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Model of anomalous diffusion-absorption process in a system consisting of two different media
separated by a thin membrane
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We present the model of a diffusion-absorption process in a system which consists of two media separated
by a thin partially permeable membrane. The kind of diffusion as well as the parameters of the process may
be different in both media. Based on a simple model of a particle’s random walk in a membrane system we
derive the Green’s functions, then we find the boundary conditions at the membrane. One of the boundary
conditions is rather complicated and takes a relatively simple form in terms of the Laplace transform. Assuming
that particles diffuse independently of one another, the obtained boundary conditions can be used to solve
differential or differential-integral equations describing the processes in multilayered systems for any initial
condition. We consider normal diffusion, subdiffusion, and slow subdiffusion processes, and we also suggest
how superdiffusion could be included in this model. The presented method provides the functions in terms of the
Laplace transform and some useful methods of calculation of the inverse Laplace transform are shown.
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I. INTRODUCTION

In many systems we can find in biology, medicine, physics,
and engineering sciences, various kinds of diffusion occur in a
system composed of different media separated by a thin mem-
brane [1–3]. We mention here diffusion of various substances
through the skin [4], in the brain [5–7], and between blood
and a cell [8]; a list of similar examples can be significantly
extended. Diffusing particles can be also absorbed, with some
probability, in the media. There may be a different kind of
anomalous diffusion in each medium, which is described
by differential or differential-integral equations. To solve the
equations, two boundary conditions at the membrane are
needed. However, until now, various boundary conditions
which are not equivalent to one another have been assumed
at the membrane (see, for example, [9–25]). In many papers,
the boundary conditions with respect to normal diffusion or
subdiffusion have been just assumed or derived by means
of phenomenological models. In this paper we derive the
Green’s functions by means of the particle’s random walk
with absorption model in a system with a thin membrane.
Knowing the Green’s functions, we derive the boundary con-
ditions at the thin membrane. A similar procedure of deriving
boundary condition at fully absorbing or fully reflecting wall
was used by Chandrasekhar [26]. Some aspects of the discrete
random walk model presented in this paper and some special
cases of diffusion in a two-layered system were already pub-
lished, namely, subdiffusion without absorption in a system
with a double-sided partially permeable membrane [12,13,27]
and subdiffusion with absorption in a system in which the
boundary between the media is fully permeable for diffusing
particles [28].
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The main aim of this paper is to present a universal model
that leads to general diffusion-absorption equations, Green’s
functions, and boundary conditions at a thin membrane for
a system consisting of two media A and B separated by a
thin membrane; in each medium there may be a different
type of diffusion (see Fig. 1). The diffusion and absorption
parameters, that can be different in both media, as well as
the membrane permeability parameters are assumed to be
constant. The universality of this model lies in the fact that the
kind of diffusion in a medium is determined by one function
alone, hereinafter referred to as v. This function controls the
time which is needed to take the diffusing particle’s next
step. The membrane permeability parameters are determined
by the probabilities of the single particle’s passing through
the membrane; the probabilities can be calculated using a
phenomenological model. The thin membrane represents any
obstacle which can stop the diffusing particle with some
probability. We also consider the process in a system with a
one-sided fully permeable membrane: this case is qualitatively
different from the case of a double-sided partially permeable
membrane. The boundary conditions at the membrane depend
on two functions vA and vB defining the type of diffusion
in both media; the conditions are “adapted” to the kind of
diffusion processes occurring on both sides of the membrane.

We consider diffusion-absorption processes in a system
which is homogeneous in a plane perpendicular to the x axis,
thus, the system is effectively one dimensional. The consid-
ered system is shown schematically in Fig. 1. The Green’s
function P(x, t ; x0) is interpreted as the probability density of
finding a diffusing particle at the point x at time t , and x0 is the
initial position of the particle. This function is also defined as
the solution to the diffusion equation for the initial condition
expressed by the delta-Dirac function P(x, 0; x0) = δ(x − x0).
Knowing Green’s functions for both regions, we can derive
the boundary conditions at the membrane. Assuming that
diffusing particles move independently of one another, the
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A B

FIG. 1. The system which consists of two media A and B sepa-
rated by a thin membrane located at xN , PA and PB denote the Green’s
functions, DA and DB are the generalized diffusion coefficients, κA

and κB denote absorption coefficients, γA and γB are membrane
permeability coefficients. The diffusion-absorption processes are de-
scribed by some differential or differential-integral equations defined
separately in the parts A and B; the boundary conditions at the
membrane are to be determined.

obtained boundary conditions can be used for any initial con-
centration. The normal diffusion, “classical” subdiffusion, and
slow subdiffusion processes, all with absorption, are included
in the model. In the Final Remarks section we also suggest the
method of involving superdiffusion into the model.

We start our considerations with the model of random
walk in a system in which time and spatial variables are
discrete. Then, we move to continuous variables. This method
is slightly different from the “classical” continuous time ran-
dom walk (CTRW) method [29–31]. Namely, in the CTRW
method, the time which is needed to take the particle’s next
step τ and the length of the particle’s jump ε are both random
variables, while in the method presented in this paper τ is
a random variable whereas ε is a parameter. The motivation
to involve discrete model into considerations is that the dif-
ference equations describing random walk in the membrane
system are solvable. These equations have also a very simple
interpretation. Parameters describing random walk in a dis-
crete system, like the probability of particle’s absorbing and
the probability of stopping a particle by the membrane, should
be redefined in a system with continuous variables. This is
one of the main problems how to define the parameters in
the system with continuous variables and to derive relations
linking these parameters with the probabilities specified in the
discrete system.

The organization of the paper is as follows. In Sec. II we
present the general procedure of deriving normal diffusion,
subdiffusion, and slow subdiffusion-absorption equations and
Green’s functions for a homogeneous system. The procedure
is based on the particle’s random walk model in a system with
discrete time and spatial variables. Finding the generating
function for the difference equation describing the particle’s
random walk we move from discrete to continuous variables.
The random walk model with absorption in a system which
consists of two different media separated by a thin membrane
is considered in Sec. III. We derive Green’s functions and
boundary conditions in terms of the Laplace transform. The
model presented in this paper provides the results that the
boundary conditions at the border between media can depend
on in which medium the particle is initially located. This fact
causes that the procedure of solving the system of diffusion-
absorption equations for arbitrarily chosen initial condition
is somewhat complicated. This procedure is presented in
Sec. IV. As an example, in Sec. V we consider diffusion in

a system in which a one-sided fully permeable membrane
separates subdiffusive medium A and medium B in which
subdiffusion or slow subdiffusion with absorption occurs.
Final remarks are presented in Sec. VI. Since calculations
of the inverse Laplace transforms appear to be difficult, in
Appendix A we show some methods of such calculations
useful for the functions presented in this paper. Details of
some calculations are presented in Appendix B.

II. RANDOM WALK MODEL OF DIFFUSION WITH
ABSORPTION IN A HOMOGENEOUS SYSTEM

Diffusion with absorption X + Y → Y , where X represents
a diffusing particle and Y is an “absorbing point,” has been
modeled using a discrete random walk on a lattice model
[32–34]. Here, we consider diffusion with absorption de-
scribed by the following difference equation:

Pn+1(m; m0) = 1
2 Pn(m − 1; m0) + 1

2 Pn(m + 1; m0)

− RPn(m; m0), (1)

where Pn(m; m0) is the probability of finding a particle at
site m after n steps, m0 denotes the initial position of the
particle, P0(m; m0) = δm,m0 , R is the probability of absorption.
In further considerations, we will use the generating function
defined as

S(m, z; m0) =
∞∑

n=0

znPn(m; m0). (2)

To move from discrete to continuous time, we use the standard
formula [29]

P(m, t ; m0) =
∞∑

n=0

Pn(m, m0)�n(t ), (3)

where �n(t ) is the probability that the particle takes n steps
over a time interval [0, t]. The function is the convolution

�n(t ) =
∫ t2

0
dt1

∫ t3

0
dt2 . . .

∫ tn

0
dtn−1ω(t1)ω(t2 − t1)

× . . . ω(tn − tn−1)U (t − tn), (4)

where ω(t ) is the probability density of time which is
needed for the particle to take its next step, U (t ) = 1 −∫ t

0 ω(t ′)dt ′ is the probability that the particle has not per-
formed any step over a time interval [0, t]. It is convenient
to carry out further calculations in terms of the Laplace
transform L[ f (t )] ≡ f̂ (s) = ∫ ∞

0 e−st f (t )dt due to the relation
L[

∫ t
0 f (t ′)g(t − t ′)dt ′] = f̂ (s)ĝ(s). The Laplace transform of

�n(t ) reads as

�̂n(s) = Û (s)ω̂n(s), (5)

where

Û (s) = 1 − ω̂(s)

s
. (6)

From Eqs. (3), (5), and (6) we get

P̂(m, s; m0) = 1 − ω̂(s)

s
S(m, ω̂(s); m0). (7)
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Moving from discrete to continuous space variable we use
the following relations:

x = εm, x0 = εm0, (8)

and

P(x, t ; x0) = P(m, t ; m0)

ε
. (9)

The parameter ε is the distance between neighboring sites,
which can be interpreted as a length of single particle jump.
In the following, we conduct the considerations in the limit of
small ε.

There is ω̂(0) = 1 due to the normalization of the func-
tion ω(t ). Within CTRW, normal diffusion or subdiffusion
is usually considered in the long time limit [30,31], which
corresponds to the limit of small s, under assumption that
ω̂(s) = 1 − μsα , 0 < α � 1, μ is a positive parameter. This
formula can be written in a more general form

ω̂(s) = 1 − μv(s), (10)

where v(s) is a function that v(s) → 0 when s → 0; the
function v(s) will define the kind of diffusion. We assume
that the parameters occurring in v(s) are dimensionless or

their physical units are the same as the physical unit of s
which is the inverse of time unit. Then, μ is chosen in such
a way that the last term in the right-hand side of Eq. (10) is
dimensionless. In the following considerations, we will use
the approximation of ω̂(s) given by Eq. (10), but we will find
that the parameter ε controls μ, and show that Eq. (10) is valid
in the limit of small parameter ε (which corresponds to the
limit of small parameter μ) for any positive s [see Eq. (20)
in Sec. II B]. Thus, the long time approximation will not be
needed.

A. Laplace transform of Green’s function

The generating function of Eq. (1) is

S(m, z; m0) = [η(z)]|m−m0|√
(1 + zR)2 − z2

, (11)

where

η(z) = 1 + zR −
√

(1 + zR)2 − z2

z
. (12)

In the limit of small s and ε we obtain from Eqs. (7)–(12)

P̂(x, s; x0) = μv(s)

εs
√

2R + R2 + 2μ(1 − R − R2)v(s) + μ2(R2 − 1)v2(s)

×
[

1 + R − μRv(s) −
√

2R + R2 + 2μ(1 − R − R2)v(s) + μ2(R2 − 1)v2(s)

1 − μv(s)

] |x−x0 |
ε

. (13)

Let us consider the conditions that will ensure that the func-
tion (13) will not be equivalent to the zero function and will
take finite values in the limit of small parameter ε. For R = 0,
the above conditions are fulfilled only when ε ∼ √

μ. We
define the generalized diffusion coefficient as

D = 1

2

ε2

μ
. (14)

For the case of R �= 0, the above conditions and Eq. (14)
provide

√
2R + R2 ∼ ε. We assume that κ = √

2R + R2/ε,
where κ is the absorption coefficient defined in the continuous
system. The last relation provides R = √

1 + ε2κ2 − 1. In the
limit of small ε we get

R = κ2ε2

2
. (15)

Taking into account Eqs. (13)–(15), in the limit of small ε

the Laplace transform of the Green’s function reads as

P̂(x, s; x0) = v(s)

2Ds
√

κ2 + v(s)
D

e−|x−x0|
√

κ2+ v(s)
D . (16)

B. Diffusion equation

We derive the diffusion equation in terms of the Laplace
transform starting from Eq. (1). Combining Eqs. (1), (2), and

(7) we get

1

z
[S(m, z; m0) − P0(m; m0)]

= 1

2
S(m − 1, z; m0)

+ 1

2
S(m + 1, z; m0) − RS(m − 1, z; m0). (17)

From Eqs. (7)–(9) and (17) and the relation ∂2 f (x)/∂x2 ≈
[ f (x + ε) + f (x − ε) − 2 f (x)]/ε2 we obtain

sP̂(x, s; x0) − P(x, 0; x0)

= ε2sω̂(s)

2(1 − ω̂(s))

[
∂2P̂(x, s; x0)

∂x2
− κ2P̂(x, s; x0)

]
. (18)

The Green’s function (16) fulfills Eq. (18) only if

ω̂(s) = 1

1 + ε2v(s)
2D

. (19)

In the limit of small ε, Eq. (19) can be approximated as

ω̂(s) = 1 − ε2 v(s)

2D
(20)

for any positive s.
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Equations (18) and (19) provide

v(s)

s
[sP̂(x, s; x0) − P(x, 0; x0)]

= D

[
∂2P̂(x, s; x0)

∂x2
− κ2P̂(x, s; x0)

]
. (21)

In the time domain, the general form of the diffusion-
absorption equation reads as∫ t

0
F (t − t ′)

∂P(x, t ′; x0)

∂t ′ dt ′

= D

[
∂2P(x, t ; x0)

∂x2
− κ2P(x, t ; x0)

]
, (22)

where

F (t ) = L−1

[
v(s)

s

]
. (23)

Equation (22) represents Eq. (21) in the time domain only if
the inverse Laplace transform of v(s)/s exists. The diffusive
flux J is defined in terms of the Laplace transform as follows:

Ĵ (x, s; x0) = −D
s

v(s)

∂P̂(x, s; x0)

∂x
. (24)

Combining Eq. (24) with the Laplace transform of the conti-
nuity equation ∂P/∂t = −∂J/∂x, we get Eq. (21) for diffusion
without absorption, κ = 0.

The probability P (t ) that a diffusing particle has not been
absorbed until time t equals P (t ) = 1 − ∫ ∞

−∞ P(x, t ; x0)dx.
In terms of the Laplace transform we obtain from Eq. (16)
P̂ (s) = κ2/[s(κ2 + v(s)/D)]. The probability depends on the
kind of diffusion process. This fact imposes the following
interpretation of the diffusion-absorption process. Absorption
can be treated as an irreversible reaction X + Y → Y , where
X represents a diffusing particle and Y is an absorbing point.
The absorbing points are assumed to be distributed homoge-
neously in the system, then the probability of reaction does not
depend on the position of the particle. The absorption process
of a diffusing particle consists of two stages. In the first stage,
the particle X can meet the point Y , with some probability,
after its jump. If this event occurs, absorption of the particle
may occur in the second stage. Since the occurrence of the first
stage depends on the kind of diffusion, the probability that the
particle still exists in the system at time t also depends on the
kind of diffusion. We note that this interpretation is not valid
if the first stage occurs with the probability equal to 1, then
the “absorption process” is equivalent to the reaction X → ∅.
In this case, the process cannot be described by Eq. (21) (see
[35] and the discussion in [36]); this problem is discussed in
more detail in Sec. VI, point 7.

C. Normal diffusion, subdiffusion, and slow subdiffusion

We define normal diffusion, subdiffusion, and slow
subdiffusion (which is also called “ultraslow diffusion”)
by means of fractional moments of the function ω(t ).
The fractional moment of the order ρ > 0 is defined
as 〈τρ〉 ≡ ∫ ∞

0 τρω(τ )dτ . The moment of fractional
order ρ can be obtained using the equation 〈τρ〉 =
[−1/
(k − ρ)]k

∫ ∞
0 ds sk−ρ−1dkω̂(s)/dsk , where k is the

smallest natural number such that k > ρ. For the moment of

natural order k this formula takes the form

〈τ k〉 = (−1)k dkω̂(s)

dsk

∣∣∣∣
s=0

. (25)

Diffusion is often characterized by temporal evolution of
the mean square displacement of the particle 〈(�x)2(t )〉 ≡∫ ∞
−∞(x − x0)2P(x, t ; x0)dx in the system without absorption,

for κ = 0. From Eq. (16), in terms of the Laplace transform
we get

〈(�x)2(t )〉 = L−1

[
2D

sv(s)

]
. (26)

Various kinds of anomalous diffusion and their characteristics
based on Eq. (26) were considered in [37,38].

1. Normal diffusion

Normal diffusion is defined as a process in which 〈τ 〉 =∫ ∞
0 τω(τ )dτ < ∞, then v(s) = s. In this case 〈(�x)2(t )〉 =

2Dt . From Eq. (21) we get the normal diffusion-absorption
equation

∂P(x, t ; x0)

∂t
= D

[
∂2P(x, t ; x0)

∂x2
− κ2P(x, t ; x0)

]
. (27)

2. Subdiffusion

In the case of classical subdiffusion there exists a pa-
rameter α, 0 < α < 1, for which 〈τρ〉 = ∞ for ρ > α, and
〈τρ〉 < ∞ for ρ � α. In this case v(s) = sα which pro-
vides 〈(�x)2(t )〉 = 2Dtα/
(1 + α). Due to Eq. (21) and the
formula L−1[sα ĝ(s)] = dαg(t )/dtα , 0 < α < 1, the classical
subdiffusion-absorption equation reads as

∂P(x, t ; x0)

∂t
= D

∂1−α

∂t1−α

[
∂2P(x, t ; x0)

∂x2
− κ2P(x, t ; x0)

]
,

(28)

0 < α < 1, where the Riemann-Liouville fractional time
derivative is defined for β > 0 as

dβ f (t )

dtβ
= 1


(k − β )

∫ t

0
dt ′(t − t ′)k−1−β f (t ′), (29)

the integer number k fulfills the relation k − 1 < β � k.
Equation (28) was considered in many papers (see, for exam-
ple, [39–43]). Three models of the subdiffusion-reaction pro-
cess which provide different fractional equations with linear
reaction term and their Green’s functions for a homogeneous
system were considered in [43]. Equation (28) corresponds to
the subdiffusion-reaction equation derived in the above cited
paper for the model in which absorption of a particle occurs
with a certain probability immediately after particle’s jump.

3. Slow subdiffusion

Slow subdiffusion can be defined as a process for which
〈τρ〉 = ∞ for ρ > 0. This condition is fulfilled when v(s)
is a slowly varying function [44]. A slowly varying function
f fulfills the condition f (au)/ f (u) → 1 when u → ∞ for
any a > 0. In practice, this function is a combination of
logarithm functions or it has a finite limit when u → ∞. Due
to the Tauberian theorem we get 〈(�x)2(t )〉 = 2D/v(1/t ).
The slow subdiffusion-absorption equation depends on the
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FIG. 2. Random walk with absorption in a membrane system
with discrete space variable m and time n which is the number of
particle’s steps, RA and RB are absorption probabilities. The functions
vA and vB define the kinds of diffusion. The more detailed description
is in the text.

detailed form of the slowly varying function v(s). For v(s) =
1/lnr (1/s), r > 0, we have

1


(r)

∫ t

0
μ(t − t ′, r)

∂P(x, t ′; x0)

∂t ′ dt ′

= D
∂2P(x, t ; x0)

∂x2
− κ2P(x, t ; x0), (30)

where μ(t, r) = ∫ ∞
0 dζ

t ζ ζ r


(1+ζ ) is the Volterra-type function
[45]. The qualitative difference between the Green’s functions
for classical subdiffusion and slow subdiffusion for κ = 0 is
discussed in [13].

III. DIFFUSION-ABSORPTION PROCESS IN A SYSTEM IN
WHICH A THIN MEMBRANE SEPARATES TWO MEDIA

Let the symbol A denote the region (−∞, xN ) and the
symbol B denote the region (xN ,∞), and xN is the position
of the thin membrane. The symbols will be also assigned
to the functions and parameters defined in these regions.
Typically, diffusion processes with absorption are described
by various differential or differential-integral equations. To
solve the equations, two boundary conditions should be given
at the thin membrane. The boundary conditions depend on the
kind of processes taking place in the parts A and B and on
the parameters γA and γB controlling the permeability of the
membrane (see Fig. 1).

The idea of the method presented in this paper is as follows.
Instead of the system presented in Fig. 1, we consider the
corresponding system with discrete variables shown in Fig. 2.
A particle performs its single jump to the neighboring site
only if the particle is not stopped by the membrane with a
certain probability. The particle which tries to pass through
the membrane moving from the N to N + 1 site can pass
the membrane with probability (1 − qA)/2 or can be stopped
by the membrane with probability qA/2. When a particle is
located at the N + 1 site, then its jump to the N site can
be performed with probability (1 − qB)/2. The probability
that a particle can be stopped by the membrane equals qB/2.
The difference equations describing the random walk in a
membrane system with reactions are

PA,n+1(m; m0) = 1

2
PA,n(m − 1; m0)

+ 1

2
PA,n(m + 1; m0) − RAPA,n(m; m0),

m � N − 1 (31)

PA,n+1(N ; m0) = 1

2
PA,n(N − 1; m0),

+ 1 − qB

2
PB,n(N + 1; m0) + qA

2
PA,n(N ; m0)

− RAPA,n(N ; m0), (32)

PB,n+1(N + 1; m0) = 1 − qA

2
PA,n(N ; m0)

+ 1

2
PB,n(N + 2; m0) + qB

2
PB,n(N + 1; m0)

− RBPB,n(N + 1; m0), (33)

PB,n+1(m; m0) = 1

2
PB,n(m − 1; m0)

+1

2
PB,n(m + 1; m0) − RBPB,n(m; m0),

m � N + 2. (34)

We assume that m0 � N , the initial conditions are

PA,0(m; m0) = δm,m0 , PB,0(m; m0) = 0. (35)

The generating functions are defined separately for the
regions A and B:

Si(m, z; m0) =
∞∑

n=0

znPi,n(m, m0), (36)

i = A, B. After calculations, we obtain (the details of the
calculations are presented in [27])

SA(m, z; m0) = [ηA(z)]|m−m0|√
(1 + zRA)2 − z2

+�A(z)
[ηA(z)]2N−m−m0√
(1 + zRA)2 − z2

, (37)

SB(m, z; m0) = [ηA(z)]N−m0 [ηB(z)]m−N−1√
(1 + zRB)2 − z2

�B(z), (38)

where

�A(z) =
(

1
ηB (z) − qB

)
(qA − ηA(z)) + (1 − qA)(1 − qB)(

1
ηA(z) − qA

)(
1

ηB (z) − qB
) − (1 − qA)(1 − qB)

,

(39)

�B(z) =
(1 − qA)

(
1

ηB (z) − ηB(z)
)

(
1

ηA(z) − qA
)(

1
ηB (z) − qB

) − (1 − qA)(1 − qB)
,

(40)

ηi(z) = 1 + Riz −
√

(1 + Riz)2 − z2

z
. (41)

As it was shown in the previous section, the discrete model
leads to diffusion-absorption equations by the appropriate
choice of the function ω̂(s), more specifically by the function
v(s). For a membrane system, the choice of the functions vA(s)
and vB(s) leads not only to the diffusion-absorption equations,
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but also to the boundary conditions at a thin membrane. The
Laplace transforms of the Green’s functions for continuous
time and discrete spatial variable are expressed by the formula

P̂i(m, s; m0) = 1 − ω̂i(s)

s
Si(m, {ω̂A(s), ω̂B(s)}; m0), (42)

i = A, B, where ω̂i(s) = 1/[1 + ε2vi(s)/(2Di)], the symbol
{ω̂A(s), ω̂B(s)} denotes that both functions ω̂A(s) and ω̂B(s) are
involved into the functions SA and SB instead of the variable z
according to the following rule [27,28]:

ηi(z) → ηi(ω̂i(s)) , (43)

which also provides√
(1 + Riz)2 − z2 →

√
[1 + Riω̂i(s)]2 − ω̂2

i (s) . (44)

The above rules were derived using the first passage time
distribution F (N, t ; m0) that the particle achieves the point N
the first time at time t starting from the point m0 < N . In terms
of the Laplace transform, this function reads as

F̂ (N, s; m0) ≡ SA(N, {ω̂A(s), ω̂B(s)}; m0) − δN,m0

SA(N, {ω̂A(s), ω̂B(s)}; N )

= η
N−m0
A ({ω̂A(s), ω̂B(s)}). (45)

Since this distribution is controlled by the function ηA only
and all steps are performed in the region A, the function
ηA should depend on the function ω̂A only when moving to
continuous time. Similarly, the function ηB depends on the
function ω̂B only.

Moving to the continuous spatial variable, we use the
procedure presented in Sec. II and Eqs. (37)–(44). We get

P̂A(x, s; x0) = vA(s)

2DAs
√

κ2
A + vA(s)

DA

[
e−|x−x0|

√
κ2

A+ vA (s)
DA + �A(s)e−(2xN −x−x0 )

√
κ2

A+ vA (s)
DA

]
, (46)

P̂B(x, s; x0) = vB(s)

2DBs
√

κ2
B + vB (s)

DB

�B(s) e−(xN −x0 )
√

κ2
A+ vA (s)

DA e−(x−xN )
√

κ2
B+ vB (s)

DB , (47)

where xN = Nε,

�A(s) =
(1 − qB)

√
κ2

A + vA(s)
DA

− (1 − qA)
√

κ2
B + vB (s)

DB
+ ε

√
κ2

A + vA(s)
DA

√
κ2

B + vB (s)
DB

(1 − qB)
√

κ2
A + vA(s)

DA
+ (1 − qA)

√
κ2

B + vB (s)
DB

+ ε

√
κ2

A + vA(s)
DA

√
κ2

B + vB (s)
DB

, (48)

�B(s) =
2(1 − qA)

√
κ2

B + vB (s)
DB

(1 − qB)
√

κ2
A + vA(s)

DA
+ (1 − qA)

√
κ2

B + vB (s)
DB

+ ε

√
κ2

A + vA(s)
DA

√
κ2

B + vB (s)
DB

. (49)

We note that �A(s) + �B(s) = 1. To shorten the notation, in
the following we will use the functions �(s) ≡ �B(s), then
�A(s) = 1 − �(s).

The functions (46) and (47) fulfill the equation

vi(s)

s
[sP̂i(x, s; x0) − Pi(x, 0; x0)]

= Di

[
∂2P̂i(x, s; x0)

∂x2
− κ2

i P̂i(x, s; x0)

]
, (50)

the Laplace transform of the flux Ji is

Ĵ i(x, s; x0) = −Di
s

vi(s)

∂P̂i(x, s; x0)

∂x
, (51)

i = A, B. Combining the values of functions P̂A, P̂B, ĴA, and ĴB

calculated for x = xN from Eqs. (46), (47), and (51), we get
the following boundary conditions at the thin membrane:

ĴA(x−
N , s; x0) = ĴB(x+

N , s; x0), (52)

DA

vA(s)

√
κ2

A + vA(s)

DA
P̂A(x−

N , s; x0)

= DB

vB(s)

√
κ2

B + vB(s)

DB

(
2 − �(s)

�(s)

)
P̂B(x+

N , s; x0). (53)

The boundary conditions depend on the dimensional param-
eters. From Eq. (10) it follows that the parameter μ is given
in the units of 1/[v(s)], where [v(s)] denotes the dimension
of the function v(s); for subdiffusion we have [v(s)] = [sα] =
1/(second)α . Equation (14) shows that the unit of diffusion
coefficient is m2[v(s)], and from Eq. (15) we conclude that
the unit of absorption coefficient κ is 1/m. Equation (49)
shows that the function �(s) is dimensionless. The above facts
ensure that the dimensions of the right and left sides of the
boundary condition (52) are the same; the same applies to
Eq. (53).

Boundary condition (53) can be applied in a system with
continuous variables if we define the membrane permeability
coefficients for a continuous system γA and γB and relate
them to the probabilities qA and qB. We illustrate this problem
considering diffusion in a system in which a thin symmetrical
membrane separates two identical media. In this case there
is assumed qA = qB ≡ q, vA(s) = vB(s) ≡ v(s), κA = κB ≡ κ ,
and DA = DB ≡ D. Then, we get from Eq. (49)

�(s) ≡ �B(s) = 2(1 − q)

2(1 − q) + ε

√
κ2 + v(s)

D

. (54)

If we assume that the probability of the particle’s passing
through a partially permeable membrane 1 − q, 0 < q < 1,
does not depend on the parameter ε, then we have �(s) → 1

022127-6



MODEL OF ANOMALOUS DIFFUSION-ABSORPTION PROCESS … PHYSICAL REVIEW E 99, 022127 (2019)

in the limit of small ε. In this case, the Green’s functions
(46) and (47) take the form of the Green’s function for a
homogeneous system without a membrane, Eq. (16). It means
that the membrane does not show its selective properties. The
reason for this is as follows. The mean frequency of particle’s
jumps between neighboring sites is ν(t ) = d〈n(t )〉/dt , where
〈n(t )〉 is the number of steps over time interval [0, t]. We get

ν(t ) = L−1

[
2Dω̂(s)

ε2v(s)

]
. (55)

Equation (55) provides ν(t ) → ∞ in the limit of small ε.
Then, the probability that a particle which tries to pass the
partially permeable membrane “infinite times” in every finite
time interval passes through the membrane is equal to one.
To avoid such a nonphysical situation, we use the following
procedure when moving to a continuous spatial variable. The
permeability properties of the membrane are described by
the function �(s). This function should be independent of the
parameter ε. From Eq. (54) it follows that this is possible only
if 1 − q ∼ ε. Thus, in general, the parameter q can depend on
ε. Guided by the result presented above, we suppose that

1 − qA = εσA

γA
, 1 − qB = εσB

γB
, (56)

where σA and σB are parameters as yet to be determined, γA

and γB are the membrane permeability coefficients defined for
the system with continuous variables. Since 0 � qA,B � 1, we
have σA,B � 0 and γA,B > 0.

For a one-sided fully permeable membrane, the Green’s
functions and boundary conditions are given by Eqs. (46)–
(49) with qA = 0 or qB = 0. When the boundary between
media does not make any obstacle for the diffusing particles,
we have qA = qB = 0. Following, we will consider the above
mentioned cases separately. The Green’s functions are still
given by Eqs. (46) and (47), but the function �(s) is different
for these cases.

A. Case of qA �= 0 and qB �= 0

For 1 < σA and 1 < σB we get � = 0, so we obtain the
Green’s function for the system with fully reflecting wall. For
σA < 1 and σB < 1 the membrane “vanishes” in the case of
symmetrical system. The cases of σA > 1, σB < 1 and σA <

1, σB > 1 also provide nonphysical results �(s) ≡ −1 and 1,
respectively. Thus, we get σA = σB = 1 and

1 − qA = ε

γA
, 1 − qB = ε

γB
. (57)

Taking into account Eqs. (49) and (57), we obtain

�(s) =
2γB

√
κ2

B + vB (s)
DB

γA

√
κ2

A + vA(s)
DA

+ γB

√
κ2

B + vB (s)
DB

+ γAγB

√
κ2

A + vA(s)
DA

√
κ2

B + vB (s)
DB

. (58)

B. Case of qA = 0 and qB �= 0

For σB > 0 we get �(s) = 2 when ε → 0 and we obtain
the Green’s function for the system with fully absorbing wall.
Thus, we assume σB = 0, so we get

1 − qB = 1

γB
(59)

and

�(s) =
2γB

√
κ2

B + vB (s)
DB√

κ2
A + vA(s)

DA
+ γB

√
κ2

B + vB (s)
DB

. (60)

C. Case of qA �= 0 and qB = 0

For σA > 0 we get �(s) = 0, which provides the Green’s
function for the system with fully reflecting membrane. Thus,
we suppose σA = 0 which provides

1 − qA = 1

γA
(61)

and

�(s) =
2
√

κ2
B + vB (s)

DB

γA

√
κ2

A + vA(s)
DA

+
√

κ2
B + vB (s)

DB

. (62)

D. Case of qA = 0 and qB = 0

In this case we have

�(s) =
2
√

κ2
B + vB (s)

DB√
κ2

A + vA(s)
DA

+
√

κ2
B + vB (s)

DB

. (63)

This case is considered in [28] for the classical subdiffusion
with absorption process in both media A and B.

IV. HOW TO SOLVE THE SYSTEM OF DIFFUSION
EQUATIONS FOR ANY INITIAL CONDITION

The above considerations were performed assuming that
x0 < xN . Until now, the Green’s functions have been marked
with one index indicating to which region the point x belongs.
However, when the membrane is asymmetrical, the boundary
condition can depend on which side of the membrane a parti-
cle starts its motion (see the discussion in [12]). An example is
a thin membrane that is fully impenetrable to particles moving
from the region A to the region B and partially permeable
when particles move in the opposite direction. Then, for
particles initially located in A, the boundary condition at the
membrane is just as for the fully reflecting wall whereas for
particles starting form the region B, the boundary condition is
as for the partially absorbing wall.

We consider the situation in which the initial position of
the particle may be in both regions A and B. Then, the Green’s
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functions are labeled by two indices i j which show the regions
to which x and x0 points belong, respectively. In the new nota-
tion, the functions P̂AA(x, s; x0) and P̂BA(x, s; x0) are expressed
by Eqs. (46) and (47), respectively. Due to the symmetry argu-
ments, assuming x0 > xN , we can obtain the Green’s functions
and boundary conditions making the following changes: (x −
x0, x − xN , x0 − xN ) ↔ (x0 − x, xN − x, xN − x0) and A ↔ B
of all indices occurring in Eqs. (46)–(49); we note that the
change �A(s) ↔ �B(s) is equivalent to 1 − �(s) ↔ �(s).

In the following, we assume that particles move indepen-
dently of one another and that the membrane permeability
parameters do not depend on the concentration of the diffusing
particles. We denote

C(x, t ) =
{

CA(x, t ), x < xN

CB(x, t ), x > xN .
(64)

We assume the initial condition as follows:

C(x, 0) =
{

C0A(x), x < xN

C0B(x), x > xN .
(65)

Let CAA(x, t ) and CBA(x, t ) denote the solutions defined in
the regions A and B, respectively, generated by the particles
located initially in the region A, i.e., by the following initial
condition: {

CAA(x, 0) = C0A(x), x < xN

CBA(x, 0) = 0, x > xN .
(66)

Since it is assumed that the particles move independently of
one another, the concentrations can be calculated by means of
the formula

CiA(x, t ) =
∫ xN

−∞
PiA(x, t ; x0)C0A(x0)dx0. (67)

The functions CAB(x, t ) and CBB(x, t ), generated by the initial
condition {

CAB(x, 0) = 0, x < xN

CBB(x, 0) = C0B(x), x > xN
(68)

can be calculated as follows:

CiB(x, t ) =
∫ ∞

xN

PiB(x, t ; x0)C0B(x0)dx0, (69)

i = A, B. From Eqs. (22), (67), and (69) we obtain∫ t

0
Fi(t − t ′)

∂Ci j (x, t ′)
∂t ′ dt ′ = Di

[
∂2Ci j (x, t )

∂x2
− κ2

i Ci j (x, t )

]
,

(70)

where Fi(t ) = L−1[vi(s)/s], i, j ∈ {A, B}. The solutions to
the considered equations are a superposition of the partial
solutions described above:{

CA(x, t ) = CAA(x, t ) + CAB(x, t ), x < xN

CB(x, t ) = CBA(x, t ) + CBB(x, t ), x > xN .
(71)

Due to the complex form of the equations and boundary
conditions in the time domain, it is convenient to find the
solutions in terms of the Laplace transform. From Eq. (70)

we get

vi(s)

s
[sĈi j (x, s) − Ci j (x, 0)]

= Di

[
∂2Ĉi j (x, s)

∂x2
− κ2

i Ĉi j (x, s)

]
. (72)

The Laplace transform of the flux Ji j (x, t ) reads as

Ĵi j (x, s) = −Di
s

vi(s)

∂Ĉi j (x, s)

∂x
, (73)

i, j ∈ {A, B}. From Eqs. (52), (53), (67), and (69) we get the
boundary conditions at the thin membrane for the functions
ĈAA and ĈBA:

ĴAA(x−
N , s) = ĴBA(x+

N , s), (74)

DA

vA(s)

√
κ2

A + vA(s)

DA
ĈAA(x−

N , s)

= DB

vB(s)

√
κ2

B + vB(s)

DB

(
2 − �(s)

�(s)

)
ĈBA(x+

N , s). (75)

Using the symmetry rule, we obtain the boundary condition at
the thin membrane for the functions ĈAB and ĈBB:

ĴAB(x−
N , s) = ĴBB(x+

N , s), (76)

DA

vA(s)

√
κ2

A + vA(s)

DA

(
1 + �(s)

1 − �(s)

)
ĈAB(x−

N , s)

= DB

vB(s)

√
κ2

B + vB(s)

DB
ĈBB(x+

N , s). (77)

In summary, the method of solving the system of diffusion-
absorption equations for a system with a thin membrane is as
follows:

(1) Find the solutions ĈAA and ĈBA to Eq. (72) for i = A
with the initial condition (66) and the boundary conditions at
the membrane (74) and (75).

(2) Find the solutions ĈAB and ĈBB to Eq. (72) for i = B
with the initial condition (68) and the boundary conditions at
the membrane (76) and (77).

(3) Find the functions ĈA and ĈB using the Laplace trans-
form of Eq. (71).

(4) To obtain the final solutions, calculate the inverse
Laplace transform of ĈA and ĈB.

Two boundary conditions should be additionally given at
points distant from the membrane, for example, one assumes
finite solutions when x → ±∞ or zero values of particles’
fluxes at the external walls of the vessel. The inverse Laplace
transforms can be calculated using standard formulas supple-
mented with formulas presented in the Appendix A. If it is not
possible to accurately calculate the inverse Laplace transform,
the approximation of small parameter s can be used; this
approximation corresponds to the long time limit in the time
domain.
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V. ABSORPTION OF DIFFUSING SUBSTANCE BY
SUBDIFFUSIVE MEDIUM

As an example, we consider the diffusion of particles from
a medium A in which subdiffusion or normal diffusion occurs
to a porous medium B where absorption can be present. Let
us also assume that the particle which tries to pass the border
between media moving from the medium B to A can do it
without any obstacle, but when the particle moves in the op-
posite direction it can pass the border with some probability.
The particle can be stopped at the border in the latter case if
they do not go directly to one of the channels located in the
porous medium. Thus, we assume that κA = 0, qA �= 0, and
qB = 0. The example of this process is the water purification
process by halloysite or kaolinite (medium B) submerged in
water (medium A) [46,47]. The impurities diffuse inside the
clay medium, in which adsorption of diffusing particles can
occur with a certain probability.

We assume that x0 < xN at the initial moment. Assuming
that

γA

√
vA(s)

DA
�

√
κ2

B + vB(s)

DB
, (78)

the function �(s) can be approximated as

�(s) = 2

⎡
⎣1 −

γA

√
vA(s)
DA√

κ2
B + vB (s)

DB

⎤
⎦. (79)

Then, the Laplace transforms of the Green’s functions read as

P̂AA(x, s; x0) =
√

vA(s)

2
√

DAs

[
e−|x−x0|

√
vA (s)
DA − e−(2xN −x−x0 )

√
vA (s)
DA

]

+ γAvA(s)

DAs
√

κ2
B + vB (s)

DB

e−(2xN −x−x0 )
√

vA (s)
DA , (80)

P̂BA(x, s; x0) = vB(s)

DBs
√

κ2
B + vB (s)

DB

⎛
⎝1 − γA

√
vA(s)√

DA
(
κ2

B + vB (s)
DB

)
⎞
⎠

× e−(xN −x0 )
√

vA (s)
DA e−(x−xN )

√
κ2

B+ vB (s)
DB . (81)

We suppose that at the initial moment there is homogeneous
solution in the medium A whereas the medium B is free of the
diffusing substance, the initial condition is

{
CAA(x, 0) = C0, x < xN

CBA(x, 0) = 0, x > xN .
(82)

The concentrations ĈAA and ĈBA can be calculated using
Eqs. (67) and (80)–(82). The temporal evolution of the
amount of substance which leaves the region A is WA(t, s) =∫ xN

−∞[CAA(x, 0) − CAA(x, t )]dx and the amount of substance
which is in the part B reads as WB(t ) = ∫ ∞

xN
CBA(x, t )dx. The

amount of substance absorbed in the time interval [0, t] is
W (t ) = WA(t ) − WB(t ). In terms of the Laplace transform we
get

ŴA(s) = C0

s

⎡
⎣ √

DA√
vA(s)

− γA√
κ2

B + vB (s)
DB

⎤
⎦, (83)

ŴB(s) = C0vB(s)

sDB
(
κ2

B + vB (s)
DB

)
⎡
⎣ √

DA√
vA(s)

− γA√
κ2

B + vB (s)
DB

⎤
⎦. (84)

Following, we will derive the Green’s functions and the
functions WA(t ), WB(t ), and W (t ) in the long time limit. We
will consider the cases of subdiffusion and slow subdiffusion
in the medium B. For both cases, we assume vA(s) = sαA .

A. Subdiffusion in the medium B

We assume that vB(s) = sαB and αA > αB. To calculate

PB we use the series e−(xN −x0 )
√

sα
A/DA = ∑∞

k=0
1
k! ( −(xN −x0 )sαA√

DA
)
k
.

Instead of Eq. (78), we use here the stronger condition

γA

√
sαA

DA
� κB, which, according to the relation (A4) from

Appendix A, gives t � (κ2
BDA/γA)1/αA . Under this condition

we get

PAA(x, t ; x0) = 1

2
√

DA

[
fαA/2−1,αA/2

(
t ;

|x − x0|√
DA

)
− fαA/2−1,αA/2

(
t ;

2xN − x − x0√
DA

)]

+ γA

DAκB

[
fαA−1,αA/2

(
t ;

2xN − x − x0√
DA

)
− 1

2κ2
BDB

fαA+αB−1,αA/2

(
t ;

2xN − x − x0√
DA

)]
, (85)

PBA(x, t ; x0) = e−κB (x−xN )

DBκB

∞∑
n=0

(x0 − xN )n

n!(
√

DA)n

[
fαB−1+nαA/2,αB

(
t ;

x − xN

2κBDB

)
− 1

2κ2
BDB

f2αB−1+nαA/2,αB

(
t ;

x − xN

2κBDB

)

− γA√
DAκB

fαA/2+αB−1+nαA/2,αB

(
t ;

x − xN

2κBDB

)
+ γ 2

A

DAκ2
B

fαA+αB−1+nαA/2,αB

(
t ;

x − xN

2κBDB

)]
, (86)

where the functions fα,ν are expressed by Eq. (A1) from Appendix A, and

WA(t ) = C0

[ √
DA tαA/2


(1 + αA/2)
− γA

κB
+ γA

2DBκ3
BtαB

]
, (87)
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WB(t ) = C0

DBκ3
BtαB

[ √
DA tαA/2


(1 + αA/2 − αB)
− γA

κB
(1 − αB)

]
.

(88)

From Eqs. (87) and (88) we get

W (t ) = C0

[ √
DA tαA/2


(1 + αA/2)
− γA

κB
+

√
DAtαA/2−αB

DBκ3
B
(1+αA/2−αB)

]
.

(89)

B. Slow subdiffusion in the medium B

We assume vB(s) = 1/lnr (1/s), r > 0. Using Eqs. (A6)
and (A7) from Appendix A, we get in the limit of long time

PAA(x, t ; x0)

= 1

2
√

DA

[
fαA/2−1,αA/2

(
t ;

|x − x0|√
DA

)

− fαA/2−1,αA/2

(
t ;

2xN − x − x0√
DA

)]

+ γA

DAκB

√
κ2

B + vB (1/t )
DB

fαA−1,αA/2

(
t ;

2xN − x − x0√
DA

)
,

(90)

PBA(x, t ; x0) = vB(1/t ) e−(x−xN )
√

κ2
B+ vB (1/t )

DB

DB

√
κ2

B + vB (1/t )
DB

×
[

f−1,αA/2

(
t ;

xN − x0√
DA

)

− γA√
κ2

B + vB (1/t )
DB

fαA/2−1,αA/2

(
t ;

xN − x0√
DA

)]
,

(91)

and

WA(t ) = C0

⎡
⎣ √

DAtαA/2


(1 + αA/2)
− γA√

κ2
B + vB (1/t )

DB

⎤
⎦, (92)

WB(t ) = C0vB(1/t )

DB
(
κ2

B + vB (1/t )
DB

)
⎡
⎣ √

DAtαA/2


(1 + αA/2)
− γA√

κ2
B + vB (1/t )

DB

⎤
⎦.

(93)

From Eqs. (92) and (93) we obtain

W (t ) = C0

⎡
⎢⎣

√
DA tαA/2


(1 + αA/2)

(
1 − vB(1/t )

DBκ2
B + vB(1/t )

)

− γA√
κ2

B + vB (1/t )
DB

⎤
⎥⎦. (94)
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FIG. 3. The plots of Green’s functions (85) and (86) for subdiffu-
sion in the region B calculated for αA = 0.9, αB = 0.8, κB = 2.0 and
for times given in the legend, all quantities are given in arbitrarily
chosen units.

The plots of Green’s functions are presented in Figs. 3 and
4 for subdiffusion in the region B and in Figs. 5 and 6 for slow
subdiffusion in B; Figs. 4 and 6 are the fragments of Figs. 3
and 5, respectively, made on a different scale. In Figs. 7 and
8 the plots of function W for subdiffusion and slow subdif-
fusion are shown. All plots are made for xN = 0, x0 = −1.0,
DA = DB = 2.0, and γA = 2.0, values of the other parameters
are given in the plot captions, all quantities are given in
arbitrarily chosen units. The limit of long time is t � 4.

We note that PA(x, t ; x0) → 0 when t → ∞. Thus, in the
long time limit the medium B influences the diffusion of
particles in the medium A in a similar way as the absorbing
wall placed at xN . The reason is that the mobility of particles in
the medium B is much smaller compared to the medium A, the
effect is enhanced by absorption in the medium B. From the
equations presented in this section, we note that the functions
W and WA have the same asymptotic forms for long time for
subdiffusion as well as for slow subdiffusion in the medium
B. Analyzing qualitatively the plots presented in Figs. 7 and
8, we deduce that the loss of substance in the medium A is
determined mainly by the absorption process in the medium
B, and to a lesser extent by the mobility of particles in this
medium.

FIG. 4. The fragment of the plot Fig. 3 made in the other scale.
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FIG. 5. The plots of Green’s functions (90) and (91) for slow
subdiffusion in the region B calculated for αA = 0.9, r = 2.0, κB =
2.0 and for times given in the legend.

VI. FINAL REMARKS

The most important results presented in this paper are as
follows:

(i) The general form of the Green’s functions (46) and (47)
for a system consisting of two media separated by a thin mem-
brane treated as a partially permeable wall; different kinds of
diffusion-absorption processes can occur in the media.

(ii) Boundary conditions at the border between media,
Eqs. (52) and (53).

(iii) Method of solving the diffusion equations for any
initial conditions, presented in Sec. IV.

The method provides the solution in terms of the Laplace
transform. Usually, it is difficult to calculate the inverse
Laplace transform of the obtained solutions. However, it is
often possible to find the inverse Laplace transforms over
the long time limit, which corresponds to the limit of small
parameter s. Some useful formulas for calculating inverse
Laplace transforms are shown in the Appendix A.

Some specific remarks are as follows.
(1) The method presented in Sec. IV can be generalized

to the model of diffusion with absorption in a multilayer
system. In each layer, diffusion-absorption processes are de-
scribed by Eq. (72) with the function vi which defined the
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FIG. 6. The fragment of the plot Fig. 5 made in the other scale.
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FIG. 7. The plots of the function W [Eq. (89)] for subdiffusion in
the medium B for αA = 0.9 and various (κB, αB ) given in the legend.

kind of diffusion; the boundary conditions are expressed by
Eqs. (74)–(77).

(2) The boundary conditions (74)–(77) can be used
to solve diffusion-absorption equations in two- or three-
dimensional space where the boundary conditions should be
set in the direction normal to the surface separating different
media.

(3) In the presented model we consider a thin membrane
placed between the media. In practice, the membrane repre-
sents any obstacle that can, with certain probability, stop the
diffusing particle. An example of this may be the transient
layer formed at the gel-water or biofilm-water interface (see
the discussion in [27]).

(4) The interpretation of membrane permeability coef-
ficients is based on Eq. (56), ε can be interpreted as the
thickness of a thin membrane, q can be calculated from a
phenomenological model. In the simplest model there is q =
�P/�, where �P is the area of the pores observed on the
membrane surface and � is the total area of the membrane
surface.

(5) The boundary conditions at a thin membrane for
the system which consists of two diffusive media without
absorption, derived from Eqs. (74) and (75) putting vA =

0 5000 10000 15000 20000
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FIG. 8. The plots of the function W [Eq. (94)] for slow subdiffu-
sion in the medium B for αA = 0.9 and various (r, κB ) given in the
legend.
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vB = s, DA = DB ≡ D, and κA = κB = 0, are the same as the
boundary conditions obtained from experimental data [48]. In
this case, the boundary condition (75) reads as in the time
domain

CAA(x−
N , t ) =

(
γA

γB
+ γA√

D

∂1/2

∂t1/2

)
CBA(x+

N , t ). (95)

Although the normal diffusion process was considered, this
boundary condition contains the Riemann-Liouville fractional
time derivative of the order 1

2 .
(6) A frequently used boundary condition in a system

without absorption in which a thin membrane is placed in
a homogeneous medium, vA(s) = vB(s) ≡ v(s) and DA =
DB ≡ D, is

JB(x+
N , t ; x0) = λ1PA(x−

N , t ; x0) − λ2PB(x+
N , t ; x0), (96)

where the parameters λ1 and λ2 control the membrane per-
meability. Assuming that the diffusive flux is continuous,
the fundamental solutions to Eq. (50) with κA = κB = 0 for
the boundary conditions (52) and the Laplace transform of
Eq. (96) are

P̂A(x, s; x0) = 1

2s

√
v(s)

D

[
e−|x−x0|

√
v(s)
D

+ [1 − �(s)]e−(2xN −x−x0 )
√

v(s)
D

]
, (97)

P̂B(x, s; x0) = �(s)

2s

√
v(s)

D
e−(2xN −x−x0 )

√
v(s)
D , (98)

where x0 < xN ,

�(s) = 2λ1

s
√

D
v(s) + λ1 + λ2

. (99)

The functions (97) and (98) coincide with Eqs. (46) and (47),
respectively, if �(s) ≡ �(s). The last equation is fulfilled
only when v(s) = s, λ1 = D/γ1, and λ2 = D/γ2. Thus, the
boundary condition (53) provides Eq. (96) for the case of
normal diffusion. We mention here that the particular form of
boundary condition (96), namely, J = −λ�C where J is the
particles’ flux across the membrane and �C is the concentra-
tion difference between the membrane surfaces, is very often
used (see, for example, [49]). The above considerations show
that this boundary condition can be derived from Eq. (53),
assuming that there is normal diffusion without absorption
with the same diffusion coefficient in both parts of the system
and the thin membrane is symmetrical, λ1 = λ2 ≡ λ.

(7) In [36] two models of particle random walk in a
discrete homogeneous system are considered. The difference
between the models is as follows. In the first model, the
probability of absorption of the particle is involved in the
probability density ωp that the particle continues to exist and
makes its next jump at time t . The particle random walk is
described by the following difference equation in which the
absorption term is absent:

Pn+1(m; m0) = 1
2 Pn(m − 1; m0) + 1

2 Pn(m + 1; m0). (100)

In the second model, the situation is reversed. The absorption
probability is involved in the difference equation (1) only,
whereas the particle random walk is ruled by the distribution

ω(t ) = L−1{1/[1 + ε2v(s)/(2D̃)]} which is independent of an
absorption coefficient.

The second model is used in this paper because it is more
useful to model diffusion in a layered system. The reason for
this is that the position of functions ω̂A,B and parameters DA,B

and κA,B in the Green’s functions and boundary conditions
is determined by the position of probabilities RA and RB.
However, in order to explain why the case of the reaction
X → ∅ is not included in this model, we have to use the first
model which is more general than the second one. Let us
assume that absorption is treated as a reaction X + Y → Y ,
where Y represents an “absorbing point.” If absorption may
take place, the particle X must be in the “region of absorption”
generated by Y . The diffusing particle encounters the region
with a probability p after a jump. Then, absorption in the time
interval [0, t] may take place with probability p[1 − ρ(t )],
where ρ(t ) is the probability that the particle continues to
exist at time t when it is located in the region of absorption. If
p = 1, particle absorption may take place at any moment with
constant probability regardless of particle current location;
this situation corresponds to the reaction X → ∅. Based on
the above assumptions, we get

ωp(t ) = [(1 − p) + pρ(t )]ω(t ). (101)

Let ϕ(t ) be the probability density that absorption takes place
at the moment t ; then, ρ(t ) = 1 − ∫ t

0 ϕ(t ′)dt ′. For ϕ(t ) =
γ e−γ t we get (the details of the calculation are presented in
Appendix B)

(1 − p)F̂ (s)[sP̂(x, s; x0) − P(x, 0; x0)]

+ pF̂ (s + γ )[(s + γ )P̂(x, s; x0) − P(x, 0; x0)]

= D̃
∂2P̂(x, s; x0)

∂x2
, (102)

where F̂ (s) = v(s)/s. In the time domain, Eq. (102) reads as

(1 − p)
∫ t

0
F (t − t ′)

∂P(x, t ′; x0)

∂t ′ dt ′

+ p
∫ t

0
e−γ (t−t ′ )F (t − t ′)

∂

∂t ′ (eγ t ′
P(x, t ′; x0))dt ′

= D̃
∂2P(x, t ; x0)

∂x2
. (103)

For classical subdiffusion in which v(s) = sα , 0 < α < 1, we
get

(1 − p)sα−1[sP̂(x, s; x0) − P(x, 0; x0)]

+ p(s + γ )α−1[(s + γ )P̂(x, s; x0) − P(x, 0; x0)]

= D̃
∂2P̂(x, s; x0)

∂x2
. (104)

The inverse Laplace transform of Eq. (104) is

(1 − p)
∂α

C P(x, t ; x0)

∂tα
+ pe−γ t ∂

α
C eγ t P(x, t ; x0)

∂tα

= D̃
∂2P(x, t ; x0)

∂x2
, (105)

where ∂α
C f (t )/∂tα = [1/
(1 − α)]

∫ t
0 dt ′ f (1)(t ′)/(t − t ′)α is

the Caputo fractional derivative of the order α, 0 < α < 1.
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Equation (104), as well as Eq. (105), provides qualitatively
different equations for the cases of p = 1 and p < 1. If p = 1,
the first term on the left-hand side of Eq. (105) is eliminated
and the equation is equivalent to the subdiffusion-reaction
equation derived in [35] (see also the discussion in [36]). In
this case, the equation is not equivalent to Eq. (28). When p <

1, the first term gives a significant contribution to the equation.
Assuming that s � γ , which corresponds to t � 1/γ , and
taking into account the leading terms on the left-hand side of
Eq. (104), we get

(1 − p)[sP̂(x, s; x0) − P(x, 0; x0)]

+ pγ αs1−αP̂(x, s; x0) = D̃s1−α ∂2P̂(x, s; x0)

∂x2
. (106)

Calculating the inverse Laplace transform of Eq. (106) we
obtain Eq. (28) for D = D̃/(1 − p) and κ2 = pγ α/D̃. Thus,
both models provide Eq. (28), the first one in the limit of long
time, if absorption is treated as the reaction X + Y → Y for
p < 1. If p = 1, which corresponds to the case of the reaction
X → ∅, the process cannot be described by Eq. (28); this case
is not considered in the previous sections.

The random walk model can be applied to different proba-
bility distributions ϕ(t ). The question arises as to which of the
probability distributions ϕ(t ) is more real. The problem seems
to have no unambiguous solution because the distribution
is rather beyond the possibility of experimental designation.
However, we can compare the concentration profiles of dif-
fusing particles obtained as solutions to diffusion-absorption
equations, which are derived from various models, with exper-
imentally obtained concentration profiles. In this way, we can
check whether a model is based on the correct assumptions.
Proposals for such methods based on the model considered in
this paper are presented in [50,51].

The model presented in this paper assumes that absorption
of the diffusing particle may occur just before the next particle
step [see Eqs. (5)–(7)]. We note that the discrete model is
relatively easy for analytical treatment in a few cases only,
when the absorption can occur just after the particle jump, just
before the next jump, or when the waiting time for absorption
of the particle is ruled by the exponent function. In these cases,
the model provides the subdiffusion-absorption equation (28),
which does not include the case of reaction X → ∅. Therefore,
it seems that the form of the equation depends mainly on the
type of reaction that causes the disappearance of the particle.
However, the influence of various functions ϕ(t ) on the form
of diffusion-absorption equation requires further study.

(8) It may seem puzzling that in the case of qA �= 0 and
qB �= 0, both probabilities qA and qB [Eq. (57)] depend on ε,
while in the case of one-sided fully permeable membranes the
nonzero probabilities (59) and (61) are independent of ε. The
reason is that the transition to the small parameter ε is done in
the same way in both media A and B. The selective properties
of the membrane cannot depend on the parameter ε which is
involved in the discrete model only. The ratio of membrane
permeabilities of particles passing through the membrane
in both directions ρ(qA, qB) = [1 − qA(ε)]/[1 − qB(ε)] also
must be independent of ε. This requires that if qA ≡ 0, qB is
independent of ε, and vice versa.

The frequency of the particle’s jumps through the thin
membrane goes to infinity when ε → 0. If the membrane is
one-sided fully permeable for the particles moving from A to
B, qA = 0, this property is kept for any ε. As it is argued in
Sec. III, if qB depends on ε, then qB → 1 in the limit of small
ε; this assumption ensures that the particle will jump from B to
A not immediately, but after a certain nonzero time. However,
in this case the jump of the particle from B to A results in an
immediate particle jump done in the opposite direction. Then,
the membrane acts as a fully reflecting wall and the selective
properties of the membrane are not shown in the model.

(9) As a special case, we have considered diffusion in a
system consisting of the medium A in which subdiffusion
without absorption occurs and the medium B in which ab-
sorption of the particles occurs and mobility of particles is
substantially slower comparing to the medium A. A similar
problem was considered in [52], where normal diffusion of
particles from bulk liquid phase to porous medium through
boundary film is considered; inside the porous medium parti-
cles adsorption occurs. The amount of adsorbed substance W
evolves over time according to the formula W (t ) = β

√
t + λ,

where β and λ are constants which physical meaning is
discussed in the above cited paper. We note that this function
is obtained from Eq. (89) in the long time limit putting αA = 1,
β = 2C0

√
DA/

√
π , and λ = −γA/κB.

We note that the observation of the temporal evolution
of the amount of substance in the medium A shows the
properties of the process taking place in the medium B. This
is of practical significance in the case when observation of
diffusion in the medium B is not possible (see the discussion
in [50]).

Suggestion: How to include superdiffusion into the model

In the model the kind of diffusion is defined by the
function v which controls the time which is needed to take
the particle’s next step. The function well defines normal
diffusion, subdiffusion and slow subdiffusion. If we were able
to define superdiffusion by the function v, this process could
be included in the model. In such a case, it would be possible,
for example, to determine the Green’s function and boundary
conditions for a system consisting of a subdiffusive medium
and superdiffusive one separated by a thin membrane. The
main problem is that superdiffusion is defined in the CTRW
model as a random walk process for which the mean time
which is needed to take the particle’s next step 〈τ 〉 is finite
whereas the length of a particle jump, which is a random
variable, has an infinite variance. These assumptions lead to
the superdiffusion equation with the Riesz fractional deriva-
tive with respect to the spatial variable [30]. This process is
characterized by the following relation:

〈(�x)2(t )〉 ∼ tβ , 1 < β < 2. (107)

This relation is often treated as the definition of superdiffu-
sion. Due to Eq. (26), putting

v(s) = sβ, (108)

we get 〈(�x)2(t )〉 = 2Dtβ/
(1 + β ). Thus, the relation (107)
is fulfilled supposing 1 < β < 2. However, the interpretation
of the diffusion process generated by Eq. (108) is not obvious
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if β > 1. Let us consider two functions characterizing the ran-
dom walk of the particle, namely, 〈τ 〉 and the frequency of par-
ticle jumps between neighboring sites ν(t ). From Eqs. (26),
(55), and (108) we get

〈τ 〉 =
⎧⎨
⎩

0, β > 1
τ0 �= 0, β = 1
∞, 0 < β < 1

(109)

and

ν(t ) = 2Dtβ−1

ε2
(β )
. (110)

Then, defining superdiffusion by Eq. (108) with 1 < β < 2,
we get from Eq. (109) that the average waiting time for the
particle’s next step is equal to zero. However, from Eq. (110)
we obtain that the frequency of the particle steps is anoma-
lously large and goes to infinity in the limit of long time
even for nonzero ε. Thus, the interpretation is that extreme
high frequency of particle’s steps leads to 〈τ 〉 = 0. Such an
interpretation may be considered controversial. Moreover, it
is also not clear if Eq. (107) alone defines superdiffusion
(see the discussion in [53]). In a lot of physical models the
assumptions that simplify considerations but which interpre-
tation is not obvious are made. However, such models can
be useful and provide the results confirmed experimentally.
The problem of whether superdiffusion can be included in the
model using the function v [Eq. (108)] with β > 1 requires
further considerations which will be presented elsewhere.
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APPENDIX A: HOW TO CALCULATE THE INVERSE
LAPLACE TRANSFORM

One of the main problems in the presented model is the
calculation of the inverse Laplace transform. For the case of
classic subdiffusion, the following equation is useful:

L−1[sνe−asβ

] ≡ fν,β (t ; a)

= 1

tν+1

∞∑
k=0

1

k!
(−kβ − ν)

(
− a

tβ

)k
, (A1)

a, β > 0; the function fν,β is a special case of the Wright
function and the H-Fox function. The following theorem can
be also useful [54]:

Let ĝ(s) → 0 when s → 0, Re s < c, c is a positive real
number, and ĝ does not have any singularities except the point
s = 0, which is a branch point. Then, if

ĝ(s) = sα

∞∑
n=0

ansnβ, (A2)

where β > 0, then

g(t ) = 1

tα+1

∞∑
n=0

an


(−α − nβ )

1

t nβ
, (A3)

and in Eq. (A3) all terms for which α + nβ is a natural number
are omitted.

If the inverse Laplace transforms cannot be calculated
using standard formulas, we use the series expansion of the
transform with respect to s. For a typical situation we have
f̂ (s)e−bsα = e−bsα ∑∞

n=0 ansβ+nν , α, b > 0, and we calculate
the inverse Laplace transform term by term using Eq. (A1).
The functions obtained in such way can be considered in the
limit of small s, which corresponds to the limit of long time.
Then, the first few terms of both series (A2) and (A3) can be
taken into account. To roughly estimate the time for which
obtained functions are correct, we assume that the last term
of the reduced series labeled by n is much larger that the
next one. Applying this rule to both series (A2) and (A3), and
putting n = 1, a = |a1/a2|, and α = 1 we get

sβ � a ⇔ tβ � |
(−1 − β )|
a|
(−1 − 2β )| . (A4)

To calculate the inverse Laplace transform of the Green’s
functions for slow subdiffusion, the following strong Taube-
rian theorem can been used [55]:

If φ(t ) � 0, φ(t ) is ultimately monotonic like t −→ ∞, R
is slowly varying at infinity, and 0 < ρ < ∞, then each of the
relations

φ̂(s) ≈ R(1/s)

sρ
(A5)

as s −→ 0 and

φ(t ) ≈ R(t )


(ρ)t1−ρ
(A6)

as t −→ ∞ implies the other.
The following formula is also helpful when analyzing the

slow subdiffusion process:

L−1

[
f̂

(
1

s

)
ĝ(s)

]
= f (t )g(t ), (A7)

where s → 0, t → ∞, and f is a slowly varying function. The
“heuristic” derivation of this formula is as follows. Since for
slowly varying function there is f (u/s) ≈ f (1/s) when s →
0, we have

∫ ∞
0 e−st f (t )g(t )dt = ∫ ∞

0 e−u f (u/s)g(u/s)du/s =
f (1/s)

∫ ∞
0 e−st g(t )dt .

APPENDIX B: DERIVATION OF EQS. (102)–(106)

The generating function of Eq. (100) is given by Eqs. (11)
and (12) for R = 0. Taking into account Eq. (101), the prob-
ability that the particle does not perform any step in the time
interval [0, t] and continues to exist at time t reads as

Up(t ) = {1 − p[1 − ρ(t )]}
[

1 −
∫ t

0
ω(t ′)dt ′

]
. (B1)

The Laplace transform of probability P(m, t ; m0) is

P̂(m, s; m0) = Ûp(s)S(m, ω̂p(s); m0). (B2)

Assuming ϕ(t ) = γ e−γ t we get ρ(t ) = e−γ t . Then, from
Eq. (101) we get

ω̂p(s) = (1 − p)ω̂(s) + pω̂(s + γ ). (B3)

Supposing ω̂(s) = 1/[1 + ε2v(s)/(2D̃)], we get for small ε

ω̂p(s) = 1 − ε2

2D̃

[
(1 − p)v(s) + pv(s + γ )

]
(B4)
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and

Ûp(s) = ε2

2D̃

[
(1 − p)

v(s)

s
+ p

v(s + γ )

s + γ

]
. (B5)

From Eq. (17), in which R = 0, and Eqs. (8), (9), and (B2)–
(B5) we obtain Eq. (102). Next, due to the relation

L−1[F (s + γ )((s + γ ) f̂ (s) − f (0))]

=
∫ t

0
e−γ (t−t ′ )F (t − t ′)

d

dt ′ (eγ t ′
f (t ′))dt ′, (B6)

we get Eq. (103). Assuming v(s) = sα , 0 < α < 1, we get
Eq. (104). Due to the equation

∂α
C f (t )

∂tα
= L−1[sα f̂ (s) − sα−1 f (0)] (B7)

and Eq. (B6) we obtain Eq. (105). To derive Eq. (106)
from Eq. (104), we use the approximation (γ + s)β ≈ γ β (1 +
βs/γ ) under the assumption that s � γ .

[1] R. K. Hobbie and B. J. Roth, Intermediate Physics for Medicine
and Biology (Springer, New York, 2007).

[2] M. Luckey, Structural Biology with Biochemical and Bio-
physical Foundations (Cambridge University Press, New York,
2008).

[3] H. P. Hsieh, Inorganic Membranes for Separation and Reaction
(Elsevier, Amsterdam, 1996).

[4] P. Schumm, C. M. Scoglio, and D. van der Merwe, J. Theor.
Biol. 262, 471 (2010).

[5] W. Zhan, L. Jiang, M. H. Loew, and Y. Yang, Magn. Reson.
Imaging 26, 694 (2008).

[6] L. Tao and C. Nicholson, J. Theor. Biol. 229, 59 (2004).
[7] A. A. Linninger, M. R. Somayaji, M. Mekarski, and L. Zhang,

J. Theor. Biol. 250, 125 (2008).
[8] J. Kim, G. M. Saidel, and S. C. Kalhan, J. Theor. Biol. 251, 523

(2008).
[9] T. Zhang, B. Shi, Z. Guo, Z. Chai, and J. Lu, Phys. Rev. E 85,

016701 (2012).
[10] D. S. Grebenkov, Phys. Rev. E 81, 021128 (2010).
[11] T. Kosztołowicz, K. Dworecki, and K. D. Lewandowska, Phys.

Rev. E 86, 021123 (2012).
[12] T. Kosztołowicz, Phys. Rev. E 91, 022102 (2015).
[13] T. Kosztołowicz, J. Stat. Mech. (2015) P10021.
[14] N. Korabel and E. Barkai, Phys. Rev. E 83, 051113 (2011).
[15] N. Korabel and E. Barkai, Phys. Rev. Lett. 104, 170603

(2010).
[16] N. Korabel and E. Barkai, J. Stat. Mech. (2011) P05022.
[17] D. K. Singh and A. R. Ray, J. Membr. Sci. 155, 107 (1999).
[18] Y. D. Kim, J. Y. Kim, H. K. Lee, and S. C. Kim, J. Membr. Sci.

190, 69 (2001).
[19] R. Ash, J. Membr. Sci. 232, 9 (2004).
[20] S. M. Huang, M. Yang, W.-F. Zhong, and Y. Xu, J. Membr. Sci.

442, 8 (2013).
[21] A. Adrover, M. Giona, M. Grassi, R. Lapasin, and S. Pricl, J.

Membr. Sci. 113, 7 (1996).
[22] M. J. Abdekhodaie, J. Membr. Sci. 174, 81 (2000).
[23] P. Taveira, A. Mendes, and C. Costa, J. Membr. Sci. 221, 123

(2003).
[24] M. I. Cabrera, J. A. Luna, and R. J. A. Grau, J. Membr. Sci. 280,

693 (2006).
[25] G. Peskir and W. Feller, Selected Papers II, edited by R.

L. Schilling, Z. Vondraek, and W. A. Woyczynski (Springer,
Berlin, 2015), p. 77.

[26] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[27] T. Kosztołowicz, Int. J. Heat Mass Transfer 111, 1322 (2017).

[28] T. Kosztołowicz, J. Chem. Phys. 146, 084114 (2017).
[29] E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167

(1965).
[30] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
[31] J. Klafter and I. Sokolov, First Steps in Random Walks. From

Tools to Applications (Oxford University Press, Oxford, 2011).
[32] M. A. Rodriguez, G. Abramson, H. S. Wio, and A. Bru, Phys.

Rev. E 48, 829 (1993).
[33] G. Abramson and H. Wio, Phys. Rev. E 53, 2265 (1996).
[34] T. Kosztołowicz, Phys. Rev. E 90, 042151 (2014).
[35] I. M. Sokolov, M. G. W. Schmidt, and F. Sagues, Phys. Rev. E

73, 031102 (2006).
[36] T. Kosztołowicz and K. D. Lewandowska, Phys. Rev. E 90,

032136 (2014).
[37] R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, Phys.

Chem. Chem. Phys. 16, 24128 (2014).
[38] A. V. Chechkin, H. Kantz, and R. Metzler, Eur. Phys. J. B 90,

205 (2017).
[39] S. B. Yuste, L. Acedo, and K. Lindenberg, Phys. Rev. E 69,

036126 (2004).
[40] K. Seki, M. Wojcik, and M. Tachiya, J. Chem. Phys. 119, 2165

(2003).
[41] K. Seki, M. Wojcik, and M. Tachiya, J. Chem. Phys. 119, 7525

(2003).
[42] V. Méndez, S. Fedotov, and W. Horsthemke, Reaction-

Transport Systems: Mesoscopic Foundations, Fronts, and Spa-
tial Instabilities (Springer, Berlin, 2010).

[43] B. I. Henry, T. A. M. Langlands, and S. L. Wearne, Phys. Rev.
E 74, 031116 (2006).

[44] S. I. Denisov and H. Kantz, Phys. Rev. E 83, 041132 (2011).
[45] F. Oberhettinger and F. Badii, Tables of Laplace Transforms

(Springer, Berlin, 1973).
[46] P. Liu and L. Zhang, Separat. Purificat. Technol. 58, 32

(2007).
[47] Y. Zhao, E. Abdullayev, A. Vasiliev, and Y. Lvov, J. Colloid

Interface Sci. 406, 121 (2013).
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