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Long-range correlation properties of stationary linear models with mixed periodicities
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We consider the problem of (stationary and linear) source systems which generate time series data with long-
range correlations. We use the discrete Fourier transform (DFT) and build stationary linear models using artificial
time series data exhibiting a 1/ f spectrum, where the models can include only terms that contribute significantly
to the model as assessed by information criteria. The result is that the optimal (best) model is only composed of
mixed periodicities [that is, the model does not include all (continuous) periodicities] and the time series data
generated by the model exhibit a clear 1/ f spectrum in a wide frequency range. It is considered that as the 1/ f
spectrum is a consequence of the contributions of all periods, consecutive periods are indispensable to generate
such data by stationary linear models. However, the results indicate that there are cases where this expectation is
not always met. These results also imply that although we can know linear features of time series data using the
DFT, we always cannot substantially infer the type of the source system, even if the system is stationary linear.
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I. INTRODUCTION

Time series of natural phenomena usually show irregular
fluctuations. One of the major reasons for the appearance
of such data is periodicities (periodic and nearly periodic
behavior) in systems [1], and periodicities are a common fea-
ture of many biological and physical systems [2]. Generally
speaking, as it is considered that periodicities composing the
source system correspond to periodicities in the time series
generated by the system [3], we often wish to know the
underlying periodicities in the data. Since it is believed that
the discrete Fourier transform (DFT) can accurately detect
the underlying periodicities in the data, one usually applies
the DFT in the hope of obtaining such information. We
argue that in many cases there are a relatively small number
of representative (characteristic) periods in the data (or the
number of the periods is not so many). On the other hand,
there is an important biological and physical phenomenon
which is considered that there is no characteristic periodicity
in the data (in other words, all periodicities contribute the
data behavior). The phenomenon is 1/ f noise, an attractive
symptom of complexity in biological and physical systems
[4–9]. It is widely considered that the difference between these
two cases is obvious—we can easily distinguish between them
by the DFT, and the DFT has been the standard method for a
long time. Nonetheless, while pathological counterexamples
are known to exist, we show that data generated by stationary
linear models with only some mixed periodicities can exhibit
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clear 1/ f spectra in a wide frequency range, where the power
spectra are estimated by the DFT [in other words, stationary
linear models with discontinuous (separate) periods can pro-
duce data with long-range correlations].

Periodicity is one of the important clues to understand
dynamical phenomena. When data are generated by a sta-
tionary linear process, the information required for modeling
and prediction is encapsulated in the periodicities of the
system—either via the power spectrum, or, equivalently, the
autocorrelation function. It is true that nonlinear (and deter-
ministic) dynamical systems might also exhibit periodicities.
In such systems the periodic structure is usually insufficient
to uniquely characterize the underlying dynamical system.
Nonetheless, the power spectrum still remains an important
clue to understand the underlying characteristics both in the
data and the original system. Obviously, the primary method
to access information of the spectral content of a time series
is the Fourier power spectrum (power spectra estimated by
the DFT)—typically, the fast Fourier transform or FFT is
usually applied to detect the periodicities in the data [10]. It is
widely considered and expected that strong peaks in a power
spectrum at some periods (frequencies) infer the underlying
periods in the data, and the locations of the peaks are directly
related to the principal periods in the system dynamics [3].

Conversely, there has been increasing interest in fascinat-
ing phenomena where the power spectra estimated by the DFT
do not exhibit clear peaks at any frequency. The archetypal
phenomenon of this type of spectra is the so-called 1/ f
(erstwhile pink or flicker) noise which has been widely known
and well studied for many years [4–9]. In 1/ f noise, the power
spectrum P( f ) varies in inverse proportion to the frequency
f in a wide range from low to high frequencies as P( f ) =
1/ f α , with a power-law exponent α close to 1. The lack of
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peaks in the power spectrum as a function of frequency is
interpreted as a lack of a characteristic timescale in 1/ f noise
and the 1/ f spectrum is a typical feature which represents
long-range correlations [11,12]. To investigate whether data
can be treated as 1/ f noise, one typically estimates the power
spectrum and to do this we usually apply the DFT directly to
the data.

The primary purpose of this paper is to consider a prob-
lem of source systems which generate time series data with
long-range correlations, where the data and the systems are
stationary and linear. A simple example using data with
short-range correlations has been investigated where the data
are generated by a simple stationary linear model composed
of two periods [3]. To obtain further understanding of the
relationship between periodicities in data and periodicities
composing the source system, we consider that it is necessary
to examine a case of long-range correlations, because we ex-
pect that the data with long-range correlations should involve
numerous periodicities. It is considered that the 1/ f spectrum
is a consequence of the contributions of all periods over the
1/ f spectrum, or that equivalently all timescales are contained
in the data. Hence, we investigate whether stationary linear
models with some mixed periodicities can generate time series
data exhibiting a 1/ f spectrum in a wide frequency range.

We emphasize that the periodicities which we investigate
in this paper are all strictly linear and stationary. Tangential
to our main argument, there are, of course, more complex
nonlinear systems with no periodicities in the data even when
they are generated from deterministic dynamics. It is clear
that such systems, when treated with the methods of a linear
time series analysis, will yield misleading results. The prime
example of this type is the logistic map [13]. The equation of
the logistic map is x(t ) = 4x(t − 1)[1 − x(t − 1)] = 4x(t −
1) − 4x(t − 1)2. The equation contains the terms with an
explicit time delay, x(t − 1) and x(t − 1)2. However, it is well
known that the randomness is linearly equivalent to that of in-
dependent and identically distributed (IID) random variables
and the power spectrum estimated by the DFT exhibits white
noise (a 1/ f 0-type spectrum). By limiting periodicities to
strictly linear and stationary cases, we exclude the possibility
that the example we will discuss in this paper also belongs to
the class of nonlinear and nonstationary complexity.

In Sec. II we describe the manifestation of the 1/ f spec-
trum and that there are various behaviors of the 1/ f spectrum.
In Sec. III we introduce a linear model composed of consec-
utive time delays (periods) that can generate data exhibiting
the 1/ f spectrum. In Sec. IV we show that the data that are
not composed of continuous periods still exhibit a clear 1/ f
spectrum in the whole frequency range. We summarize the
results in Sec. V.

II. VARIOUS BEHAVIORS OF A 1/ f SPECTRUM

There are various behaviors of the 1/ f spectrum [14–20].
Some power spectra exhibit 1/ f within a restricted range,
while others exhibit 1/ f in the whole range; there are spikes
in the middle, and there are ranges as white noise on the
low-frequency side and the high-frequency side. We do not
target all these peculiarities in this paper. To examine the
correspondence between periodicities in the time series and

periodicities composing the source system more directly and
to clarify our argument, we focus our attention on the power
spectrum exhibiting only a 1/ f spectrum in the whole range.
When using a linear model the range where the 1/ f spectrum
appears is largely dependent on the maximum time delay
term included in the model. To lengthen the range of the 1/ f
spectrum, it is not sufficient to merely increase the number
of data—a longer time delay term is required. Hence, we use
the data number by which only the 1/ f spectrum appears,
and treat situations where all frequencies corresponding to all
time delays except t − 1 in the linear models fall within the
spectrum range.

There are approaches to generate data which can exhibit
a 1/ f spectrum [21–23]. Among them, there is a particularly
simple model. The model is x(t ) = a x(t − 1) + η(t ), where
η(t ) is IID Gaussian random variables with mean zero and a
standard deviation. Broadly speaking, when a is smaller than
one, it is shown in some cases that data generated by the model
can exhibit a 1/ f spectrum in the partial range [22]. However,
we need time series data which can exhibit a 1/ f spectrum in
the whole range, and the model is composed of only one time
period t − 1 that cannot be detected by the DFT. Hence, the
model and data generated by the model are not suitable for our
purpose.

As mentioned above, we want to examine the correspon-
dence between periodicities of the data behavior and period-
icities composing the source system. Hence, we need linear
models with some distinct periods to generate data. However,
an arbitrary time delay is not acceptable for the linear models.
It is necessary to use time delays reflecting the periodical
characteristics of the time series. A reduced autoregressive
(RAR) model has already been proposed as such a linear
model [3,24,25]. The time delay terms included in a RAR
model are evaluated to be indispensable by an information
criterion (the information theory). Furthermore, it is indicated
that the time delay terms in the RAR model correspond to
periodicities in the time series data generated by the RAR
model [3]. We will give more details on the RAR models in
Sec. IV A.

The Fourier transform is linear and as such it possesses the
properties of homogeneity and additivity. Hence, we use only
linear models as the basis for our presentation in this paper,
although the power spectra of a nonlinear time series using
the DFT can exhibit a 1/ f spectrum [26]—that is, none of
the effects we present here is due to the mismatch between
a nonlinear source signal and the inherently linear Fourier
transform.

In the next section we introduce a linear model that can
generate data exhibiting a 1/ f spectrum, where the model is
based on the typical 1/ f noise process of the literature. In
Sec. IV we build a RAR model for a 1/ f noise time series.

III. GENERATING 1/ f NOISE WITH CONTINUOUS
PERIODICITIES

Broadly speaking, it is understood that 1/ f noise has all
periodicities. That is, 1/ f noise has no single characteristic
periodicity. Also, the longer the period (the lower the fre-
quency), the larger is the power spectrum. An autoregressive
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FIG. 1. Power spectrum with a double-logarithmic scale and a time series, where the data are generated by Eqs. (1) and (2), where the
model size w is 2500, and α = 1.0. (a) The power spectrum estimated by the FFT using 32 768 (215) data points at an assumed sampling rate
1 Hz, where the power spectrum is obtained by averaging 100 different data sets, and (b) a segment of 8192 data points used for the power
spectrum estimate in (a).

(AR) model generating 1/ f α noise based on this understand-
ing has been proposed by Kasdin [6]. The AR model is linear
and composed of consecutive terms with a unit time delay,

x(t ) =
w∑

i=1

−aix(t − i) + ε(t ), (1)

ak =
(

k − 1 − α

2

)ak−1

k
, (2)

where w is the model size (the largest time delay), a0 = 1.0,
and ε(t ) is assumed to be IID Gaussian random variables with
mean zero and the standard deviation 1.0. Each time delay in
the model becomes each underlying period in the data. Also,
if time delays in the model are consecutive, the periods in the
data are continuous. Hence, the data generated by Eqs. (1) and
(2) have no characteristic timescale or (equivalently) reflect
features across all timescales. We consider that this is the typ-
ical 1/ f noise process many people expect. Using Eqs. (1) and
(2) with the model size w = 2500 and α = 1.0, we generate
the data and estimate the power spectrum. The number of data
points in one sample is 32 768 (215) and the power spectrum
is estimated by averaging over 100 samples [27]. The data
generated by Eqs. (1) and (2) exhibit a clear 1/ f spectrum in
the whole consecutive frequency range as shown in Fig. 1(a).
Figure 1(b) shows an enlargement of the behavior of a sample.
The behavior shows irregular fluctuations and a wave form
similar to a slow undulation, which are characteristic of 1/ f
noise [5,6]. We have thus verified that the model composed
of Eqs. (1) and (2) actually generates 1/ f noise. From this
result, it seems that the contribution of continuous periods is
indispensable to generate 1/ f noise, which appears to be the
major reason to use autoregressive processes to generate 1/ f
noise [28,29].

IV. GENERATING 1/ f NOISE WITH SEPARATE
PERIODICITIES

In the previous section we showed that data generated by a
system composed of consecutive time delays (periods) exhibit
a clear 1/ f spectrum. In this section we investigate whether
data generated by a system composed of inconsecutive (sepa-
rate) time delays can exhibit a 1/ f spectrum.

A. The reduced autoregressive model

To build a linear model composed of separate time delays
(linear model with mixed periodicities), we adopt the reduced
autoregressive (RAR) model [3]. RAR models include only
terms that contribute significantly to the model as assessed
by an information criterion [24,30]. The terms included in
the RAR model correspond to periodicities in the time series
generated by the RAR model [3]. The RAR model has proven
to be effective in modeling both linear and nonlinear dynamics
[3,25].

The form of the RAR models is

x(t )=a0 + a1x(t−l1) + a2x(t−l2) + · · · + awx(t−lw ) + ε(t )

= a0 +
w∑

i=1

aix(t − li ) + ε(t ), (3)

where 1 � l1 < l2 · · · < lw, ai are parameters to be deter-
mined, and ε(t ) is assumed to be IID Gaussian random vari-
ables, which are interpreted as fitting errors. The parameters
ai are chosen to minimize the sum of squares of the fitting
errors. As Eq. (3) shows, RAR models can deal with both
consecutive and separate time delays. Time delays in the
RAR model correspond to the underlying periodicities in the
data [3]. In this sense, RAR models explicitly indicate the
periods in the data, and the data generated by RAR models
have multiple discrete and definite timescales. For building
RAR models from time series data, many candidate linear
terms with different time delays are usually prepared in the
form of a dictionary, and the linear terms that can extract the
peculiarity of the time series as much as possible are selected
[3,24,25]. We use the total error bottom-up method as an
effective selection method, because the approach has proven
to be effective in modeling nonlinear dynamics and can obtain
better models in most cases than others with a reasonable
computation time [31,32].

Selection algorithms usually employ some information
criteria to find the optimal (best) model among many. It is
often the case that the minimum of an information criterion
corresponds to the optimal model size. For determining the
optimal model we adopt the description length (DL) suitably
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FIG. 2. A schematic diagram of a perfect 1/ f spectrum and a segment from the time series exhibiting a perfect 1/ f power spectrum. (a)
The straight line is a perfect 1/ f spectrum of 220 (around 1 × 106) data points and the power spectrum of an arbitrary segment of 8192 data
points of the signal in (a), where the assumed sampling rate is 1 Hz, the power spectrum is estimated by the FFT, and (b) a segment of 8192
data points used for the power spectrum estimate in (a).

modified by Judd and Mees [24], in the form

L(k) =
(n

2
− 1

)
ln

eT e
n

+ (k + 1)

(
1

2
+ ln γ

)
−

k∑
i=1

ln δi,

(4)

where n is the length of the time series to be fitted, e stands
for the vector composed from fitting errors, k is the number
of parameters (or model size), γ is related to the scale of
the data, and the variables δ can be interpreted as the relative
precision to which the parameters are specified. The factor γ

is a constant and typically fixed to be γ = 32. The concept
of minimum description length (MDL) ensures that a RAR
model built with an MDL modeling criterion will detect
any periodicities present in the data, if the time series data
are sufficiently long [3,33]. More thorough arguments for
the details of the RAR model and the DL can be found in
Refs. [3,24,25].

In the next section we apply the RAR modeling technique
to 1/ f noise data.

B. Generating 1/ f noise using an optimal RAR model

As described above, since RAR models are linear mod-
els which can be composed of separate time delays, data
generated by RAR models are inherently characterized by
those separate periods [3]. In contrast, 1/ f noise has been
considered to have no characteristic timescale and no dis-
tinctive periodicity, since the 1/ f power spectrum consists
of significant contributions from a broad range of frequencies
[6]. However, we demonstrate that a RAR model can generate
data whose spectrum estimated by the DFT exhibits a clear
1/ f spectrum in a wide frequency range.

To build a RAR model we start from an artificially gener-
ated genuine 1/ f noise time series. It is possible to generate
1/ f noise by various systems (models) [6,26,28,29]. These
time series data are influenced by the systems. Whether data
can be treated as 1/ f noise is usually determined, not by
the features of the data, but by the behavior of the power
spectrum estimated by the DFT. Hence, we prefer, if possible,
to generate the time series data purely conforming to the
idea of the DFT without the influence of specific systems.
To obtain such data we apply the technique of the linear

surrogate data method [34]. We show the schematic diagram
in Fig. 2. We first set a “perfect” 1/ f spectrum as shown in
Fig. 2(a). The amplitude at f = 0 corresponds to the mean
of the time series and can be set arbitrary. We generate the
randomized phases (while the power spectrum is completely
preserved), and invert the transform using the randomized
phases. Then we obtain time series data which have perfect
1/ f power spectra [35]. As the inverse Fourier transform
and the perfect 1/ f spectrum are used in this approach, the
time series is completely linear and stationary. Also, the time
series definitely reflects all periodicities over the entire 1/ f
spectrum in terms of the DFT.

In practice, we can collect only a sample from the process
over a finite time interval. Sampling a segment from a perfect
1/ f time series produces a time series which is no longer per-
fect. Figure 2(b) shows a segment of the time series exhibiting
the perfect 1/ f spectrum. The behavior shows irregular fluc-
tuations and a wave form similar to a slow undulation, and it
is a characteristic of 1/ f noise [5,6]. As Fig. 2(a) shows, the
spectrum still exhibits a 1/ f appearance. We use a segment
from the perfect 1/ f time series when building a RAR model.

Bassingthwaighte and Raymond suggested not to take
a subsample of 1/2–1/8 the length of the total signal to
avoid a spurious wraparound of the FFT generated signal
[35,36]. Based on this consideration and to avoid unnecessary
confounding factors, we use a segment much shorter than
1/8 the length of the perfect signal. We generate a perfect
1/ f spectrum of 230 (around 1 × 109) data points and use
a segment of 300 000 data points for building RAR models
(training data), where the data points are around 1/3600 the
length of the perfect signal.

We note that the relationship between the maximum time
delay lW in the dictionary and the number of data points n
is important. Even if the value of lW is smaller than that of
n, when lW is large relative to n, the term with lW is not
often selected. In our experience we have found that around
lW × 100 data points is large enough to select the term with lW
in most cases, although the number of necessary data points
depends on the nature of the data. As we use 300 000 data
points, we choose a largest time delay 3000, and the constant
function gives 3001 candidate terms in the dictionary. Using
the dictionary we build RAR models. As these training data
are a segment of the perfect 1/ f noise, we consider that these
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FIG. 3. Power spectrum with a double-logarithmic scale and a time series, where the data are generated by the optimal RAR model. (a)
The power spectrum estimated by the FFT using 32 768 (215) data points at the assumed sampling rate 1 Hz, where the power spectrum is
obtained by averaging 100 different data sets, and (b) a segment of 8192 data points used for the power spectrum estimate in (a).

data are composed of consecutive periodicities and do not
have a characteristic timescale. Hence, we expect that the
optimal RAR model might contain all terms with consecutive
time delays up to the maximum delay lW . However, only 25
terms are contained in the optimal RAR model, where the
shortest and longest time delays are 1 and 2507, respectively
[37].

As described above, each time delay in the RAR model
corresponds to particular periodicities in the data [3]. Hence,
when time delays in the model are not consecutive, the periods
in the data should also be not continuous. It is commonly
expected that the power spectrum of such data estimated by
the DFT has peaks at frequencies corresponding to the peri-
odicities. On the other hand, we can expect that as the optimal
RAR model is built using the 1/ f noise data, the RAR model
might be able to generate data which have a 1/ f spectrum,
although the RAR model is only composed of mixed peri-
odicities. To verify this expectation, we estimate the power
spectrum of the data generated by the optimal RAR model
using the FFT, assuming that the data are not contaminated by
observational noise, where the number of data points is 32 768
(215). Hence, the frequency range of the power spectrum is
between 1/32 768 (around 3.051 758 × 10−5) and 0.5. As the
inverse number of the period is defined as the frequency, the
inverse number of the time delay i of a time delay term t − i
corresponds to the frequency [3]. As the maximum time delay
in the RAR model is 2507, the corresponding frequency is
1/2507 (around 3.988 831 × 10−4). That is, the frequencies
corresponding to all time delays except t − 1 in the RAR
model fall within the frequency range of this power spectrum,
and 32 768 data points should be large enough to detect
these time delays in the RAR model. Contrary to a naive
expectation, Fig. 3(a) shows that there is no clear peak of
the individual power corresponding to the periodicities in the
RAR model and an undoubted 1/ f spectrum is observed in
the whole frequency range (the slope of the least squares
fit is −1.001 013), where the power spectrum is an average
of 100 time series data sets generated by the RAR model
[38]. Figure 3(b) shows the time series generated by the RAR
model. The behavior is similar to that of Fig. 2(b) because the
time series has irregular fluctuations and a wave form similar
to a slow waviness [5,6].

When we look at the power spectrum and the behavior of
the data shown in Figs. 3(a) and 3(b) without the knowledge

of the underlying dynamical system, we would conclude that
the data are generated from a typical 1/ f noise process as
Eqs. (1) and (2). This result indicates that even if stationary
linear models are composed of mixed periodicities, there are
cases where the power spectrum estimated by the DFT can
exhibit a clear 1/ f spectrum in a wide frequency range.

V. CONCLUSION

The purpose of this paper is to consider a problem of source
systems which generate time series data with long-range
correlations, where the data and the systems are stationary and
linear. We examine the correspondence between periodicities
in the time series data and periodicities composing the source
system when the data exhibit a 1/ f spectrum or there are
long-range correlations in the data.

An RAR model (stationary linear model with mixed pe-
riodicities) can generate data exhibiting a 1/ f spectrum in
a wide frequency range (data with long-range correlations).
This fact indicates that continuous periodicities are not always
necessary for linear models to generate data with long-range
correlations. We note that while we demonstrate this with a
relatively simple toy system (the linear RAR model driven
by simple noise processes), data from real world sources are
undoubtedly more complicated. Hence, we can consider that
data with long-range correlations might be generated by more
various systems than we expected in the real world. This
result also leads us to reaffirm that the DFT basically provides
information on periodicities of the time series data behavior
and the DFT does not necessarily provide the information on
periodicities of the source system that generates the data, even
if the model and data are stationary linear, as it aggregates
complex information.
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