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The evolution of self-gravitating systems, and long-range interacting systems more generally, from initial
configurations far from dynamical equilibrium is often described as a simple two-phase process: a first phase of
violent relaxation bringing it to a quasistationary state in a few dynamical times, followed by a slow adiabatic
evolution driven by collisional processes. In this context the complex spatial structure evident, for example, in
spiral galaxies is understood either in terms of instabilities of quasistationary states or as a result of dissipative
nongravitational interactions. We illustrate here, using numerical simulations, that purely self-gravitating systems
evolving from quite simple initial configurations can in fact give rise easily to structures of this kind, of which
the lifetime can be large compared to the dynamical characteristic time but short compared to the collisional
relaxation timescale. More specifically, for a broad range of nonspherical and nonuniform rotating initial
conditions, gravitational relaxation gives rise quite generically to long-lived nonstationary structures of a rich
variety, characterized by spiral-like arms, bars, and even ringlike structures in special cases. These structures
are a feature of the intrinsically out-of-equilibrium nature of the system’s collapse, associated with a part of the
system’s mass while the bulk is well virialized. They are characterized by predominantly radial motions in their
outermost parts, but also incorporate an extended flattened region which rotates coherently about a well-virialized
core of triaxial shape with an approximately isotropic velocity dispersion. We characterize the kinematical and
dynamical properties of these complex velocity fields and we briefly discuss the possible relevance of these
simple toy models to the observed structure of real galaxies, emphasizing the difference between dissipative and
dissipationless disk formation.
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I. INTRODUCTION

The dynamical evolution of many particles solely inter-
acting by Newtonian gravity is a fundamental paradigmatic
problem in physics, which is essential for the modeling and
interpretation of astrophysical structures. The study of this
problem can also be placed in the broader framework of
long-range interactions, which, from the point of view of
statistical mechanics, share essential features (for a review
see, e.g., [1–3]). An approach based on equilibrium statistical
mechanics (for the case of gravity see, e.g., [4,5]) is physically
relevant to such systems only on timescales that are very long
compared to the those characteristic of the mean-field dy-
namics driven by the collective force fields sourced by many
particles and described by Vlasov equations. This dynamics
leads typically to dynamical equilibria referred to variably
as virial equilibria, collisionless equilibria, or quasistationary
states (QSSs); we will adopt the latter term here. These states
are interpreted as stationary states of the appropriate Vlasov
equation. Such states can also manifest instabilities leading
to further evolution, giving rise, for example, to changes
in symmetry (through radial orbit instability) and/or to the
development of complex spatial structure (through, e.g., spiral
wave instabilities). On longer timescales, diverging in parti-
cle number when expressed in terms of the dynamical time

characteristic of the mean-field time and described theoret-
ically by a broader framework than the Vlasov equations
incorporating collisional terms, such systems then typically
evolve adiabatically through a QSS, finally evolving to ther-
mal equilibrium if such a state is well defined (see, e.g.,
[1,6–11].)

For the case of gravity in three dimensions, numerical
studies indicate (see, e.g., [12] and references therein) that col-
lisional evolution is driven primarily by two-body collisions
on a timescale of the order of τcoll ∼ [N/ ln(N )]τdyn, where
τdyn ∼ 1/

√
Gρ (where ρ is the system’s average density), as

originally argued by [13]. In most astrophysical systems the
timescale for such relaxation is this much longer than the
Hubble time and their dynamics, on relevant timescales, is
thus expected to be accurately described by the collisionless
(mean-field) dynamics. The framework for the study of stellar
and galactic dynamics (see, e.g., [14]) is thus that of the
collisionless Boltzmann equation (i.e,. the Vlasov equation
coupled to the Poisson equation). Because of the extremely
long timescale of collisional relaxation, the assumption of sta-
tionarity is often used as a working hypothesis for studying the
structure of galaxies, with possible secular evolution through
collisionless dynamics. In this context the striking spatial
structuration of galaxies, most evidently spiral structure, has
been described analytically in terms of instabilities of such
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QSSs (see, e.g., [15] and references therein). With modern
numerical studies of galaxy formation (see, e.g., [16–24] and
references therein) there has been extensive study of the origin
of such structure, but an essential role in its generation is
then played by dissipative nongravitational processes. In this
paper we report results showing that structures of this kind can
arise purely within the restricted framework of self-gravitating
systems. Further, these structures, despite the fact that they
are generated by a collisionless dynamics, are the result of a
far-from-equilibrium state which persists for times which are
very long compared to the dynamical time on which the initial
approximate virialization of the system occurs.

To study these transient configurations we evolve numer-
ically, using gravitational N-body simulations, a set of toy
models; this allows us to understand the basic physical pro-
cesses which give rise to such out-of-equilibrium structures.
The relaxation of isolated self-gravitating systems from sim-
ple initial conditions (ICs), of the kind we consider here, has
been extensively studied in numerical simulations over several
decades (see, e.g., [25–32]). The focus of such studies has
almost exclusively been on the formation and properties of
the virialized structures which are very efficiently produced
by the collapse’s dynamics. In particular, in the context of
the theory of galaxy formation, there was much interest in
the capacity of such ICs to produce structures resembling
elliptical galaxies. The focus of our study here is instead on
an aspect of these systems which has been overlooked: the
production of rich transient structures from the small but non-
negligible fraction of loosely bound and ejected mass which
is very generically also produced by the relaxation process
[33–35]. This phenomenon is of basic theoretical interest
and potentially of considerable relevance to understanding
astrophysical structures. In a recent article [36], we have
shown that, starting from a specific class of simple idealized
IC, uniform rotating ellipsoidal configurations, the relaxation
of the system under its self-gravity typically leads to extended
transient structures resembling qualitatively that of the outer
parts of spiral galaxies. In the study reported in this paper,
we investigate a much broader range of ICs, with a greater
range of particle number, and whether these phenomena occur
more generically. Our principle finding is that the generation
of such structures, which, although transient in nature, may
be very long-lived (in units of the system’s characteristic
dynamical time), is indeed a quite robust and generic feature
of violently relaxing systems. Further, the morphologies of the
structures produced are even more rich and diverse than we
had anticipated.

The spiral-like structures generated far out of equilibrium
in the systems we study arise in a manner very different from
that usually envisaged in the modeling of such structures in
the astrophysical literature. The mechanisms proposed are
perturbative in nature, envisaging the spiral-like structure as
the result of instability of an equilibrium disk configuration
(see, e.g., [14,15]). In addition, it is well known that the
formation of flat disklike configurations can be obtained with
simulations of collapsing spheroids where, in addition to
gravity, the dissipative effects of several astrophysical pro-
cesses are taken into account (see, e.g., [16–22] and references
therein). Indeed, in this context, an indispensable element
for the appearance of such structures is the inclusion of gas

with a dissipative dynamics (e.g., cooling). The principle
motivation for including this dynamics was initially to allow
such structures to be produced. The central finding of our
study, in contrast, is that disklike configurations with transient
spiral arms and with bars and/or rings may be produced by
a purely (i.e., nondissipative) gravitational dynamics. We will
discuss below in further detail this essential difference with
respect to previous works in the literature. We also stress the
peculiar features of the complex velocity fields generated by
the gravitational dynamics we have investigated, which are
different from the structures of this kind generated by dissi-
pative dynamics. Indeed, while in the latter case the velocity
fields are essentially dominated by rotational motions, in the
former case these show different regimes and are essentially
radial in the systems’ outermost regions.

The article is organized as follows. In Sec. II we describe
the implementation of the numerical simulations, discussing
our choice of numerical parameters, ICs, and the specific
quantities we have measured. In Sec. III we present our
results, focusing in particular on the spiral-like bars and
rings transients produced. We describe in considerable detail
the mechanism producing them, which varies in detail from
one kind of IC to the other. We turn in Sec. IV to a brief
discussion of the possible relevance to real galactic structures
of our simple models. The differences between dissipative and
nondissipative dynamics in the process of the formation of a
disklike structure are discussed in Sec. V. Finally, in Sec. VI
we summarize our findings and outline some of the many
further questions raised by them.

II. NUMERICAL SIMULATIONS

Our numerical experiments consist of molecular dynamics
simulations of a Hamiltonian system of N-point particles in
an infinite (three-dimensional) domain, interacting by a pair
potential φ which is that of Newtonian gravity with a short-
distance regularization. They have been performed using the
publicly available (and widely used) code GADGET-2 [37], in
the appropriate version (nonexpanding universe, with open
boundary conditions). The regularization of the potential, the
so-called gravitational softening, in this code is implemented
by solving the Poisson equation for spherical continuous
clouds, with compact support of characteristic radius ε (and
total mass equal to that of the particle). The force thus takes
exactly its Newtonian value at separations greater than ε.
The functional form of the regularized potential for r < ε, of
which the exact expression can be found in [37], is a cubic
spline interpolating between the exact Newtonian potential at
r = ε and a constant value at r = 0, with vanishing gravita-
tional force at this point.

A. Precision and softening

For simulations of the dynamics from the IC we consider,
which give rise typically to very significant contraction of the
system, leading to very high densities and short characteristic
timescales, the choice of the force softening length and nu-
merical parameters controlling the accuracy of the time step-
ping and force calculation requires particular care. We have
performed simulations, which we call low precision (LP),
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with the numerical parameters of the code set at the values
suggested by the GADGET-2 user guide [38]. We monitored
the total energy and found that these runs typically conserve
it to within about 0.5%. We then also ran high precision (HP)
simulations using values of the relevant parameters which lead
to energy conservation to within one part in 105.1 We also
monitored conservation of total linear and angular momentum
conservation and observed similar results.

We have run both LP (with N in the range [104, 5 × 105])
and HP (with N in the range 106) simulations of realizations
of our IC (described in detail below) and found no apparent
significant differences for the macroscopic quantities which
we study. In what follows we will report only results for LP
simulations, which likewise give results completely consistent
with the lower N simulations at HP and LP. Thus it appears
that our results are N independent, and represent those of an
N → ∞ limit. However, as we discuss further below, such a
conclusion should be treated with caution.

Our default value of the force softening length (the code’s
parameter ε), as well as that used in the specific simulations
reported below, is 10−3 in the units of length we define
further below. In practice this means it is 10−3 of the smallest
characteristic length in the IC (e.g., the shortest semiprincipal
axis in the case of an initial ellipsoid) and is such that it is
always considerably smaller than the typical size of the system
when it is most contracted. We have also performed extensive
tests to control the effect of varying the force-softening pa-
rameter and found that we indeed obtain very stable results,
provided this condition is respected on the comparison of ε

and the minimal size reached by the whole structure during
the collapse.

We have also run some test simulations in which the par-
ticles have two different masses. Specifically, in a reference
simulation in which all the particles have mass m, we have
resampled randomly with particles of mass α × m and m/α,
with α = 2, 5, 10, determining their number so that the total
mass is fixed. We then studied the spatial and velocity prop-
erties of the two species separately and found them to be in
good agreement both with one another and with the properties
found in the original single mass simulation of the IC. This
provides strong evidence that the dynamics producing the
distributions we have described are indeed representative of
the mean-field (or collisionless) dynamics of the continuum
IC we have sampled. Indeed, this is consistent with what
one would expect as, even for the longest times we simulate
(at most 200 dynamical times), collisional two-body effects
would be expected to be negligible for the particle numbers
we consider even in the virialized core of the system.

B. Initial conditions

We wish to study the evolution of self-gravitating N-body
systems starting from ICs which are sampled from spatial
mass distributions which break rotational symmetry and also
mass distributions which are nonuniform (i.e., for which the

1Specifically, the parameter ErrTolTheta is 10−10 for HP com-
pared to 0.7 for LP, while ErrTolForceAcc is 10−10 for HP and
5 × 10−4 for LP.

mass density is not constant in the compact region where it
is nonzero). Clearly, the space of parameters that describe
a generic IC of this type is infinite. We have chosen three
very simple few-parameter families of such ICs. In order of
increasing complexity, we consider mass distributions which
are (i) uniform ellipsoids, (ii) uniform ellipsoids with a central
spherical region of higher density, and (iii) a collection of
uniform spheres of varying radii with centers randomly placed
in a spherical region. For the initial velocities we consider
only two very simple cases: coherent rigid-body-type rotation
of the whole structure and, in a few cases only, some addi-
tional random uncorrelated motion. The precise details of our
choices for how the different ICs are then parametrized are
given below.

With these choices of ICs we aim to single out the effect of
the initial shape of an isolated mass distribution on its collapse
and subsequent evolution. This aspect appears to have been
largely overlooked in the literature, which has focused instead
mostly on the effect of internal correlations between density
fluctuations, for the case of a spherical cloud [16–22]. As we
discuss below, one of our main results is that the spherical
ICs represent a very peculiar and pathological case that gives
rise to the dynamics that suppresses a common characteristic
feature of the gravitational collapse of isolated overdensities:
the formation of a disklike structure with spiral-type arms that
occurs when the ICs significantly break spherical symmetry.

1. Uniform ellipsoidal clouds

For this class of systems the particles are (i) randomly
distributed, without correlation, with uniform probability in-
side an ellipsoid, and (ii) given a coherent rigid-body rotation
about the shortest semiprincipal axis. The three parameters
which we choose to characterize them are the ratios a1/a3 and
a2/a3 of the two longer semiprincipal axes (a1 � a2) to the
shortest one a3 and the virial ratio associated with the rotation

brot = 2Krot

W0
, (1)

where Krot is the kinetic energy of the rotational motion and
W0 is the initial gravitational potential energy. As mentioned
above, we have considered some numerical experiments in
which we add a random motion in addition to the coherent
rotational one. The amplitude of this motion has been taken
to be a fraction of the order of 10%–20% of the rotational
one. We have not found any significant difference on a macro-
scopic scale, but the transient features like the spiral arms are
indeed more diffuse when random motions have the highest
amplitude we have tested.

We have performed simulations for a large variety of
prolate (i.e., a1 > a2 = a3), oblate (i.e., a1 = a2 > a3), and
triaxial (i.e., a1 > a2 > a3) shapes, as well as the special case
when the cloud is spherical (and thus rotational symmetry
is broken only by the finite-N Poissonian fluctuations). We
have explored the range of values defined by the ratio a1/a3,
a2/a3 ∈ [0.05, 2]. For the velocities we have explored the
range brot ∈ [−1,−0.05]. We report in detail results for just
two representative cases A1 and A2 for which the parameter
values are given in Table I. We report also the value of the
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TABLE I. Values of the relevant parameters (see the text) for the
specific simulations we report here.

Simulation a1
a3

a2
a3

R
a3

|brot| Me
Ms

Nc
�c
�c

λ

A1 2 1 0.2 0.19
A2 2 1.25 1.0 0.30
B1 1.5 1 0.1 0.25 1 0.12
B1a 1.5 1 0.01 0.25 1 0.29
B2 1.5 1.5 0.1 0.50 3 0.29
C1 1 5 0.5 0.28
C2 0.8 10 0.5 0.17

so-called spin parameter as defined in [39,40],

λ = J|E |1/2

GM5/2
, (2)

where J is the total angular momentum of the system, E the
binding energy, M the total mass, and G Newton’s constant.
This parameter is widely used in the astrophysical context
when characterizing the angular momentum of astrophysical
systems (see also, e.g., [41,42]). It simply provides a dimen-
sionless measure of the angular momentum in the natural units
of a self-gravitating system (given by dimensional analysis by
the combination of GM5/2/E1/2). It thus provides an indica-
tion of the degree of rotational support of a self-gravitating
system provided by its angular momentum.

2. Nonuniform ellipsoidal clouds

In this class of systems we consider a coherently rotating
ellipsoidal configuration exactly as described above, but then
modify it in a spherical region around its center, ascribing
a different number (and thus mass density) of uniformly
distributed particles, and only random uncorrelated velocities,
sampled uniformly in velocity space up to a maximal magni-
tude.

We consider only the case that the kinetic energy Ks of
the particles in the spherical region is such that 2Ks = −Ws,
where Ws is their potential energy, i.e., this central region is
initially approximately virialized. The initial conditions are
thus chosen to probe the dynamics of the collapse of a rotating
ellipsoidal cloud which already has a smaller virialized struc-
ture inside it. There are then five parameters characterizing
this family of ICs, which we choose to be a1/a3, a2/a3, R/a3

(where ai are again the lengths of the semiprincipal axes and
R is the radius of the sphere), the ratio Me/Ms of mass (i.e.,
particle densities) in the ellipsoidal region to that in the sphere,
and the ratio brot as given in (1), with W0 the total potential
energy of the configuration of the ellipsoid alone.

We have considered simulations in which brot ∈
[−1,−0.1], which means that in almost all cases all
particles are initially bound. For the other parameters we
have explored a1/a3, a2/a3 ∈ [0.05, 2], R/a3 ∈ [0.01, 0.1],
and Me/Ms ∈ [1/3, 3].

We note that the characteristic time for collapse of the
rotating cloud, in units of the dynamical time of the sphere, is
∼(a3/R)3/2 (̇Ms/Me)1/2. Thus we explore the range in which
this ratio is between about 10–30. We report in detail results

for just three representative cases B1, B1a, and B2, for which
the parameter values are given in Table I.

3. Nonspherical and nonuniform clouds

The third class of models consists of mass distributions
which still rotate coherently, but in which rotational symmetry
is broken in a more random and less idealized manner. Specifi-
cally, we choose Nc points randomly with uniform probability
in a sphere of radius R0. Taking each of these Nc points as
centers, we distribute randomly Np points in spheres of radius
�c centered on them. We calculate the moment of inertia tensor
and use it to determine the direction of the principal axis with
the largest eigenvalue. We give a coherent rigid-body rotation
to the whole cloud about this axis.

For a given total particle number, this is thus a three-
parameter family of configurations. We take these parameters
to be Nc, �c//�c, and brot, where the latter is given again
by Eq. (1) with W0 the total initial potential energy. Here
�c is the mean distance between neighboring clouds �c ≈
0.55(4πR3

0/3Nc)1/3 and the parameter �c//�c thus character-
izes the degree of overlap of the individual clouds. We are
in practice interested in values not so different from unity so
that the initial density fluctuations are not so large and there
is a global collapse of the whole structure (rather than sepa-
rate collapses for the substructures and the whole structure).
We have studied the range of parameters Nc ∈ [3, 50], η =
lc/�c ∈ [0.1, 2], and brot ∈ [−1,−0.1]. We again report re-
sults for just two cases C1 and C2, specified in Table I, whose
features are representative of this class of models.

It is important to note that our random sampling with a
finite number N of particles introduces mass density fluctua-
tions, which are additional to those intrinsic to our continuum
IC. Such density fluctuations can of course play a role in
the dynamics, and as their amplitude is N dependent (with
δρ

ρ
∼ 1/

√
N), one might expect this to induce potentially an

N dependence in our results even for macroscopic results.
However, as detailed above, the parameters of our IC are in
fact chosen so that δρ

ρ
∼ 1, so one might expect the finite-N

fluctuations to be negligible. We discuss in more detail finite-
N effects and the problem of taking the continuum limit in
Sec. III K.

As noted above, this is indeed consistent with our numer-
ical findings over a range of N between 104 and 106. For
this reason we present in the paper only results for the case
N = 106 and do not discuss any further the role of N in
our results. Nevertheless, we caution that it is quite possible
that the physical processes we simulate might have subtle
dependences on N which do not show up clearly in the range
we have simulated. Notably, as illustrated by the study in [43]
of the special case of spherical ICs, such dependences may
arise because the finite-N fluctuations break symmetries of
our continuum ICs.

C. Physical quantities measured

A useful basic quantity to monitor the global evolution of
the system is the gravitational radius defined by

Rg(t ) = GMb(t )2

|Wb(t )| , (3)
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where Wb(t ) is the gravitational potential energy of the bound
particles and Mb(t ) � mN is their mass. To characterize the
system’s shape we compute the three eigenvalues λi (with i =
1, 2, 3) of its inertia tensor, which, in the case of an ellipsoid,
are related to the lengths ai of the three semiprincipal axes by

λi = 1
5 Mb

(
a2

j + a2
k

)
, (4)

where i �= j �= k and i, j, k,= 1, 2, 3. It follows that λ1 �
λ2 � λ3. It is standard then to introduce three different com-
binations of the λi: the flatness parameter

ι = λ3

λ1
− 1, (5)

the triaxiality index

τ = λ3 − λ2

λ3 − λ1
, (6)

and the disk parameter

φ = λ3 − λ1

λ2 + λ1
. (7)

These parameters allow one to distinguish not only between
different types of ellipsoids (e.g., prolate, oblate, and triax-
ial) but also between other shapes (i.e., bars vs disks). For
instance, a sphere has (0,−, 0), a disk (1,0,0.5), and a narrow
cylinder (i.e., a bar) (	1, 1,≈1).

In addition to the radial component of a particle’s velocity
�v,

vr = �v ·�r
|�r| , (8)

we define the vectorial transverse velocity as

�vt (r) = �r × �v(r)

|�r| , (9)

i.e., the vector whose magnitude is that of the nonradial com-
ponent of the velocity, but oriented parallel to the particle’s
angular momentum relative to the origin. We will denote the
average of a quantity in a spherical shell about radius r by
〈· · · 〉. Coherent rotation of all the particles in the shell about
the same axis then corresponds to 〈|�vt |〉 = |〈�vt 〉|. Furthermore,
we consider the anisotropy parameter

β(r) = 1 −
〈
v2

t

〉
2
〈
v2

r

〉 , (10)

where 〈v2
t 〉 and 〈v2

r 〉 are, respectively, the average square
value of the transversal and radial velocities. The anisotropy
parameter has the following limiting behaviors: β → 0 for an
isotropic velocity distribution and β → 1 when 〈v2

t 〉 � 2〈v2
r 〉,

i.e., when the motion is predominately radial.
To characterize the kinematics further, we also consider the

different components of the radial acceleration, which can be
decomposed as

ar = v̇r − v2
t

r
= v̇r − ac, (11)

where ac is the magnitude of the centripetal acceleration
associated with the transverse component of the velocity. To

quantify in a simple manner the degree of circular vs radial
motion, we will consider the ratio

ζ = 〈v̇r〉
〈ar〉 . (12)

When particles’ motion is purely circular we thus have ζ =
0, while if it is purely radial we have ζ = 1; thus ζ captures
different properties of the velocity field than β, although they
both tend to unity when the motion is purely radial.

III. RESULTS

The phenomenology of the gravitational collapse of the
IC we study is, in many respects, very similar to that of
nonrotating isolated clouds discussed at length in previous
works. We first summarize these behaviors and in particular
recall the mechanism by which particles may gain enough
energy even to be ejected from the system. We then subse-
quently focus on the features of the evolving system which are
specifically associated with the initial rotational motion and in
particular the emergence of long-lived spiral-like structure as
well as transient bars and/or rings in the spatial configuration.
We recall that all the results presented explicitly in the article
are for simulations with N = 106 particles, but that all the
quantities considered have shown no apparent N dependence
for simulations of the same IC with N ranging from 104

to 5 × 105. As noted above, this corresponds to there being
no apparent dependence on the fluctuations associated with
the particle sampling of the continuous mass distributions
characterizing the initial conditions.

A. Units

As the unit of length we take a3 = 1 for our first two
families of ICs and R0 = 1 for the third one. As the unit of
time we then take

τd =
√

π2

8GM
, (13)

i.e., the characteristic time for the collapse of a sphere of
radius unity (where M is the total mass of the system). Finally,
particle energies will be given in units of GMm, where m is the
particle mass (and M = Nm).

B. Collapse and reexpansion

Figure 1(a) shows the evolution of the gravitational radius
(3) for three different initial conditions, which show the
largest and the smallest variation among the ones we have
selected. In the case of A1 and C1 the system, which is
initially far from equilibrium, contracts globally, reaching a
minimum on a timescale of order τd (≈10τd for the case of B1
because of the lower density of the external ellipsoid), then it
reexpands, and, after a number of damped oscillations which
varies, rapidly settles down to a fairly stable value. A similar
behavior is manifested by the virial ratio [Fig. 1(b)] and thus
the stabilization of Rg reflects the relaxation of the system
to a state close to virial equilibrium. As we will see below,
this inference is only approximately true, as a small fraction
of the mass remains in a time-dependent configuration on
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FIG. 1. (a) Gravitational radius as a function of time for different
simulations. (b) Global virial ratio.

much longer timescales. Indeed, it is this fraction of the mass
distribution which we will discuss at length below.

For the cases of A1 and C1 a fraction of the mass is
ejected after the collapse, and as a result the global virial ratio
stabilizes around a value smaller than −1; in the case of B1
the collapse is less violent and there is no mass ejected. We
note that for B1 and C1, like all other simulations of these
classes, the gravitational radius is reduced by a smaller factor
than for the case of homogeneous ellipsoids. Compared to this
case, the fluctuations of the gravitational field generated are
thus much weaker.

C. Particle energies distributions before and after collapse

Figure 2 shows the distribution P(E ) of particle energies
E at two different times in the same three simulations as
in Fig. 1. Plotting these distributions at longer times than
the last one shown, we find no noticeable evolution, i.e.,
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FIG. 2. Energy distribution at t = 0 and t = 30 for simulations
(a) A1, (b) B1, and (c) C1 at different times (see the legend).

these distributions represent well in principle a final stationary
distribution. We see that their qualitative behavior divides
them clearly as in Fig. 1: In the cold simulation A1, the
change in the energy distribution as a result of the dynamics
is much more marked, with (i) a much more widely spread
energy distribution compared to that in B1 and C1 and (ii)
a significant fraction of the mass with positive energy, while
there is a much smaller fraction of (or even no) such particles
in the other cases. In the case of B1 there is a small but non-
negligible evolution of the particle energy distribution, while
C1 represents an intermediate case with respect to A1 and B1.

The correlation between the behavior in Figs. 1 and 2 is
simple to understand: Changes in particle energy are driven by
the variation of the gravitational field and this is much more
violent in the cold cases. In the warmer case the variation
of the field is relatively gentle and mixing in phase space
has time to play a greater role in the relaxation process.
Nevertheless, as we will see, the generation of even a small
number of particles with positive energy or indeed a signif-
icant fraction of bound mass with energy close to zero is
sufficient to produce a considerable and nontrivial evolution
in configuration space.

Let us recall another relevant feature of these energy
changes, which was shown in previous studies of ICs without
rotation [33,34]: The particles which have a large energy gain,
and which thus constitute predominantly both the unbound
and loosely bound mass, are those which lie initially in the
outer part of the structure. In the spherical case, these are the
particles initially in the outer shells, and in the ellipsoidal case,
these are the particles which are at large radii and close to the
longest semiprincipal axis.

The reason for this correlation between the energy gain
or loss and particle initial position is related to the times at
which particles first pass through the center of the structure:
Particles which pass through the center after the bulk of
the particles experience the intense gravitational field which
changes their energy at a time when it is weakening, simply
because the bulk of mass generating it is already reexpanding.
Such particles thus fall into a potential which is deeper than
the one they subsequently climb out of and they thus have
a greater net boost of their energy. In the ellipsoidal case it
is quite evident why the initially outermost particles arrive
late: In the evolution from such an initial condition, collapse
occurs first along the shortest axis and last along the longest
axis [44]. In the quasispherical case the reason for the average
late arrival of particles in the outermost shells is more subtle
as it is due to a boundary effect: Particles near the boundary
experience a lower average density and thus have a longer fall
time (see [33] for a detailed discussion).

D. Mean density profiles

Figure 3 shows the mean density averaged in radial shells
of equal logarithmic thickness �[ln(r)] as a function of radius
for the same simulations as in Figs. 1 and 2.2 We again obtain

2We take as the center the particle which has the lowest grav-
itational potential. Note that we will use the same radial binning
everywhere below when we compute averages.
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FIG. 3. Density profile for simulations (a) A1, (b) B1, and (c) C1
at different times (see the legend). The solid line corresponds to a
decrease proportional to r−4.

results very similar to that for nonrotating ICs, with cold ICs
producing (i) a more compact core than the warmer ICs and
(ii) a characteristic 1/r4 decay of the density at large radii.
As discussed, for example, in [34], this latter behavior is
associated with the very loosely bound particles on highly
radial orbits and can be explained in a simple manner by
considering that the outermost particles move approximately
in a central and stationary potential. In these plots the system
appears to settle down to a stationary form on the same
timescales as inferred from the plots in Figs. 1 and 2 (and
which are slightly longer for the warm cases). We can just
make out the signature of some continuing evolution at the
largest radii. It is this which we now focus on.

E. Nonstationary features at longer times

We consider here the nonstationary features of the mass
distribution at longer times, of which the very nontrivial
distinctive space and velocity structure is a result of the
initial rotation of the IC. In space this can be seen very
clearly in the (linear scale) snapshots of the evolving spatial
configurations projected on the plane orthogonal to the initial
axis of rotation of the IC, shown in Fig. 4. We focus first
on how to quantify this nonstationary evolution which shows
the features common to all the different ICs and then discuss
subsequently the genesis of the large variety of different forms
which are evident.

Figure 5 shows the particle energies averaged in shells
as a function of radius for the same three simulations as
in Figs. 1–3 and for two different times. In all cases, the
nonstationarity is now clearly visible in the propagation to
larger radii of the outermost mass, both loosely bound and
unbound. This nonstationarity is essentially a consequence of
the fact that the mass in this energy range has a characteristic
time for virialization with the rest of the mass, which diverges
as E → 0 from below; to a first approximation the potential
that is moved is central and stationary, with an associated
Keplerian period τ ∼ 1/(−E )3/2.

Figure 5 shows clearly that the structure can be divided
into an inner stationary part and an outer nonstationary part.
Examination of the properties in velocity space, illustrated in

Figs. 6–8, show that a further refinement into three distinct re-
gions is warranted. (i) For r < R1 and β(r) ≈ 0, correspond-
ing to an isotropic velocity dispersion, there is neither net
radial flow nor net rotation (i.e., both 〈vr〉 ≈ 0 and |〈�vt 〉| ≈ 0).
This part of the distribution is the virialized core showing the
approximately flat density profile discussed above.

(ii) For R1 � r � R2, there is no net radial flow (i.e.,
〈vr〉 ≈ 0), but there is a significant net rotation. Indeed, |〈�vt 〉|
grows monotonically as a function of radius until it reaches
a value where it is comparable to 〈|�vt |〉, and this remains so
as both quantities slowly decline over the radii up to R2. This
latter scale is defined such that 〈vr〉 > |〈�vt 〉| for r > R2. Thus
the rotational motion grows until it is close to a completely
coherent one around a single axis. Correspondingly, ζ is much
smaller than unity as v̇r is small compared to ac; this region
corresponds to the flattened part of the distribution where
rotational motions dominate.

(iii) For r > R2, net outward radial motion dominates [i.e.,
〈vr〉 > 〈|�vt |〉 ≈ 0, β → 1, and ζ → 1 (as ar ≈ v̇r)] and the
subdominant transversal component of the velocity decays
monotonically towards zero. We note that in B1 this region
is negligible as there is almost no ejected mass.

The scale R1 does not evolve significantly with time,
corresponding to the stationarity of the region inside it. The
scale R2, which corresponds approximately to the transition
from bound to unbound mass, increases monotonically with
time. Indeed, the mass distribution in both the outer part of
the central region and the entire outer region is manifestly
nonstationary on these long timescales and remains so for
arbitrarily long times.

A comparison of Fig. 4 with Figs. 6–8 shows a rather
interesting property of this class of models: The more the
shape of the structure formed after the collapse deviates from
axisymmetry, the larger the radial velocity is at large distance
from its center. In addition, we stress that Figs. 6–8 show
the average components of the velocity in spherical shells,
while the actual velocity fields are characterized by large
anisotropies; most notably, the amplitude of the radial velocity
is correlated with the semimajor axis. These features must be
considered when comparing results of this class of simulations
with observations (see Sec. VI).

F. Emergence and evolution of spiral structure

Detailed study of the temporal evolution of the configura-
tions confirms that the mechanism for generation of the spiral-
like structure evident in Fig. 4 is indeed the strong injection
of energy given to particles which pass through the center of
the system just after the time of the maximal compression.
This gives these particles a significant radial component of
their motion added to the initial rotational motion. The radial
distance these particles subsequently travel, once they are
outside the core, because of approximate conservation of
angular momentum, is correlated with the angle they move
through: Particles which have larger radial velocities initially
thus trail behind particles with smaller radial velocities. For
this process to generate a spiral-like structure, the only nec-
essary additional ingredient is that the distribution of the
directions of motion of these particles is anisotropic. This is
indeed the case starting from these ICs. As we have discussed
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FIG. 4. Density map of several snapshots of the different simulations at the indicated times. The rows, from top to bottom, are for A1, A2,
B, B1a, B2, C1, and C2. The columns, from left to right, are for t = 0, t = 2τmax, t = 5τmax, t = 10τmax, and t = 20τmax, where τmax is the time,
determined approximately in each numerical simulation, at which the gravitational potential reaches its maximum value, which corresponds
to an estimate of when the system reaches its greatest contraction. The color code is logarithmic in the density. The particle positions are
projected on the plane orthogonal to the axis of initial rotation and the direction of this initial rotation is counterclockwise in these plots.

above, as for cold nonrotating ICs, the particles which gain
energy are those which lie farthest from the origin initially.
In the case of an ellipsoid, the radial motion arising from
the energy injection is thus preferentially correlated with the

longest semiprincipal axis. Asymptotically, the motion of the
particles with positive energy, which are farthest out, becomes
purely ballistic and radial. As a result, the spiral-like structure
is frozen and stretches more and more. Nevertheless, this
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FIG. 5. Energy profile for simulations (a) A1, (b) B1, and (c) C1
at different times (see the legend).

intrinsic nonaxisymmetry of the disk is typically not yet so
marked even at the quite long times we show in our plots.

We consider now in more detail the different forms arising
from the range of ICs that we have selected. We recall that
the first two simulations A1 and A2 in Fig. 4 show the
evolution of two prolate ellipsoids (see Table I). In both cases
the collapse is quite violent, with the system undergoing a
very strong contraction. This leads to the production of a
significant fraction (about 10%) of positive-energy particles.
The collapse of most of the mass occurs along the direction of
the initially shortest semiprincipal axis, while the subsequent
marked expansion of the system is along the direction of the
longest semiprincipal axis.

Simulation B1 shows a very similar morphology, but the
spiral-like arms are markedly more wound up than in A1 and
A2. Nevertheless, the basic process leading to the formation
of this structure is essentially the same, with an anisotropic
energy injection correlated with the axis along which particles
arrive latest. This difference in the winding in particular is a
direct result of a much less violent collapse, in which only
a relatively small fraction of the total mass participates. As
a result, the radial velocities injected into particles along the
longest semiprincipal axis are smaller and the particles thus
travel a smaller radial distance as they rotate with their initial
rotational motion. The outer shells initially collapse toward
the center in a contraction which is fastest along the shortest
semiaxis. This contraction enhances the initial anisotropy of
the system, which also leads to a transient bar structure, which
we discuss in greater detail below.

In B1a, in which the core is a factor 10 less extended than in
B1, the evolution is very similar, except for the morphological
details of the bar and spiral arms. This test shows that the
precise morphology of the system formed after the collapse
depends sensitively on the features of the IC.

The simulation B2 likewise is characterized by a very
anisotropic collapse, but as it is an oblate ellipsoid, the con-
traction occurs along the direction of the shortest semiprinci-
pal axis, and approximate symmetry about this axis is main-
tained. The contraction does not change the particle energy
distribution very significantly, but is enough to give to some
particles a radial velocity component directed outward. In
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FIG. 6. Velocity field for run A1. (a) Particles’ velocity and its
components averaged in radial shells, as a function of radius, for
two different times (symbols denote t1 = 30 and lines t2 = 60).
(b) Functions (i) β(r) and (ii) ζ (r) (see definitions in the legend)
at two different indicated times.

this case the particles which arrive late during the collapse
are those initially close to the outer shells of this plane of
symmetry, and as they reexpand outward they give rise to
a quite different spiral-like structure with flocculent multi-
ple arms. These appear to be seeded by the growth of the
density fluctuations in the system during its collapse phase;
for this reason we expect that these features depend on the
amplitude of the initial density fluctuations (see the discussion
in Sec. III K). In addition, a transient ring structure emerges,
which we discuss further below.

In B1, B1a, and B2 there is, because of the much more
gentle collapse, very little or no ejected mass (for B1; see
Fig. 7) and the motions are only predominantly radial at longer
times and only at the very largest distances. Likewise, the
region where the coherent rotational motion is dominant with
respect to the radial motion is much more extended than for
the case of, e.g., simulation A1. Differently from the other
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FIG. 7. Same as in Fig. 6 but for run B1.

cases, we observe in B2 that there appear to be two distinct
phases in which we see quite different spiral arms emerge.

Simulations C1 and C2 show the typical behavior we
observe in this class of more inhomogeneous and anisotropic
ICs. Transient structures similar to those in the other cases
again emerge and the same basic physical mechanism is at
play. The spiral arm structure which forms after the collapse
is clearly less axisymmetric, reflecting the lower symmetry of
the IC. Both the visual appearance and the structure in velocity
space (see Fig. 8) show that the resultant structures are more
similar to A1 or A2 than to B1 or B2. This reflects the fact that
the collapse is indeed stronger in these cases.

G. Formation of bar structures

We have noted that the structures we observe are gener-
ically nonaxisymmetric (except in specific cases like B2,
where the axisymmetry of the IC survives the collapse phase
better). Thus, not only is the configuration which resultsvery
flat along the axis parallel to the initially shortest semiprinci-
pal axis, but a coherent anisotropic structure resembling a bar
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FIG. 8. Same as in Fig. 6 but for run C1.

emerges in the plane defined by the two longer semiprincipal
axes in the IC. This anisotropy is, as one would anticipate,
present not only in configuration space, but also in the velocity
field.

Figure 9, showing several snapshots of B1 projected in
the x-y plane, illustrates how these transient features form
and grow. The particle distribution has been coarse grained
onto a 323 grid and the average velocity determined in each
cell. We see that, up t ≈ 15 when the global collapse of the
system occurs, the velocities are essentially rotational, but
progressively develop an inward radial component, simply be-
cause of the collapse dynamics. During the phase of maximal
contraction, the particles originally farthest out, i.e., along the
initial semiprincipal axis, gain a radial velocity component di-
rected outward, but their total velocity remains predominantly
rotational. The particles closer in initially, on the other hand,
have lower energy and remain more bound around the central
structure. Thus the two arms which emerge clearly are formed
from two groups of particles which initially were located at
opposite ends of the longest principal semiaxis. For longer
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FIG. 9. Spatial evolution of B1 (coarse grained on a grid) on the
x-y plane of the particles that form the bar or arm structures at t = 25.
The times are (a) t = 10, (b) t = 5, (c) t = 20, and (d) t = 5. We
have plotted the coarse-grained distribution (see the text) with the
corresponding velocity vector.

timescales, i.e., t > 50, the spiral arms and the bar structure
start to be washed out by the radial component of the motion.

H. Formation of ring structures

We have noted the formation of a time-dependent ringlike
structure in simulation B2 at t ≈ 10, in the plane correspond-
ing to the two largest initial principal semiaxes. As can be
seen in Fig. 10, this is indeed a local density enhancement
which expands outward in time. Investigation confirms that
it is generated by a fraction of particles moving outward at
higher than average radial velocity. These are particles which
were initially in or near the outermost radial shells in the plane
of the oblate IC and which received a strong energy injection
from the time-dependent potential generated by the collapse
along the shortest axis. As these particles carry also the initial
velocities of the rotation about this axis, the ring also rotates
coherently. It persists up to the end of our simulation at
t = 50. As noted, we have varied the ratios a1/a3 and a2/a3,
for the more general case of a triaxial ellipsoid, in a relatively
wide range. We have found that, whenever we are close to an
oblate ellipsoid, such a ringlike structure is formed.

I. Shape parameters

As we have discussed, the particles which gain the most
energy are those which are initially farthest away from the
center. For ICs like the ones we consider here, this leads to a
very anisotropic distribution for the loosely bound and ejected
mass. The details of this anisotropic distribution depend on
the ICs. We recall that for cold prolate ellipsoidal ICs without
rotation these particles are focused into two broad jets in
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FIG. 10. (a) Close-up of the central part of simulation B2 (ran-
domly sampled). (b) Evolution of the density profile of B2. The
position of the expanding ring at different times (see the legend) is
indicated by an arrow.

opposite directions around the initially longest semiprincipal
axis [45]. This is the case simply because the particles farthest
from the center are indeed close to this axis initially. With
additional coherent rotation, as considered here, this jetlike
structure is, as we have seen, transformed into a spiral-like
structure as the particles propagate outward and the axis
defined by the farthest out particles thus remains closely
correlated with the initially longest semiprincipal axis.

In all our simulations the outer part of the structure is cor-
respondingly very flat in the plane orthogonal to the initially
shortest semiprincipal axis. Figure 11 shows the evolution
of the three shape parameters ι, τ , and φ in simulation A1,
separately for the internal particles constituting the core of the
structure [Fig. 11(a)] and for the external particles constituting
the spiral-like arms [Fig. 11(b)], where this division is defined
by the radius at which the measured averaged radial density
n(r) discussed above reaches half its value in the core. In this
case the core is a triaxial ellipsoid with ι ≈ 0.3, φ ≈ 0.1, and
τ ≈ 0.4 and with ι ≈ 0.7, φ ≈ 0.2, and τ ≈ 0.5, respectively.
On the other hand, the external particles are much more flat
with ι ≈ 3, φ ≈ 0.5, and τ ≈ 0.5 in both cases.

A similar behavior is shown by the evolution of the flatness
parameter for the simulations B1 and B2; in these cases ι

is computed by considering only the external, low-energy,
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bound particles. In simulation B1, after the contraction phase
during which ι is large and fluctuating, it becomes of order
one for t > 20. In simulation B2, on the other hand, the
flatness parameter remains of order one at all times without
any significant variation. Simulations C1 and C2 are in this
respect similar to A1 and A2.

J. Substructures

When the initial ellipsoidal deformation is large enough
(e.g., a1/a3 ≈ 2) the collapsing system may fragment into
two or more clumps which eventually merge long after the
collapse; this is the case of A2 (see Fig. 4). Clearly, when the
IC is made up of clumps with small-amplitude fluctuations,
as in C1 and C2, this effect is enhanced. On the other hand,
during the collapse, initial density fluctuations may evolve due
to gravitational instability forming small aggregates which,
after the collapse, may correspond to substructures. These
substructures, which are typically not virialized as they are
subject to strong tidal fields, lie in the same plane defined by
the jets. Eventually they will fall into the largest virialized
object and be destroyed by the interaction with the core.
The formation of substructures, anisotropically distributed
on a planar configuration, around the main virialized object
appears to be a generic result of the evolution from cold ICs
of this type [45,46].

K. Role of density fluctuations and the continuum limit

Let us discuss further the role of density fluctuations in the
collapsing cloud in an appropriate continuum limit defined by
taking N → ∞. How this limit is taken must be specified, as it
is not unique. Indeed, here there are (at least) two evident ways
of taking such a limit, and the role of density fluctuations is
different in each case.

First, if we consider finite-N configurations as Poisson
samplings of continuum configurations with fixed mass den-
sity ρ0, i.e., without any intrinsic density fluctuations, we
can take the limit N → ∞ together with the particle mass
m → 0 so that ρ0 = N × m = const. In this case the density

fluctuations, which are proportional in amplitude to δρ/ρ0 ∝
N−1/2, also vanish. In this case all substructures generated
by the growth of density fluctuations must disappear in the
continuum limit. They can in this sense then be interpreted as
finite-N effects.

On the other hand, we can also take the continuum limit
in a different way, by taking N → ∞ and m → 0 with ρ0 =
N × m = const and with δρ/ρ0 = const (or, more precisely,
keeping the statistical properties of the latter fixed); in this
case the internal fluctuations of the cloud grow in the same
way independently of N and thus they give rise to the same
substructures. Indeed, as it was shown in detail in [33] for
the case of the spherical collapse model, while the whole
system collapses small density fluctuations inside the cloud
grow and form substructures of increasing size with time.
The collapse is halted when the size of nonlinear structures
formed inside the collapsing cloud becomes of the same
order of magnitude as the cloud itself (which meanwhile is
collapsing). Thus, in this process there are two competing
effects: the global monolithic collapse, which is a top-down
process, and the bottom-up mechanism of structure formation.
This latter mechanism is regulated by the properties of density
fluctuations (in our case a simple Poisson distribution).

As final remark we note that the question of how many
particles are in practice needed to simulate accurately the
collisionless limit (up to some specified time) can only be
answered in the context of a given problem and it is in
general a very difficult task to sort out. For instance, it was
recently shown through the study of the evolution a simple
class of initial conditions (initially spherical density profiles)
that there is a distinct N dependence associated with the
presence of instabilities in the collisionless dynamics that
arises because the initial seeds for the instability themselves
depend on N [43]; this dependence on N is very difficult to
find, as it manifests itself only in a very weak dependence of
the time of triggering of the instability and not, at sufficiently
large N , in the properties of the state to which the instability
drives the system.

The continuum limit for the dynamics of our finite-N sys-
tems is given by the Vlasov-Poisson system and in principle
could be simulated numerically directly. While much progress
has been made on the numerical solution of these equation
(see, e.g., [47]), such an approach is, for the present, feasible
numerically only for systems with high degrees of symmetry
and not for those here in which the breaking notably of
rotational symmetry plays a crucial role.

IV. MODELS AND OBSERVED STRUCTURES

Both our initial conditions and the dynamics of the systems
we are studying are highly idealized. In particular, we expect
that in the formation of most astrophysical structures nongrav-
itational processes will play a crucial role (e.g., gas dynamics,
star formation, and feedback from it in galaxy formation).
Thus our models are intrinsically not suitable to provide a
detailed quantitative model for the formation of astrophysical
objects. On the other hand, focusing on the specific case of
galaxy formation, we note that there is in fact little direct con-
straint on initial conditions for it, as the fluctuations measured
in the cosmic microwave background constrain strongly only
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significantly larger scales. Further, the relative importance of
gravity and other forces in shaping galaxies is very uncertain.
As the structures we have seen in our simulations bear a
striking resemblance to spiral galaxies, we believe it is worth
looking more carefully at whether the qualitative features
of these structures are compatible or incompatible with the
observed qualitative properties of galaxies.

A. Morphological features

First we note that there are several very common and
nontrivial features of spiral galaxies, which are accounted
for in this kind of model while they are problematic in
the usual theoretical approaches, in which spiral structures
emerge through instability of an equilibrium disk (see, e.g.,
[14,15]). Our models lead, as we have seen, very easily to
a two-armed spiral structure, which is observationally the
most common kind. Its predominance has been considered
puzzling and is difficult to account for in the usual theoretical
approaches. Further, the pitch angle α, defined as the angle
between the tangent to the arm and the tangent to a circle
at the same angle, gives values in the range 10◦–40◦ in our
simulations (at t = 50) except for the very cold cases like
A1, in which the particles are ejected with very high radial
velocities (leading to an α approaching 90◦). Pitch angles
of this order are typical observationally, while theoretical
models predict much smaller angles and have great difficulty
accounting for those observed [15]. Further, as is almost
invariably the case observationally, the spiral arms formed
in our models are trailing, i.e., the outer tip points in the
direction opposite to rotation [14]. As we have described
above, the spiral-like structure arises precisely because the
particles which are farthest out have, by angular momentum
conservation, smaller transverse velocities and thus lag behind
in the angle they rotate through up to a given time. This is
again an observational fact which does not have an apparent
explanation in the usual theoretical approaches. Finally, our
mechanism produces, by construction, structures which are
nonaxisymmetric and often the central core is barlike. Further,
the spiral arms start at the end of the bar. These properties
likewise appear not only to be compatible with observations
(see, e.g., [15,48]), but to potentially explain them in a very
natural manner which eludes the usual theoretical approaches.

Finally, it is interesting to note that the mass of stars
and gas in the spiral arms and in the outer part of the disk
in general do not exceed the ∼20% of the luminous mass
of the galaxy (see, e.g., [49]). In our simulations we also
find that most of the mass is concentrated in the central bulge
and that the fraction of particles with energy close to or larger
than zero represents a small fraction, typically of the order of
10%–20%, of the total mass.

B. Timescales

We have discussed in [36] some simple considerations
about the compatibility of timescales and length scales with
real spiral galaxies, for the most idealized case of a single
ellipsoidal cloud. Making simple assumptions linking the final
size and velocity scale to those of real galaxies, the collapse
process which generated the structure must be assumed to

occur on a timescale of the order of ∼1Gyr, which is the
characteristic timescale of all out-of-equilibrium transient
structures that are formed in our simulations, i.e., spiral arms,
bars, and ringlike structures. This is much shorter than the age
of the oldest stars in these galaxies (∼10Gyr), which is usually
assumed to correspond also to the age of such structures. From
the observational point of view, however, there is no definitive
evidence establishing the age of spiral arms; rather some
observations have suggested that spiral arms are not long-lived
(see, e.g., [14,15] and references therein). Indeed, the oldest
stars and the galaxy are formed by very different dynamical
processes occurring on very different length scales [the size
of the clouds where star formation occurs is of the order of
10−2–10−1 kiloparsec (kpc), while the size of a typical galaxy
is 10–102 kpc] and thus it is not at all evident that these two
timescales must be of the same order of magnitude.

The second family of ICs we have studied here illustrates
clearly that this timescale inferred from the space and velocity
scales represent only that of the violent collapse leading to
this outer structure, which could quite possibly be dissociated
from that of the formation of the central part of the galaxy,
which could occur much before a secondary collapse of
surrounding matter, giving rise to the disk and extended halo
structure we have described. In this respect it is perhaps useful
to recall that the usual assumption in modeling galaxies as
dynamical equilibria (i.e., as QSSs) is intimately linked to
these considerations of timescales and length scales. Indeed,
if we suppose a star orbits the galactic centers at a distance R,
the number of revolutions it has made in a time T is

nrev = T

2πR/v
≈ 30

T10v200

R10
, (14)

where T10 is the timescale in units of 10 Gyr, v200 is the
velocity in units of v = 200 km/s, and R10 is the radius in
units of 10 kpc.

For stars (or other emitters) moving on closed Keplerian
orbits, with a circular velocity v ∼ √

GM/r, this assumption
(of stationarity) appears to be reasonable only if nrev 	 1,
i.e., if these bodies have characteristic crossing times in the
system considerably longer than its estimated lifetime. For
smaller values they cannot have had the time to attain orbits
in which there is an equilibrium between centrifugal and
centripetal acceleration. The precise value of the number of
revolutions needed to reach a relaxed configuration cannot
be constrained in a simple way theoretically because, as we
have discussed above, it depends on the time in which the
relaxation from an out-of-equilibrium configuration to a QSS
takes place. However, from a qualitative point of view, a
reasonable requirement is that nrev 	 1; only if this condition
is satisfied can the assumption of stationarity possibly be
justified.

For a typical disk galaxy of the size of the Milky Way, with
a characteristic velocity v200 ∼ 1, the number of revolutions is
nrev � 10 for R � 30 kpc only if T10 ∼ 1, i.e., if the age of the
galaxy structure is of order of the oldest stars. If T10 ∼ 1, i.e.,
if the age of the galaxy structure is of order of the oldest stars,
then objects in the inner part of the galaxy (i.e., R < 10 kpc)
have enough time to make nrev � 102, while at larger distances
nrev � 10 and thus the assumption that emitters move on
closed Keplerian orbits appears very difficult to justify for
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the outermost regions of the galaxy. On the other hand, if
the age of the galaxy structure is T10 ∼ 0.1, the assumption
of stationarity clearly cannot be valid at larger radii because
nrev � 10. The out-of-equilibrium scenario of our models for
the outer parts of a galaxy of the size of the Milky Way,
however, is then coherent with the observed velocity and
distance scales.

C. Velocities

The compatibility of the velocity space structure of our
transient structures with observed properties of galaxies is
much less evident. Indeed, a generic feature of the structures
in our simulations, arising from the nature of the mechanism,
is that velocities becomes predominantly radial at large radii.
Extensive observational study over decades, using different
tracers, has placed much constraint on such motions [49] and
indicates that motion in the outer parts of such galaxies is
in fact predominantly rotational [49,50], although significant
radial motions have been detected in many objects [51]. As
discussed in [36] for the results based on simple ellipsoidal
ICs, it turns out that the naive expectation that such motions
are excluded by observations is not confirmed. The reason
is that our velocity fields have a very particular (anisotropic)
spatial structure, which makes it difficult to distinguish them
in projection from rotating disk models. For the broader class
of ICs we have explored here, the same considerations are
valid, as there is a similar kind of correlation between the
velocities and the spatial configuration. Further, we have seen
that different ICs can produce a less violent evolution than in
the pure ellipsoidal model, leading to less radial motion and a
much more extended region in which there is predominantly
rotational motion. Thus the compatibility with observations
of galaxy kinematics depends also on the identification of the
timescales and length scales of the models with those of real
galaxies. In our conclusion below we will comment about the
radial motions observed in our own galactic disk, which are
relevant to understand the possible nonstationary nature of the
outer parts of the disk and of the spiral arms.

V. DISSIPATIONLESS AND DISSIPATIVE
DISK FORMATION

Let us now briefly discuss the difference between the mod-
els that we have presented, where the formation of a disklike
flat structure is originated solely by a gravitational, and thus
dissipationless, dynamics and models in which instead the for-
mation of a disklike structure is driven by dissipative effects.
In standard models of galaxy formation the key element in
the formation of a disk galaxy is the dissipation associated
with nongravitational processes: gas dynamics, cooling, star
formation, etc. The models used when gas dynamics is added
to gravitational physics consider the collapse of isolated and
rotating clouds, like the one we studied here, but solely with
a spherical initial configuration. The central finding of our
study is that disklike configurations with transient spiral arms
and with bars and/or rings in our simulations are formed by a
purely dissipationless gravitational dynamics if the initial con-
ditions break spherical symmetry. There have been attempts
[18] to study the formation of quasiequilibrium configurations

through a purely gravitational and dissipationless collapse
dynamics in which the initial conditions are represented by
isolated, spherically symmetric top hats in solid-body rotation
and in Hubble flow. These initial conditions differ from the
ones we considered in this work by (i) the initial spherical
shape and (ii) the small-scale fluctuations, intended to model
the fluctuations in standard cold dark-matter cosmologies.
Starting from these initial conditions, the QSSs formed are
slowly rotating, are supported by an anisotropic velocity
dispersion, closely resemble elliptical galaxies, and do not
resemble at all spiral galaxies.

The seminal work in [16] described a scenario (then de-
veloped in many other subsequent works) in which elliptical
galaxies are products of a purely gravitational dissipationless
collapse at high redshift, while spirals formed later with con-
siderable dissipation. To simulate such a scenario, dissipative
gas dynamics was included in numerical simulations [19]
in a system with the same class of initial conditions as in
[18]. It is precisely the dynamics of the gas in this two-
component system which leads then to structures resembling
spiral galaxies: a thin disk made of gas and surrounded by
purely gravitational matter. Indeed, since the gas can shock
and dissipate energy it can develop a much flatter distribution
than the dissipationless matter. By adding to the same initial
conditions of [18] other nongravitational effects such as star
formation, supernova feedback [20], and metal enrichment
due to supernovae [21,22], the crucial mechanism for the
formation of the disk and of spiral arms is again played by
dissipative nongravitational processes. These scenarios are
thus completely different in how this structure emerges in our
simulations, which are pure gravitational and dissipationless.

VI. DISCUSSION AND CONCLUSIONS

We have described the results of numerical experiments
exploring the evolution under their self-gravity of nonspher-
ical uniform and nonuniform clouds with a coherent rigid-
body rotation about their shortest semiprincipal axis. We have
focused in particular on the very rich spatial and velocity
space organization of the outer parts of these structures, which
is a result of the combination of the violent relaxation, which
leads to a high-energy tail in the energy distribution, and the
coherent rotation. Under very general conditions spiral-like
structure arises, while more or less evident bars and/or rings
appear depending on the properties of the initial conditions.
These outer parts of the structure are intrinsically nonstation-
ary and continue indefinitely to evolve in time. Although it
will disappear asymptotically, such structure is very long lived
and, in most cases, is still clearly defined at the longest times
we simulate to, of order 100–200 times the dynamical time
(characterizing the time for the formation and the character-
istic time of the virialized core). The particles forming the
spiral arms will escape from the system, if they have positive
energy, or will form an extremely dilute and anisotropic halo;
eventually some of them, those having negative energy, will
return toward the core. On the other hand, the largest fraction
of the mass is bound in a triaxial system.

It is perhaps relevant to remark why this simple path
to producing such a structure in a self-gravitating system
has apparently been overlooked in the literature. Indeed, the
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dynamics of self-gravitating clouds of various forms and with
a wide variety of initial velocity distributions, with and with-
out initial angular momentum, has been studied in depth in
the literature and it may seem surprising that the phenomena
we have discussed have not been noticed. We believe that the
explanation is probably linked to, on the one hand, the small
fraction of mass involved and, on the other hand, the relatively
long timescales on which the system must be monitored.
Indeed, most studies of this kind of system focus on the
relatively short times on which the system appears to virialize
as indicated by global parameters. Further, most studies of this
kind date back two to three decades and include simulations
in which the number of particles was typically of ∼104. In
this case, the high-energy particles which are typically of
order 5%–10% are too few to resolve the structures we have
studied.

The spatial distributions of these transient structures are
all spiral-like, but even within the very circumscribed and
idealized set of ICs we have considered, they show a wide
variety of forms, from ones qualitatively resembling grand
design spiral galaxies to multiarmed and flocculent spiral
galaxies and barred spiral galaxies. The mechanism for pro-
ducing these structures is completely different in its phys-
ical principle from the mechanisms widely considered as
potentially explaining observed spiral structure. Indeed, while
such mechanisms treat the spiral structure as a perturbative
phenomenon, produced by the perturbation of an equilibrium
rotating disk [14,15,52–56], the mechanism at play in our
simulations is intrinsically far out of equilibrium. While our
model is too simple and idealized to provide a quantitative
model for real spiral galaxies, we have noted that, in many
respects, it apparently reproduces very naturally many of their
noted qualitative features.

For what concerns the problem of cosmological galaxy
formation, we note that the monolithic collapse discussed
here is compatible with a top-down structure formation of
the kind that occurs, e.g., in the so-called warm dark-matter
models. On the other hand, in models where dark matter is
cold, structure formation proceeds in a hierarchical bottom-up
manner so that galaxies are formed through an aggregation
(i.e., merging) of smaller substructures. In this respect we
note that when the initial conditions break spherical symmetry
and are inhomogeneous (as for our models C1 and C2),
before the complete monolithic collapse of the whole cloud
there are substructures forming and merging; in this scenario,
because all substructures take part in the whole system’s
collective dynamics, they can finally form coherent structures,
like bars, rings, and spiral arms, which are as large as the
system itself. Thus, the scenario we have discussed is not
in contradiction with the various observational evidence that
merging was efficient in the early universe, but clearly a
comprehensive theory of cosmological structure formation
must be specified by the whole power spectrum of density
fluctuations; however, this is beyond the scope of the present
work.

We will leave for future work some of the questions opened
up by our results. One such question is of course whether
the kind of initial conditions we assume could be produced
easily within a cosmological framework. As mentioned above,
the problem of collapsing clouds has been widely studied in
the context of cosmological galaxy formation; however, these
studies were performed by taking a spherical overdensity,
while we used here more general shapes and a purely grav-
itational (and thus dissipationless) dynamics. In addition, we
note that while this seems to be excluded in typical scenarios
in which structure formation proceeds hierarchically from
very small scales (e.g., cold dark-matter-type scenarios), con-
ditions like those we assume might possibly be plausible in the
case in which initial fluctuations are highly suppressed below
some large scale (e.g., as occurs in warm dark-matter-type
scenarios). A different but complementary direction would
be to explore the additional effects of nongravitational and
dissipative physics, like gas dynamics, modeling the complex
processes inevitably at play in galaxy formation, and how they
may or may not modify the formation and evolution of the
structures we have focused on here.

Finally, it is interesting to mention that, while it has been
known for several decades that the disk of the Milky Way
contains large-scale nonaxisymmetric features, the full knowl-
edge of these asymmetric structures and of their velocities
fields is still lacking. The recent Gaia DR2 maps [57] have
clearly shown that the Milky Way is not, even to a first
approximation, an axisymmetric system at equilibrium, but
that it is characterized by streaming motions in all three ve-
locity components. In particular, it has confirmed the coherent
radial motion in the direction of the anticenter, detected earlier
in [51], up to 14 kpc. In addition, recent analyses of the
radial velocity field in our galaxy by using different data
sets [58,59] provide a great deal of different and corrobo-
rated information about the disk kinematics of our galaxy:
significant departures of circularity in the mean orbits with
radial galactocentric velocities, variations of rotation speed
with position, asymmetries between northern and southern
galactic hemisphere, etc. (note that the analysis of the velocity
fields in external galaxies is model dependent and thus so is
the estimation of radial motions [60]). These features of the
full three-dimensional velocity field seem to be compatible
with the complex velocity fields generated by the gravitational
collapses we have discussed, but a more detailed comparison
of the models and observations is needed.
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