization M‖(t, x)
behaves quite differently from M⊥(t, x). For the case 2φ =
0.988π , M‖(t, x) shows a tendency of the power-law increase
at x = 0.5 in Fig. 2(b). Direct measurement of the curve after
t > 200 gives the exponent ψ = 0.0572(6) in Eq. (8), and a
fit to the numerical data with a power-law correction extends
to early times very well, yielding ψ = 0.0568(8). Besides, the
influence of 2φ on the exponent ψ is also investigated. Notice
that the closer 2φ is set to π , the better the power-law increase
of M‖ should be. However, a value of 2φ too close to π will
result in strong fluctuations on �M(t, x). In this paper, ψ =
0.057(1) is confirmed by different values of 2φ varying from
0.986π to 0.992π , supporting the theoretical result ψ = η/2z
in Sec. IV. Additionally, the curves of x = 127.5 and 255.5
simply obey the scaling form of M‖(t, x) at bulk, the same as
that of M⊥(t, x) in Eq. (7). Thus they are omitted in Fig. 2(b)
due to the small value of M‖ (e.g., M‖ < 0.01) comparable to
the fluctuations.

When the initial value of 2φ is distinct from π , e.g., 2φ =
0.8π and 0.5π in Fig. 3, the monotonic, power-law increase
of M‖(t, x) vanishes at x = 0.5 inside the domain interface.
A power-law decay of M‖(t, x) occurs after a crossover stage.
The values of the exponent η/2z = 0.0582(5) and 0.0580(3)
are measured from the slopes of the curves in the subfigures
(a) and (b), respectively, again in agreement with that in the
literature [47].

In Fig. 4(a), the scaling function eM‖(t, x) defined in Eq. (8)
is plotted as a function of x/ξ (t ) for the horizontal component
of magnetization M‖(t, x) with the initial value of the angle
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FIG. 2. Time evolution of magnetization (M‖, M⊥) starting from the semiordered state with the angle 2φ = 0.988π on a double-log scale.
Dashed lines show the power-law fits. The circles represent a power-law correction M‖ ∼ tψ (1 + c/t ) to scaling, with ψ = 0.0568 as a result.

2φ = 0.988π , where the correlation length ξ (t ) is calculated
according to Eq. (12) with c1 = 5.45 and c2 = −9.1. Data
of different x collapse clearly onto the master curve at t >

150 MCS. Inside the domain interface, eM‖(x/ξ (t )) → const
is observed in the limit x/ξ (t ) → 0, different from that of
the vertical component M⊥(t, x), where eM⊥(s) ∼ s−η0/2 =
[x/ξ (t )]η0/2. An increase of eM‖(x/ξ (t )) is then observed at
x/ξ (t ) > 1 with the slope 0.23(1), leading to η ≈ 0.23 from
the usual expectation M‖(t ) ∼ ξ (t )−η/2 at bulk, comparable
with the earlier results [47]. Between them, it exhibits a
power-law decrease with the slope η0/2 = 1.00(7).

The behavior of the two-time correlation function is also
carefully examined. After subtracting the contribution of the
magnetization, C(t ′, t, x) describes the pure time correlation.
As shown in Fig. 4(b), the scaling variable s′ = ξ (t ′)/x is
fixed at certain values, e.g., s′ = 0.14 and 0.762 for the bulk

and domain interface, respectively. In both of the two cases,
the function C(t ′, t, x)ξ (t ′)η shows data collapse with respect
to ξ (t )/ξ (t ′). Since C(t ′, t, x) at bulk decays rapidly, the
data are relatively fluctuating. The slopes of the power-law
tails give the exponents λb = d + η/2 = 2.14(4) and λs =
η0/2 − ψz = 0.878(8) in Eq. (10). Thus one has η/2 = 0.14
and ψ = 0.061, comparable with those obtained from the
magnetization in Fig. 3.

IV. THEORETICAL ANALYSIS

In this section, the dynamic behaviors of the horizontal
and vertical components of the magnetization are analyzed in
the long-wavelength approximation, which is a conventional
treatment on the KT phase transition of the two-dimensional
XY model. Recently, this approximation has also been used

FIG. 3. The horizontal component of magnetization M‖(t, x) is plotted as a function of the time t on a double-log scale for the initial states
with the angle 2φ = 0.8π in (a) and 0.5π in (b). The dashed lines show the power-law fits.
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FIG. 4. The scaling functions M‖(t, x)ξ (t )−ψz with respect to x/ξ (t ) in (a) and C(t ′, t, x)ξ (t ′)η with a fixed s′ = ξ (t ′)/x as a function of
ξ (t )/ξ (t ′) in (b) on a double-log scale. The initial states with the angle 2φ = 0.998π are prepared, and data collapse for different x and t ′ is
observed when the correction to the scaling defined in Eq. (12) is considered for the correlation length ξ (t ). Dashed lines show the power-law
fits.

to investigate nonequilibrium critical dynamics [43,49]. In
general, it is valid in the low-temperature regime, well be-
low the critical temperature Tc. Near Tc there may exist the
dynamic effect of the vortices. In our theoretical analysis,
however, the initial states are ordered and semiordered, and in
both dynamic processes the vortex effect is suppressed. The
dynamical behaviors seem similar to those of the spin waves
with very long wavelengths.

A. Ordered initial state

With the long-wavelength approximation, the Hamiltonian
of the XY model then can be rewritten as [43,44,50]

H = −
∑
〈i j〉

cos(θi − θ j )

≈ 1

2

∑
〈i j〉

(θi − θ j )
2 + H0

= 1

4

∑
�R

∑
�a

(θ (�R) − θ (�R +�a))2 + H0, (13)

where θi is the orientation angle of the spin at site i, �R is the
position vector in the plane, �a is the unit vector between the
site and its nearest neighbors, and the constant term H0 ≈
−1 does not affect the dynamics at all. After the Fourier
transformation of θ (�R), one obtains an effective Hamiltonian,

Heff = 1

2

∑
�k

J (�k)|θ (�k)|2, (14)

where | · · · | represents the modulus, and the function J (�k)
satisfies

J (�k) = 1

2

∑
�a

|1 − ei�k·�a|2 ≈ k2a2. (15)

Note that �k is a two-dimensional wave vector, ranging from
−π/a to π/a in any direction. For convenience, the notation
of the vector is omitted in the following.

The dynamics of the XY model is investigated with the
Langevin equation in the momentum space [42,43],

dθ (k, t )

dt
= −ρs

T

∂Heff

∂θ (k, t )
+ ε(k, t )

= −a2k2ρs

T
θ (k, t ) + ε(k, t ), (16)

where T is the temperature of the system, ε(k, t ) is Gaussian
white noise with the correlation given by the fluctuation-
dissipation theorem 〈ε(k, t )ε(k′, t ′)〉 = 2δ(k + k′)δ(t − t ′),
and the spin-wave stiffness ρs = 1 is set. The above linear
equation can be solved as

θ (k, t ) =
∫ t

0
e−a2k2(t−t ′ )/T ε(k, t ′)dt ′ + θ (k, 0)e−a2k2t/T .

(17)
The vanishing value of 〈θ (k, t )〉 = θ (k, 0)e−a2k2t/T is ex-
pected in equilibrium with t → ∞. Furthermore, its second
moment is also calculated with Eq. (17),

〈|θ (k, t )|2〉 = T

a2k2

(
1 − e−2a2k2t/T

) + |θ (k, 0)|2 e−2a2k2t/T .

(18)
The result of the equilibrium state 〈|θ (k, t )|2〉 = T/(a2k2) is
then obtained, the same as that obtained from the equipartition
theorem in equilibrium based on Eqs. (14) and (15).

Formally, the solution θ (k, t ) in Eq. (17) can be divided
into two parts: the bulk one F (k, t ) and the initial one G(k, t ).
The magnetization M(t, R) is then calculated with F (R, t ) and
G(R, t ) obtained by the inverse Fourier transformation,

M(t, R) = 〈eiθ (R,t )〉 = 〈eiF (R,t )〉eiG(R,t ). (19)

Using the accumulator variable expansion and the vanish-
ing expected value 〈F (R, t )〉 = 0, the time evolution of the
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magnetization �M = (M‖, M⊥) is deduced as

M‖(t, R) ≈ e−〈F 2(R,t )〉/2 cos(G(R, t )),

M⊥(t, R) ≈ e−〈F 2(R,t )〉/2 sin(G(R, t )). (20)

Since the equal-time correlation function at bulk satisfies

〈F (k, t )F (k′, t )〉 = δ(k + k′)T
a2k2

(
1 − e−2a2k2t/T

)
, (21)

the function 〈F 2(R, t )〉 in Eq. (20) can be calculated by the
inverse Fourier transformation,

〈F 2(R, t )〉 =
(

a

2π

)4 ∫ ∞

−∞
dk

∫ ∞

−∞
dk′〈F (k, t )F (k′, t )〉ei(k+k′ )R

=
(

a

2π

)2 ∫ ∞

−∞
dk

T

a2k2

(
1 − e−2a2k2t/T

)
, (22)

where a/2π is a normalization factor, and k is the two-
dimensional vector in the momentum space. The above inte-
gration is calculated as

〈F 2(R, t )〉

=
(

a

2π

)2 ∫∫ ∞

−∞
dkxdky

T

a2
(
k2

x + k2
y

)(
1 − e−2a2(k2

x +k2
y )t/T

)

=
(

a

2π

)2 (
T π

a2
ln t + C1

)

= T

4π
ln t + C2, (23)

where C1 and C2 are integral constants. Note that the function
〈F 2(R, t )〉 is independent of the position vector R, suggesting
that the bulk part of the orientation angle θ (R, t ) is uniform in
the plane.

On the other hand, the initial part G(R, t ) is obtained with

G(R, t ) =
(

a

2π

)2 ∫ ∞

−∞
dk eikRG(k, t )

=
(

a

2π

)2 ∫ ∞

−∞
dk eikRθ (k, 0)e−a2k2t/T , (24)

where θ (k, 0) is the Fourier transform of the initial value of
the spin orientation θ (R, 0),

θ (k, 0) =
∫ ∞

−∞
dR′e−ikR′

θ (R′, 0). (25)

Since the initial state is ordered with θ (R, 0) = φ, θ (k, 0) =
4π2φδ(k)/a2 and G(R, t ) = φ are calculated with Eqs. (25)
and (24), respectively. Substituting the functions 〈F 2(R, t )〉
and G(R, t ) into Eq. (20), the time evolution of the magne-
tization is then derived analytically,

M‖(t, R) ∝ t−T/8π cos(φ),

M⊥(t, R) ∝ t−T/8π sin(φ). (26)

Note that the above analysis is based on the long-wavelength
approximation, which is valid in the low-temperature phase
and the transition point. Therefore, the power-law decay
of the magnetization holds at T � Tc. In Refs. [44,46,49],
η(T ) = 1/(2πβJ ) = T/(2π ) and z = 2 were reported in the

2D XY model. The dynamic behavior of the magnetization
M ∝ t−η/2z is then deduced with the ordered initial state, the
same as that from the short-time dynamic scaling theory [47].

B. Semiordered initial state

The above analysis of the critical dynamics starting from
the ordered state has been confirmed to be valid, although it
is very crude. What about the critical dynamics of the system
with a semiordered initial state? For simplification, we set the
initial values of the spin orientations θ (�R, 0) = φε(x), where
x is one of the space components defined in the direction
perpendicular to the perfect domain wall, 2φ is the angle
within the interval [0, π ], and the function ε(x) is defined as

ε(x) =
{−1 if x � 0,

1 if x > 0.
(27)

Following Eqs. (24) and (25), one can calculate the functions
θ (k, 0), G(k, t ), and G(R, t ),

θ (k, 0) =
∫ ∞

−∞
dR e−ikRθ (R, 0)

= φ

∫ ∞

−∞
dx e−ikxxε(x)δ(ky)

= 4πφδ(ky)

iakx
, (28)

G(k, t ) = θ (k, 0)e−a2k2t/T = 4πφδ(ky)

iakx
e−a2k2t/T , (29)

G(R, t ) =
(

a

2π

)2 ∫ ∞

−∞
dk eikRG(k, t )

=
(

a

2π

) ∫ ∞

−∞
dkxeikxx 2φ

ikx
e−a2k2

x t/T . (30)

By means of the derivative of G(R, t ),

∂G(R, t )

∂x
=

(
φa

π

) ∫ ∞

−∞
dkxeikxxe−a2k2

x t/T

= φ

√
T

πt
e−(T/4t )(x/a)2

, (31)

the initial function G(x, t ) can be solved as

G(x′, t ) = φ

∫ x′

0
dr

√
T

πt
e−(T/4t )r2 + C3. (32)

Here the integral constant C3 = 0 is derived from the sym-
metry analysis, and x′ = x/a is a dimensionless number. For
convenience, we use x instead of x′ to denote the value of
the position in the x direction. The initial function G(x, t ) is
further simplified with the notation s = (

√
T /2)x/t1/z being

the ratio between the position x and the correlation length
ξ (t ) ∼ t1/z wherein z = 2,

G(s) = 2φ√
π

∫ s

0
ds′e−s′2

. (33)

The conclusion that G(s) is a function of the single variable
s is quite consistent with that obtained from the scaling
arguments in Refs. [40,41]. Finally, the dynamic behavior of
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FIG. 5. Theoretical results of the horizontal magnetization M‖(t, x) from analytical calculations based on the Langevin dynamics, as shown
in Eqs. (34) and (43), are plotted at the angles 2φ = 0.50π in (a) and 0.988π in (b), respectively, for various values of x as a function of the
time t on a log-log scale. The dashed lines represent the power-law fits.

the magnetization M = (M‖, M⊥) is identified,

M‖(t, x) ∝ t−η/2z cos

(
2φ√
π

∫ s

0
ds′e−s′2

)
,

M⊥(t, x) ∝ t−η/2z sin

(
2φ√
π

∫ s

0
ds′e−s′2

)
, (34)

with s = (
√

T /2)x/t1/z = √
πη/2 x/t1/z at the KT transition.

There are two different regimes of �M(t, x). At bulk the mag-
netization exhibits a power-law decay t−η/2z, just the same as
that of the ordered initial state. Inside the domain interface,
however, the behavior of the magnetization is quite different.
Using G(s) = 2φs/

√
π , one obtains

M‖(t, x) ∝ t−η/2z

(
1 − 1

2
G2(s)

)

∝ t−η/2z

(
1 − 1

2

4φ2s2

π

)

∝ t−η/2z

(
1 − φ2x2η

t2/z

)
, (35)

M⊥(t, x) ∝ t−η/2zG(s)

∝ φ

√
T

π
xt−1/z−η/2z. (36)

The behavior of M⊥(t, x) in Eq. (36) is in good agreement
with simulation results in Ref. [41] and in Fig. 2(a) of this
work, while the case of the other magnetization component,
M‖(t, x), is quite complicated. When the initial value of the
angle 2φ is far less than π , for example 2φ = 0.50π , the
critical behaviors of M‖(t, x) from Eq. (34) as displayed in
Fig. 5(a) are quite consistent with those in Fig. 3(b) obtained
from Monte Carlo simulations. In particular, the slopes 0.0577
and 0.0579 are measured from the upper and lower envelopes,

almost the same as η/2z = 0.0580(3) within errors. When
2φ is closer to π , such as 2φ = 0.988π , an abnormal in-
crease of M‖(t, x) occurs at x = 0.5 as shown in Fig. 2(b).
Exactly at 2φ = π , M‖(t, x) ≡ 0 is obtained from numerical
simulations. Both of them show a visible deviation from the
theoretical prediction in Eq. (34), pointing out the failure of
the long-wavelength approximation.

C. Correction to the long-wavelength approximation

Since the long-wavelength assumption in Eq. (13) is invalid
when 2φ ≈ π , the correction should be considered for the
spins inside the domain interface,

cos(θi − θ j − π ) ≈ 1 − 1
2 (θi − θ j − π )2. (37)

The corresponding Hamiltonian Hs is then rewritten as

Hs = −
∑
〈i j〉

cos(θi − θ j )

=
∑
〈i j〉

cos(θi − θ j − π )

≈
∑
〈i j〉

(
1 − 1

2
(θi − θ j − π )2

)

= H0 − 1

4

∑
R

∑
a

[θ (R) − θ (R + a) − π ]2 . (38)

After a linear transformation,

θ ′(R) = θ (R) − π

2
,

θ ′(R +�a) = θ (R + a) + π

2
, (39)
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one renews the Hamiltonian of the domain interface,

H′
s = −1

4

∑
R

∑
a

[θ ′(R) − θ ′(R + a)]2 + H′
0. (40)

Comparing with Eq. (13), nothing is changed except for
the sign of the first term on the right-hand side. With the
Langevin equation in Eq. (16) and the revised Hamiltonian,
the dynamics of the domain interface is carefully investigated.
Similar to Eqs. (23) and (33), one can deduce

〈F ′2(R, t )〉 = − T

4π
ln t + C4,

G′(s) = 2iφ√
π

∫ s

0
ds′es′2

, (41)

where C4 is the integral constant, and the variable s =√
πη/2 x/t1/z. Hence, the correction to the long-wavelength

approximation yields the dynamic behavior of magnetization
in the limit of s → 0,

M‖(t, x) ∝ tT/8π exp

(
i
2iφ√

π
s

)

∝ tη/2z exp
(
−φ

√
2η

x

t1/z

)
. (42)

In the above analysis one neglects the contribution from
the bulk decay M‖(t, x) ∝ t−η/2z, since it is relatively small
compared to the abnormal increase. On the contrary, outside
the domain interface, i.e., in the limit of s → ∞, the decay
behavior of the horizontal magnetization at bulk becomes
dominant. Therefore, one may write

M‖(t, x) = A1tη/2z exp
(
−φ

√
2η

x

t1/z

)
+ A2t−η/2z, (43)

where A1 and A2 are coefficients of the linear superposition.
Taking the initial value 2φ = 0.988π as an example, the crit-
ical behavior of the horizontal magnetization as described in
Eq. (43) is displayed in Fig. 5(b) for different values of x, with
the parameters A1 = 0.05, A2 = 0.01, η/2z = 0.0587, and
η = 0.234 as input. The theoretical results agree characteris-
tically with Monte Carlo results in Fig. 2(b). In particular, the
slope 0.0565 is measured from the increase of M‖(t, x = 0.5),

consistent with ψ = 0.0568(8), further supporting the relation
ψ = η/2z. At bulk, M‖(t, x) approaches the nonlinear
decay with the slope 0.0576, in good agreement with the
expectation.

V. CONCLUSION

With Monte Carlo simulations and theoretical analyses
based on the Langevin equation, the spin-reorientation critical
dynamics starting from the semiordered initial states has been
investigated, taking the 2D XY model as an example. At the
KT phase transition, dynamic scaling behaviors of the mag-
netization containing two orthogonal components M⊥(t, x)
and M‖(t, x) as well as the two-time correlation function
C(t ′, t, x) are carefully analyzed, and critical exponents are
accurately determined. When the initial value of the angle 2φ

between the two directions of the adjacent domains is slightly
lower than π , an abnormal power-law increase of M‖(t, x)
is observed inside the domain interface, other than the well-
known decay phenomenon at bulk. The corresponding crit-
ical exponent ψ = 0.0568(8) is measured. Furthermore, the
relation ψ = η/2z is analytically deduced from the Langevin
dynamics in the long-wavelength approximation, well con-
sistent with the numerical results. When the initial value of
2φ is much smaller than π , such as 0.5π and 0.8π , however,
M‖(t, x) obeys a power-law decay instead of the increase.

Interestingly, a similar increasing behavior of the magne-
tization M(t, m0) ∼ m0t θ has been reported for the 2D XY
model starting from a disordered state with a small initial
value m0 [47]. Monte Carlo simulations at the KT phase
transition give an independent critical exponent θ = 0.241,
much larger than the value of ψ in our work. Future studies are
needed to identify the relation between these two exponents θ

and ψ .
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