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We analyze the statistical properties of complex systems with specific conservation laws and symmetry
conditions which lead to various constraints and thereby structures in their matrix representation. An increase
of constraints leads to a variation of the spectral statistics from Wigner-Dyson to Poisson limits, but the
eigenfunction statistics remains weakly multifractal in the bulk. For some constraints, the statistics not only
lies between the two limits but is size-independent too, thus indicating a critical point. Our results also reveal
an important trend: While the spectral statistics is strongly sensitive to the number of independent matrix
elements, the eigenfunction statistics seems to be affected mainly by their relative strengths. This is contrary
to a previously held belief of a one-to-one relation between the statistics of the eigenfunctions and eigenvalues
(e.g., associating Poisson statistics to the localized eigenfunctions and Wigner-Dyson statistics to delocalized
ones). This also indicates the existence of new universality classes based on the matrix constraints (different
from the 10 already-known symmetry-based classes).
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I. INTRODUCTION

The missing information due to complexity in a system
manifests itself by full or partial randomization of the matrix
representations of the operators. The statistical behavior of
the complex system can then be described by an appropriate
random matrix ensemble based on the system-specific consid-
erations. The conditions that influence nature of the ensemble
can be divided into two types: (i) the “matrix” constraints
(e.g., conservation laws and symmetries), which affect the
broad structure of a single matrix through transformation
properties and collective relations among the elements, and
(ii) the “ensemble” constraints (e.g., disorder, dimensionality,
and boundary conditions), which manifest themselves through
the ensemble parameters, i.e., the distribution properties of
matrix elements and/or the local relations among them [1].
In the past, there have been many studies of the ensembles
with the matrix constraints related to unitary and antiunitary
symmetries [2–5]. But information about the ensembles with
matrix constraints based on conservation laws, which lead to
specific relations among matrix elements, is still missing. The
appearance of such cases in wide range of complex systems,
e.g., disordered systems [6–8], complex and neural networks
[9–13], and financial markets [14], make their statistical stud-
ies highly desirable. This motivates the present study in which
we seek and analyze a specific class of “matrix” constraints
which may affect the eigenfunction localization (spread of
eigenfunctions in the basis-space) in a way similar to the
influence of disorder (which is an ensemble constraint). Our
primary focus in this work is to probe the influence of matrix
constraints on the connection between degree of localization
of eigenfunctions and the nature of spectral statistics.

The underlying symmetries of a system, e.g., continuous
or discrete, unitary, anti-unitary, or their combinations, can
manifest as matrix constraints if the basis for the matrix-
representation of the operator, e.g., generator of the dynamics,

is chosen appropriately. For analysis of the physical prop-
erties, it is useful to choose the symmetry preserving basis
which in turn puts the constraints on the type of matrix ele-
ments and/or structure of the matrix [3,15,16]. For example,
the matrix turns out to be block-diagonal in the presence of
the unitary symmetries but the chiral symmetry, an antiunitary
one and referred to here as C, leads to an off-diagonal block
structure [3]. The particle-hole symmetry, again an antiunitary
type and referred to here as P , results in both diagonal and
off-diagonal blocks. In the presence of another antiunitary
symmetry such as time-reversal, referred to here as T , the
matrix is real-symmetric but is complex Hermitian. Based
on the combination of theses three fundamental antiunitary
symmetries, the statistical behavior of complex systems can
be classified into 10 universality classes of random matrix
ensembles (based on their transformation properties) [3,16].
A violation of any of the symmetries can lead to a transition
of statistics from one universality class to another [1]. In
the past, the effect of symmetry as well as its violation on
the statistical properties of the spectrum and eigenfunction
dynamics has been studied extensively [2–4]. The presence
of conservation laws along with symmetries, however, may
lead to new structures in the matrix. Although a special class
of structures have been studied in the recent past [17–19],
the information about the role of generic structures in the
eigenfunction localization is still missing. In the present work,
we attempt to fulfill this gap by an analysis of some struc-
tured Hermitian matrix ensembles representing systems with
two fundamental symmetry combinations, namely, chiral with
time-reversal and chiral with no time-reversal [20].

Based on the nature of constraints, a matrix can display
a range of structures, e.g., circulant, Toeplitz, column and
row constraint, Henkel, in full form or in block form, with
elements as real, complex, or quaternion [9,17,19,21,22].
Appearance of such structured matrices in many areas of
physics was already known in the past, but their statistical
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properties were not well-studied so far due to mathematical
complexity involved in their analysis. The latter, however,
can no longer be avoided due to recent applications of such
matrices in the areas of huge technological potential, namely,
artificial intelligence and complex networks. For example,
a reduction of the computational complexity of large-scale
neural networks leads to the structured matrices [9,12,13,23].
This is based on a size-manipulation of the weight matrix,
an important basic tool describing the relation between input
and output of a neural network for the deep neural network
algorithms. (The latter are one of the most successful ma-
chine learning strategies, extensive applied, e.g., for speech
recognition, computer vision, and classification of large data
sets.) Based on the requisite training of the neural network,
the weight matrix can be of various forms, unstructured as
well as structured. An unstructured weight matrix can also
be compressed to a structured form without losing much
accuracy while achieving high compression ratio and high
speedup for a broad category of network models (known as
in deep non-negative matrix factorization (NMF) technique, a
typical model for data representation and feature extraction)
[23]. (Note, although the weight matrix, say W , is usually
non-Hermitian, the stability analysis of the network is often
based on the Hermitian matrix W †W ).

In general, many properties of complex systems can in
principle be described in terms of the eigenfunctions and
eigenvalues of the related matrices. This motivates the present
study in which our main objective is to analyze the effect
of matrix constraints on the relationship between eigenvalues
and eigenfunctions. As mentioned above, the matrix con-
straints can be of many types resulting in a wide range of
statistical behavior but this study is confined to a specific
type, namely, chiral ensembles with real or complex entries
which lead to a crossover of spectral statistics from Poisson to
chiral Wigner-Dyson universality class. Note, for Hermitian
matrices without any other constraint except symmetry, such
a crossover is known to be associated with a localization-to-
delocalization transition of eigenfunction dynamics (referred
to as LD transition hereafter) [1,2,24]. The motivation to con-
sider the ensembles with chirality and with or without time-
reversal symmetry originates from multiple reasons. This not
only helps us to analyze the role of two fundamental sym-
metries along with other matrix constraints, but the chirality
also preserves the Hermitian nature of the matrices which
is relevant for application to a wider range of real physical
systems [8]. It must be indicated here that a consideration
of Hermitian matrices rules out applicability of our results
to a large class of complex networks represented by non-
Hermitian matrices, e.g., biological and ecological networks,
but the analytical approach presented here can be generalized,
with some technical variations, to analyze the non-Hermitian
cases as well as other symmetry cases.

The dimensionality of the system is another important
matrix constraint which governs the sparsity of the matrix
[1,24]. This along with the ensemble constraints (e.g., type
of randomness of the matrix elements) plays a significant
role in the eigenfunction localization. For a specific set of
matrix constraints, it is well known that a LD transition of
the eigenfunctions can be brought about by varying one of
the local constraints, e.g., disorder; a well-known example

in this context is the Anderson transition [24,25]. Here we
consider the reverse question: Can the above transition be
brought about by varying matrix constraints for a fixed set
of local constraints (while keeping the symmetries invariant
to keep the transformation class of the ensemble unchanged)?
In this context, it is important to indicate that a criterion for
Anderson transition is the existence of a size-independent
spectral statistics different from both metal and insulator
regimes, thus implying a new universality class, at the critical
point [24,25]. The standard Anderson ensemble, however,
belongs to a class of Hermitian ensembles with symmetry as
the only matrix constraint. The question is therefore whether a
similar critical statistics can exist for the structured Hermitian
ensembles with additional matrix constraints? As discussed
later, we indeed find the evidence of critical spectral statistics
for four of the five case considered here. (Note, the term “crit-
ical statistics” is usually applied to nonequilibrium statistics,
which remains distinct from equilibrium universality classes
even in infinite-size limit.)

The paper is organized as follows. In Sec. II, we consider
a chiral matrix subjected to five different types of matrix
constraints and discuss their effect on the eigenvalues and
eigenfunctions for each case. In the case of a complex system,
some or all matrix elements are expected to be random and
one needs to consider an ensemble of such matrices. To
compare the effect of different constraints on the statistics,
we choose an ensemble of matrices which consists of the
identical and independent distribution (i.i.d.) of the free matrix
elements, in each of the five cases. As described in Sec. III,
this ensures an analogous form of the ensemble density for
the five cases (required for the comparison of their statistical
properties), which is then used to derive the joint probability
distribution function (JPDF) of the eigenvalues and eigen-
functions. The latter, in principle, can be used to derive the
JPDF of the eigenvalues only or the eigenfunctions only
and their fluctuation measures, but the correlations among
them, caused by the constraints, makes an exact derivation
technically difficult and approximations are necessary. The
insight into the statistical behavior can, however, be gained
by an analysis of the terms present in the JPDF; this is dis-
cussed in Sec. IV. A numerical verification of our theoretical
predictions is presented in Sec. V. We conclude in Sec. VI
with a review of our main results and open questions.

II. HERMITIAN MATRICES WITH CHIRALITY AND
OTHER CONSTRAINTS

A generic (2N + ν) × (2N + ν) chiral Hamiltonian H is
given by

H =
(

0 C
C† 0

)
, (1)

where C is a general N × (N + ν) real, complex, or quater-
nion matrix (based on the nature of exact antiunitary sym-
metry of H). The spectral and eigenfunction statistics of the
matrix H depends on the nature of C. For C subjected to Her-
mitian constraint only, the spectral as well as eigenfunction
correlations in the bulk of the spectrum can be modeled by
the Wigner-Dyson universality classes [1,3–5,15,16]. In the
presence of chirality, however, an additional level repulsion
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appears around zero of the spectrum (the origin), which leads
to different local spectral correlations near zero and away from
the bulk [16,26,27].

For a simple exposition of the influence of constraints
on the eigenvalues and eigenfunctions, we choose C as a
real nonsymmetric N × N matrix with � as its eigenvalue
matrix and U T ,V as the left and right eigenvector matrices,
respectively: U T CV = � with U T V = I and I as the identity
matrix. The left and right eigenvectors Un,Vn (nth columns of
U,V , respectively) of C, corresponding to the eigenvalue λn,
are then given by the following relation:

U T
n C = λn U T

n , C Vn = Vn λn. (2)

With H given by Eq. (1), let E be its eigenvalue matrix
(Emn = enδmn) and O as the eigenvector matrix, with Okn as
the kth component of the eigenvector On corresponding to
eigenvalue en. Equation (2) along with Eq. (1) then implies
that the eigenvalues of H exist in equal and opposite pairs; let
us refer to such pairs as en, en+N with en = −en+N , 1 � n �
N . The eigenvector pair On, On+N corresponding to eigen-
value pair en, en+N can, in general, be written as ( Xn

±Yn
) with

Xn,Yn as column vectors with N real components. Equation
(1) then gives C Yn = en Xn and C† Xn = en Yn, which leads
to C†C Yn = e2

n Yn and CC† Xn = e2
n Xn. The orthogonality

condition O†
n.On+N = 0 along with normalization O†

n.On = 1
further gives [30]

X †
n Xn = Y †

n Yn = 1/2. (3)

With C as a N × N square matrix, it has βN2 free pa-
rameters, with β = 1, 2, 4 for C real, complex, or quaternion
matrix, respectively. Introduction of new “matrix” constraints
results in correlations among the matrix elements and reduces
the number, say M, of the free parameters. Here we consider
following five cases of the matrix C, given in a sequence of
increasing level-repulsion (discussed later).

A. Case 1: Column-constraint circulant matrix

For C as a N × N circulant matrix [28] with its elements
Ckl = c(k−l ) mod N , with k, l = 1 → N , we have the number of
independent elements M = βN . Further imposing the column
as well as row constraints, i.e.,

N∑
k=1

Ckl =
N∑

k=1

Clk = α, (4)

with α as a constant, same for each column and row, M is
further reduced: M = β(N − 1). The circulant constraint on
C leads to the same right and left eigenvector matrices, i.e.,
U T = V and both C,C† have same set of eigenvectors. This in
turn implies Un as the eigenvector of CC† = C†C with eigen-
value |λn|2. Further, as λn = λ∗

N−n for n < N , the eigenvalue
pairs of H matrix en, en+N appears with en = |λn|, en+N =
−|λn|. This gives Xn = Yn = η (Un + (1 − δnN ) UN−n), where
the real constant η can be determined by the orthogonality
condition on On.

As clear from the above, H , given by Eq. (1), has four
matrix constraints (i) chiral symmetry, (ii) Hermiticity, (iii)
circulant constraint, and (iv) column row constraint. Hereafter,
this case will be referred to as the column-constraint chiral

matrix with circulant off-diagonal blocks. The spectral prop-
erties of this case was considered in detail in Ref. [29] and is
included here for a comparison with other cases. As discussed
in Ref. [29], all eigenvectors of H (i.e., On, n = 1, . . . , 2N )
for this case remain extended.

B. Case 2: Toeplitz matrix

Next, we consider C as a N × N Toeplitz matrix with
elements defined as [28]

Ckl = C(k+r),(l+r) = c(k−l ),

∀ k, l = 1 → N and r = 1 → N − k, N − l. (5)

The absence of circulant as well as column constraint in
C reduces the correlations among its matrix elements and
increases the number of its independent parameters M =
(2N − 1)β. The constraints on H are now (i) chirality, (ii)
Hermiticity, and (iii) Hk,N+l = Hk+r,N+l+r = c(k−l ) for all k, l
pairs and it becomes a 2N × 2N chiral matrix with Toeplitz
off-diagonal blocks. This in turn leads to [30]

N∑
n=1

en(X ∗
nk Xnl − X ∗

n,k+r Xn,l+r + Y ∗
nk Ynl − Y ∗

n,k+r Yn,l+r ) = 0.

(6)

The above relations being valid for any (k, l ) pair, this
indicates strong correlations among almost all eigenfunctions
of H (except for those with eigenvalue approximately zero)
and only one of them, say O1, is independent. Another relation
following from the trace of C is

∑N
n=1 λn = ∑N

k=1 Hk,N+k =
NHk,N+k , which can be rewritten as [30]

N∑
n=1

λn = N
N∑

n=1

en (X ∗
nk Xnk + Y ∗

nk Ynk ), for k = 1, . . . , N.

(7)

The above relation although not used in present analysis is an
important relation connecting the eigenvalues of C with the
eigenfunctions of H .

C. Case 3: Column constraint matrix with same diagonals

C is now obtained by relaxing the Toeplitz constraint and
by imposing the column as well as row constraint along
with the condition that all diagonal elements are equal. The
diagonals Ckk can then be written as

Ckk = C11 = α −
N∑

n=2

C1n = α −
N∑

n=2

Cn1,

for k = 1, . . . , N. (8)

The off-diagonals of C are randomly chosen while keeping
the sum of those in a column or row as constant. This
increases the number of independent elements in C with
M = β(N2 − 3N + 3). H is now subjected to four type of
constraints (i) chirality, (ii) Hermiticity, (iii) column and row
constraint, and (iv) Hk,N+k = Hl,N+l for all k = 1 → N (using
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Ckl = Hk(N+l )). The latter in turn gives [30]

N∑
n=1

en(X ∗
nk Xnk − X ∗

nl Xnl + Y ∗
nk Ynk − Y ∗

nl Ynl ) = 0, (9)

which again indicates the correlations among eigenfunctions
components (those with nonzero eigenvalues) but now the
number of independent components is increased (as expected
due to the increased number of independent matrix elements).
Also as the relation

∑N
n=1 λn = ∑N

k=1 Ckk = N Ckk is still
satisfied, this again leads to condition Eq. (7).

Further, as discussed in Ref. [31], the eigenvectors of a
Hermitian matrix with column and row constraints but without
chiral symmetry satisfy following conditions:

∑2N
k=1 Okn =

±√
2N δnN for n = 1 → 2N . Generalization of these results

to include chirality gives conditions on Xn and Yn for 1 � n �
N [30]:

N∑
k=1

(Xkn + Ykn) = ±
√

2N δnN for en, (10)

N∑
k=1

(Xkn − Ykn) = ±
√

2N δnN for en+N . (11)

This in turn implies XkN = YkN = ± 1√
2N

or XkN = −YkN =
± 1√

2N
for k = 1 → N .

D. Case 4: Upper Toeplitz matrix

Another form of C can be obtained by removing the
diagonal constraints from C but imposing a variant of the
Toeplitz constraint. The latter corresponds to the Toeplitz
condition only among the elements of the diagonal and the
upper diagonal of C but with no constraint imposed on the
lower diagonals:

Ck,l = C(k+r),(l+r) =c(k−l ), for k � l and r =1 → N − l.

(12)

Consequently, the number of independent elements in C now
become M = βN (N + 1)/2 (note, here C is not a symmetric
matrix). The matrix H is now subjected to three types of
constraints: (i) chirality, (ii) Hermiticity, and (iii) Hk,N+l =
c(k−l ) for k � l . Clearly Eq. (7) is again valid for this case,
but Eq. (6) is now applicable only for k � l . Note the number
of independent eigenfunction components here is higher than
cases 1 and 2 but is less than case 3.

E. Case 5: Column-constraint matrix

With C subjected only to the constraint Eq. (4), it now has
β(N2 − 2N + 1) free parameters. This in turn implies three
types of constraints on H : (i) chiral symmetry, (ii) Hermiticity,
and (iii) column and row constraints. The eigenvectors of H
are now subjected to conditions Eqs. (10) and (11) besides
orthogonality and normalization. As the number of constraints
in this case are minimum, this results in an increased number
of independent eigenfunction components.

III. ENSEMBLES WITH CHIRALITY AND OTHER
CONSTRAINTS

For matrices representing complex systems, it is imper-
ative to consider their ensembles, which can subsequently
be used to derive the JPDF of their eigenvalues and eigen-
functions and other related properties. Consider the ensemble
density ρ(H ) of H . Using the transformation from matrix
space to eigenvalue-eigenvector space, the JPDF P(E , O) ≡
P(e1, . . . , eN ; O1, . . . , ON ) can be expressed as

P(E ; O) = J (E , O|H ) ρ(H ), (13)

with J (E , O|H ) as the Jacobian of transformation from H-
matrix space to E , O space. As expected, J depends on the
matrix constraints, which in turn are sensitive to the choice
of basis and are expected to manifest primarily through
basis-dependent properties of the matrix, i.e., eigenfunction
components. The eigenvalues, being basis-independent, are
subjected to the constraints when the basis preserves a specific
symmetry. For Hamiltonian with chiral symmetry besides
other constraints, therefore, the basis, which preserves the
chirality, imposes the constraint en = −eN+n. But other con-
straints manifest through the eigenvector components. Thus,
for a 2N × 2N chiral Hermitian matrix with M independent
elements (their total number as βN2), N eigenvalues and
M − N eigenvector components can be chosen as independent
without any loss of generality. This leads to J as a M × M
determinant consisting of first order derivatives of indepen-
dent H elements with respect to N independent eigenval-
ues and M − N independent parameters. Following the same
steps as given in Ref. [4], it can be written as J (E , O|H ) =

N (e) f (O), where f (O) and 
N (e) depend on the matrix
constraints: 
N (e) = 1 for cases with M = N but for cases
with M > N , one has


N (e) ≡ 
N (e1, e2, . . . , eN ) =
N∏

k�l=1

∣∣e2
k − e2

l

∣∣β, (14)

with β = 1 if H is a real-symmetric matrix, β = 2 for H
complex Hermitian. It is important to note here that, for cases
M > N , 
N (e) is of the same form as that of a chiral matrix
with Hermitian constraints only.

To proceed further, we need to determine ρ(H ). Following
from Eq. (1),

ρ(H ) = ρc(C) Fc Fh, (15)

with ρc(C) as the probability density of the ensemble of C ma-
trices, with Fh(H ) = δ(H − H†) and Fc = ∏N

k,l=1 δ(Hkl ) as
the constraints due to Hermiticity and chirality of H , respec-
tively. For cases where ρc(C) is not known, one can invoke the
maximum entropy hypothesis: The system is best described
by the distribution ρc(C) that maximizes Shannon’s infor-
mation entropy I[ρc(C)] = − ∫

ρc(C) lnρc(C) dμ(C) under
known set of ensemble constraints, e.g., on the moments of
the entries of C. It must be emphasized that a specific set of
matrix constraints can lead to many different ensembles.

For simple exposition of our ideas, here we consider the set
of ensemble constraints which leads to a Gaussian distribution
for all independent parameters cμ of C, with μ = 1, . . . , M
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each with same variance and zero mean:

ρc(C) = N exp

⎡
⎣−γ

M∑
μ=1

c2
μ

⎤
⎦ Fn, (16)

with N as a normalization constant, M as the total number of
independent parameters in C, and Fn as the function imple-
menting the matrix constraints on C. An important point to
note here is that a rescaling of cμ by

√
γ renders ρ(C) and

thereby ρ(H ) free of any parameters. Further the Gaussian
form of ρc in Eq. (16) is a consequence of the ensemble con-
straints on the first- and second-order moments of cμ. The en-
semble constraints on higher-order moments of cμ in general
lead to a non-Gaussian ensemble of chiral constraint matrices.
(Note, a most generic form of ρc can be given in terms of an
arbitrary distribution, say ρ0 of the free matrix elements c j ,
with j = 0 → M: ρc(C) = N ρ0(c1, c2, . . . , cM ) Fn, with Fn

dependent on the matrix constraints.)
Equation (16) along with Eq. (15) gives ρ(H ), which can

be used to derive P(E ; O). As discussed below, the steps
depend on the type of matrix constraints.

A. Case 1

With only β(N − 1) free parameters, Eqs. (15) and (16)
and the relation Ckl = Hk,N+l gives

ρ(H ) = N exp

⎡
⎣− γ

N

N∑
k,l=1

|Hk(N+l )|2
⎤
⎦ F1 Fc Fh, (17)

where the function F1 describes the circulant as well as the
column and row constraint on C:

F1 ≡ δ

[
N∑

l=1

H1(N+l ) − α

]
N∏

k,l=1

δ[Hk(N+l ) − c(k−l ) mod N ]. (18)

As the eigenvectors for all circulant matrices are same and
with constant components [29], C and therefore H varies with
respect to its eigenvalues only which leads to JH (e, O|H ) =
constant. The eigenvalue distribution in this case can be given
as [29]

Pe(e1, . . . , e2N ) = N exp

[
− γ

N

N∑
m=1

e2
m

]

×
N∏

n=1

δ(en + en+N ) δ(eN − α). (19)

Note, here 
N (e) = 1. As clear from the above, the lack of
repulsion among eigenvalues permits their clustering although
all eigenvectors (i.e., On, n = 1, . . . , 2N ) remain extended.

B. Case 2

With the number of independent parameters now increased
to (2N − 1)β, Eqs. (15) and (16) along with Eq. (5) lead to

ρ(H ) = N exp

⎡
⎣−γ

N∑
k,l=1

αkl |Hk(N+l )|2
⎤
⎦ F2 Fc Fh, (20)

with

αkl = 1

N − |k − l| , (21)

and F2 now refers to Toeplitz constraint on C: F2(H ) ≡∏N
k,l=1 δ[Hk(N+l ) − c(k−l )].

Substitution of the relation Hkl = ∑2N
n=1 en O∗

nk Onl and
en = −eN+n in Eq. (20) and using Eqs. (13) and (14), P(E , O)
can now be written as

P(E , O) = N 
N exp

⎡
⎣−γ

N∑
m,n=1

em en

N∑
k,l

αkl Smnkl

⎤
⎦ F2,

(22)

with

Smnkl = (X ∗
nk Xnl + Y ∗

nk Ynl )(Xmk X ∗
ml + Ymk Y ∗

ml ) (23)

and

F2(E , X,Y )

≡ f (O) Fch

N∏
k,l=1

δ[X †
k E+ Xl − Y †

k E+ Yl − c(k−l )]. (24)

Here f (O) in the above equation arises from the Jacobian
contribution, the δ function implies condition Eq. (6) and E+
refers to the N × N diagonal matrix with E+,mn = en δmn with
n = 1 → N . Fch is the function describing the combined ef-
fect of Hermitian and chirality constraints on the eigenvectors
and eigenvalues:

Fch(E , X,Y ) ≡
N∏

n=1

δ(en + en+N ) δ

(
X †X − 1

2

)
δ

(
Y †Y − 1

2

)
.

(25)

Equation (3) implies

N∑
m=1

N∑
k,l=1

αkl Smnkl =
N∑

n=1

N∑
k,l=1

αkl Smnkl = 4

2N
. (26)

This on substitution in Eq. (22) leads to [30]

P(E , O) = N 
N (e) exp

[
− γ

2N

N∑
n=1

e2
n

− γ

2

N∑
n,m=1

(en − em)2 Tmn

]
Fe, (27)

where Fe ≡ F2 and Tmn = ∑N
k,l=1(1 − αkl ) Smnkl . The latter

can be rewritten as

Tmn =
(

1 − 1

N

)
C(m, n) +

N∑
k,l=1;k<l

(1 − αkl ) (Smnkl + S∗
mnkl ),

(28)
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FIG. 1. Eigenfunction correlations: The figure displays Tmn [Eq. (28)] dependence for many m, n values for a single matrix of size 2N =
1000 in each case (without ensemble averaging). Clearly, for each case, Tmn ∝ 1/N , except for Tmm which is larger that 1/N . Note, for cases 3
and 5 (which correspond to column constraint matrices with α = 0), TmN and TNn also differ from 1/N .

where C(m, n) is the correlation between the eigenfunctions
On and Om:

C(m, n) =
2N∑

k=1

|Okn|2|Okm|2

=
N∑

k=1

(|Xnk|2 + |Ynk|2)(|Xmk|2 + |Ymk|2). (29)

As clear from the above, C(m, n) > 0. Further note, for
P(E , O) to be finite, Tmn must be semipositive. The numerics
discussed in Sec. V indeed indicates Tmn ∼ 1/N for all (m, n)
pairs with m 	= n (see Fig. 1), which follows from Eq. (28)
if one assumes an extended dynamics of almost all eigenfunc-
tions, implying same order of magnitude for their components
(although their signs can vary); this behavior is also indicated
by the analysis of fractal dimension Dq [25] depicted in Fig. 4.

C. Case 3

Under the constraint Eq. (8) and using Eqs. (15) and (16),
ρ(H ) can be written as

ρ(H ) = N exp

⎡
⎣−γ H2

1,N+1 − γ

N−1∑
k,l=1;k 	=l

H2
k,N+l

⎤
⎦ F3 Fc Fh

(30)

= N exp

⎡
⎣− γ

N

N−1∑
k=1

H2
k,N+k − γ

N−1∑
k,l=1;k 	=l

H2
k,N+l

⎤
⎦F3 Fc Fh,

(31)

with F3 ≡ ∏N
l=1 δ(Hl,N+l − H1,N+1) δ[

∑N
k=1 Hk,N+l − α)].

Proceeding as in the previous case, P(E , O) can again be
rewritten as in Eq. (27), with Tmn again given by Eq. (28), but
now

αkk = 1

N
, αkl = 1, αkN = αNl = 0, ∀ k, l < N,

(32)

and Fe ≡ F3, where

F3(E , O) ≡ f (O) Fch

N∏
k=1

δ(X †
k E+ Xk − Y †

k E+ Yk )

× δ[AT (Xk + Yk ) −
√

2Nbk], (33)

with A as a column vector of size N with entries Am = 1
for m = 1 → N , bN = 1, bk = 0 for k 	= N and E+ defined
below Eq. (24). Note the condition Eqs. (9)–(11) are taken
into account by the δ functions in Eq. (33).

To gain insight in the spectral statistics, we again need to
analyze Tmn. Equation (23) along with Eqs. (10) and (11) lead
to identities

∑N
k=1 SmnkN = δmn and SmnNN = 1

4N2 . These help

022124-6



STATISTICAL ANALYSIS OF CHIRAL STRUCTURED … PHYSICAL REVIEW E 99, 022124 (2019)

to rewrite Tmn as

Tmn =
(

1 − 1

N

)
Cmn + 2

N−1∑
k=1

SmnkN

≈ Cmn + 2

(
δmn − 1

4N2

)
. (34)

Note as Cmn > 1
N2 , here again Tmn > 0, which is again

confirmed by our numerics discussed in Sec. V (see Fig. 1).

D. Case 4

Under the constraint Eq. (12) along with Eqs. (15) and (16),
ρ(H ) now becomes

ρ(H ) = N exp

⎡
⎣−γ

N∑
k,l=1;k>l

H2
k,N+l

+
N∑

k,l=1;k�l

γ

N − |k − l| H2
k,N+l

⎤
⎦ F4 Fc Fh, (35)

with F4 ≡ ∏N
k,l=1;k�l δ[Hk,N+l − c(k−l )].

Following the same steps as in case 2, P(E , O) can be
rewritten as Eq. (27) but with the following changes: Tmn is
again given by Eq. (28) but with

αkl = 1 for k > l, αkl = 1

N − |k − l| for k � l,

(36)

and

F4(E , O) ≡ f (O) Fch

N∏
k�l=1

δ[X †
k E+ Xl − Y †

k E+ Yl − c(k−l )],

(37)

with E+ as defined below Eq. (24). Here again Tmn can be
rewritten as

Tmn ≈ C(m, n) +
N∑

k=1

N−k∑
r=1

(
1 − 1

N − r

)
Smnkk+r . (38)

Here again the numerics indicates Tmn ∼ O(1/N ) (see Fig. 1).

E. Case 5

In the presence of only column constraints and chirality,
ρ(H ) can be written as

ρ(H ) = N exp

⎡
⎣−γ

N−1∑
k,l

|Hk(N+l )|2
⎤
⎦ F5 Fc Fh, (39)

with F5 ≡ ∏N
l=1 δ(

∑N
k=1 Hk,N+l − α).

Here again P(E , O) can be written as in Eq. (27) with Tmn

again given by Eq. (28) but with

αkl = 1 − δkl ∀ k, l = 1 → N. (40)

(Alternatively, one can choose αkl = 1, αkN = αNl = αNN =
0 for k, l = 1 → (N − 1); as expected, this does not affect

the statistics.) The constraint on the eigenvalues and eigen-
functions now becomes

F5(E , O) ≡ f (O) Fch

N∏
k=1

δ[AT (Xk + Yk ) −
√

2Nbk]. (41)

Here the term with δ-function implies the condition Eqs. (10)
and (11). Note Tmn in this case can be rewritten as

Tmn = C(m, n) > 0, (42)

where Cmn is given by Eq. (29). Here again numerics indicates
Tmn ∼ 1

N (see Fig. 1).
As discussed in detail in Ref. [31], the distribution P(E , O)

for a Hermitian matrix with column constraint but without
chirality has the same form as in the present case except for
an additional constraint described by Eq. (25).

IV. SPECTRAL STATISTICS

As mentioned in Sec. III, ρ(H ) is a parameter-free, maxi-
mum entropy distribution. Consequently the eigenvalues and
eigenfunctions of H tend to distribute in a way to maximize
the JPDF P(E , O) under the given set of constraints. As
discussed in the previous section, P(E , O) for the cases 2–5
is given by Eq. (27) but Tmn and Fe in each case are different;
here Tmn is given by Eqs. (28), (34), (38), and (42) and Fe =
F2,F3,F4,F5, respectively. In principle, the information
about various spectral and/or eigenfunction measures can now
be obtained by integrating Eq. (27) over irrelevant variables
but the presence of constraints Fe make it technically difficult.

Equation (27), however, reveals an important underlying
connection: P(E , O) in Eq. (27) is equivalent to that of a
Brownian ensemble with chirality (with Fe = f (O) Fch for
the latter case). The latter corresponds to an ensemble of Her-
mitian matrices H given by Eq. (1) with the matrix elements
of C distributed as independent Gaussian variables [of mean
〈Ckl〉 = 0 and variance 〈|Ckl |2〉 − 〈Ckl〉2 = δkl + κ (1 − δkl )],
with κ being an arbitrary constant; here the matrix H is
not subjected to any other constraint except chiral and time-
reversal symmetries (no time reversal if β = 2). In the regions
where contribution of Fe is negligible, the spectral statistics
of cases 2–5 is therefore expected to resemble that of a chiral
Brownian ensemble which in turn is connected to a wide range
of other unstructured ensembles (see, for example, Ref. [32]
for a related discussion).

Further insights about expected spectral behavior can be
gained as follows. Besides Fe, P(E , O) in Eq. (27) consists
of three other terms, namely, 
N (e) and two sums in the
exponent. The first term in the exponent acts as a confining
potential on the mutually repelling eigenvalues; with P(E , O)
rapidly decaying for en  √

2N , this indicates the support
of the spectrum to be of the order of

√
2N . The statistics at

short energy ranges is governed by Fe as well as the compe-
tition between two terms containing the eigenvalue repulsion
i.e., 
N and S ≡ 1

N

∑N
n=1 e2

n + ∑N
n,m=1(en − em)2 Tmn. For a

clearer understanding, the individual role of each term can be
described as follows:

Fe : The constraints in each case contain a sum over second
order short as well as long-range eigenfunction correlations
which can restrict the dynamics of eigenvalues in a way to
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enhance P(E , O). This however affects the eigenvalues in the
regions e 	= 0 only,


N : analogous to classical chiral ensembles e.g. chiral
GOE and chiral GUE [3], the presence of 
N in Eq. (14) tends
to support the JPDF P(E ; O) with repulsion among eigenval-
ues. The tendency in the present case is however affected by
the presence of other terms i.e those in the exponent and the
constraints.

S: as clear from Eq. (27), a smaller exponent therein gives
rise to a larger P(E ; O). This in turn requires

S ≡ 1

N

N∑
n=1

e2
n +

N∑
n,m=1

(en − em)2 Tmn < 1. (43)

Here, for cases 2–5, Tmn > 0. Further, intuition based on
previous studied suggests that Tmn ∼ o(1/N ) for the cases in
which all independent matrix elements are identically dis-
tributed; this conjecture is confirmed by our numerical analy-
sis for cases 2–5, discussed in the next section and displayed
in Fig. 1. Thus, based on Eq. (43), a reduction of the term∑

n e2
n as well as the separations of type (en − em)2 results

in a larger P(E ; O); (note, due to presence in the exponent,
S dominates over 
N ). The above in turn implies a reduced
density of states 〈ρ(e)〉 near the spectrum edge |e| ∼ √

N and
its increase in the bulk (for energies |e| <

√
N).

Clearly, the contribution from the three terms, mentioned
above, depends on the location of eigenvalues as well as their
density along the spectrum. As the fluctuations of local mean
level density 〈ρe(e)〉 at an arbitrary energy e are measured in
units of the local mean level spacing D(e) = 1

〈ρ(e)〉 , this in
turn renders the local-statistics nonstationary (varying along
the spectrum axis). For local fluctuation analysis, therefore, it
is appropriate to consider the eigenvalues in units of the local
mean level spacing (also known as the unfolded spectrum).
Equation (43) can then be rewritten as a sum over local
conditions on the rescaled eigenvalues rn = en

D(e) , with one
such condition in the neighborhood of an arbitrary energy e
implying

1

N

∑
n∈(e)

r2
n +

∑
m,n∈(e)

(rn − rm)2 Tmn < 〈ρ(e)〉2. (44)

Here the notation
∑

m,n∈(e) implies a local summation, i.e.,
over contributions from the spectral range around e, i.e., over
em, en ∼ e only.

The behavior of local fluctuations in two main regions can
now be described as follows:

e ∼ 0: As Fe does not influence the behavior near e ∼ 0,
the statistics in this region is dominated by the condition
Eq. (44). The latter, however, is sensitive to 〈ρ(e)〉 which
itself depends on the matrix constraints (see Figs. 5 and 6).
As a consequence, the statistics in this region can change with
the constraints. Clearly, for the cases with 〈ρ(e)〉 → 0, i.e.,
relatively large mean level spacing, Eq. (44) supports level
clustering in the local fluctuation measures. The statistics is
therefore expected to approach Poisson limit. For the cases
where 〈ρ(e)〉 is large, the condition is satisfied even for rn −
rm ∼ o(1), i.e., if the eigenvalues en, em lie at the distances
of the order of mean level spacing; this results in the fluctua-
tions indicating a level-repulsion at e with statistics closer to
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FIG. 2. Signatures of extended eigenfunctions: The figure de-
scribes the energy-dependence of the ensemble-averaged inverse
participation ratio 〈I2〉 for cases 2–5 for many system sizes; the
number of matrices in each ensemble is chosen to ensure the same
finite-size error. As clear, 〈I2〉 ∝ 1

N for almost all energies for each
case, implying eigenfunctions extended in whole basis. But 〈I2〉 
1/N for the eigenfunctions corresponding to the largest eigenvalues
in cases 3 and 5, which indicates their localization [note that panels
(b) and (d) are displayed without the largest pairs of eigenvalues; see
Fig. 3 for them]. Also note that, for the cases with column-constraint
(i.e., cases 3 and 5), 〈I2〉 = 1/N at e = 0 (which is expected for
the eigenfunction corresponding to eigenvalue en = α = 0). A size-
analogy for each case also follows on the rescaling e → e/

√
2N ,

〈I2〉 → 〈I2〉 × (2N ).

Wigner-Dyson type. Similarly for the case, in which 〈ρ(e)〉
satisfies

∑e
m,n(rn − rm)2 ≈ 〈ρ(e)〉2 near e ∼ 0, the statistics

in the range is expected to be intermediate to Poisson and
Wigner-Dyson limits.

e 	= 0: the above behavior is now moderated by the
eigenvalue-eigenfunctions correlations present in Fe; the
eigenvalues for the case with higher number of eigenfunction
correlations are intuitively expected to be less independent to
move faraway even if the local spectral density is large. Note,
the mean level density for regions e 	= 0 is almost same for all
the cases, implying same contribution from S . The statistics,
however, is expected to change from Poisson to GOE, as the
number of constraints decrease. To confirm this behavior we
pursue a detailed numerical analysis described in next section.

An important point worth indicating here is as follows:
with Tmn ∝ 1/N , a rescaling e → e

√
N reduces the JPDF in

Eq. (27) in a size-independent form. The spectral as well
as the eigenfunctions statistics is therefore expected to be
size-independent; this is indeed verified by our numerical
analysis discussed in next section (see Figs. 2 and 4 for the
size-independence of the eigenfunction measures and Figs. 8–
11 for the spectral statistics). But as discussed above, based
on the matrix constraints and concerned energy-range, the
spectral statistics may approach Poisson or chiral Wigner-
Dyson limits, or may lie intermediate to these limits; in the
latter case, it is referred as critical. Further, for the energy
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ranges where Fe can be ignored (e.g., e ∼ 0), the statistics
is expected to be analogous to that of a critical Brownian
ensemble with chiral symmetry.

V. NUMERICAL ANALYSIS

The theoretical formulation given in Sec. III clearly reveals
the analogies and differences of the five ensembles. For exam-
ple, the JPDF in each case can be written in terms of Eq. (27)
with only Fe part varying from one case to the other. Further,
as discussed in Sec. IV, the analysis in Sec. III not only
provides clear insights about the energy-dependence of the
fluctuations for a given case but also indicates the existence
of a critical point of statistics. To reconfirm our theoretical
predictions, we pursue a numerical statistical analysis of these
cases and generate the ensembles of H matrices for cases
1–5 as follows. The independent matrix elements in each
case are chosen as independent Gaussian variables (with zero
mean and unit variance); the rest of the elements are then
obtained by invoking the respective matrix constraints. The
eigenvalues and eigenfunctions of H for each of the five
ensembles are computed by standard LAPACK subroutines
for exact diagonalization of the Hermitian matrices.

The theoretical analysis in previous section is based on
the conjecture Tmn ∼ 1/N (with Tmn given by eq. (28); as
illustrated in Fig. 1, this is indeed confirmed for each case.
This in turn suggests the following behavior of a typical
eigenfunction component, say Okn, in each case; |Okn| ∝ 1√

N
.

To verify the latter, we analyze the inverse participation ratio
(IPR) I2, a standard tool to describe the localization behavior
[25]. For an eigenfunction On corresponding to an eigenvalue
en, it is defined as I2(On) = ∑N

k=1 |Okn|4. Following from
the definition, I2(On) ∝ 1/N for an eigenfunction extended
throughout a basis-space of size N , and I2(On) = 1 for an
eigenfunction localized on just one basis state. In general, IPR
varies with energy and it is a standard practice to consider
an averaged I2 of all eigenfunctions within a given spectral
range in which the average spectral density varies smoothly.
But, as discussed below and displayed in Figs. 5 and 6, the
latter shows a rapid variation for some specific energy ranges,
i.e., e = 0 as well as near spectrum-edges and it is more
appropriate to consider the ensemble averaged I2, referred as
〈I2〉 at a specific energy instead of the spectral averaged one.

The IPR-analysis of the eigenfunctions for case 1 was
discussed in Ref. [29], which indicated that I2(On) = 3

4N for
n 	= N, 2N and I2(ON ) = I2(O2N ) = 1

2N . For the case α = 0,
however, λN = 0, which results in a degenerate eigenvalue
pair eN , e2N = 0 with corresponding eigenvectors as (UN

0 ) and

( 0
UN

). As a consequence, I2(ON ) = I2(O2N ) = 1
N for the case

α = 0.
In the present work, we numerically analyze cases 2–5.

As displayed in Fig. 2, 〈I2(e)〉 ≈ 3
2N for almost all e-ranges

for these cases. Further, for the cases with column-constraints
(i.e., cases 3 and 5), 〈I2〉 for the eigenfunction ON is ≈
1/N (see Figs. 2(b) and 2(d), respectively); note, for column
constant α = 0, ON corresponds to the eigenvalue eN = 0.
This indicates an extended dynamics, in the basis-space, for
almost all eigenfunctions of each of the five cases, irrespective
of the number of constraints. Clearly if the ensemble averaged
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FIG. 3. Localization of eigenfunctions: This figure displays 〈I2〉
for the eigenfunctions corresponding to largest eigenvalues for cases
3 and 5. For case 3, 〈I2〉 = 1/2 corresponding to largest eigenvalue
pair (a), but for case 5, there are two pairs of extreme eigenvalues
with 〈I2〉 = 1/4 and ≈ 1/20 (b). A higher value of 〈I2〉(1/N )
indicates a localization of corresponding eigenfunction to fewer basis
sites.

inverse participation ratio is used as the criteria, the eigen-
function statistics for these cases is not sensitive to the matrix
constraints; note the disorder-strength γ is same for all the
independent elements in each case (see Sec. III). A variation
of disorder-strength among independent matrix elements is
however expected to affect the eigenfunction dynamics; such
a response is indeed confirmed for the column constraint
ensembles without chirality [31,33].

Another point worth indicating here is the following. For
the cases 3 and 5, the largest eigenvalue pairs are isolated lying
quite far away from the bulk and the 〈I2〉 for corresponding
eigenfunctions are much larger than 1

2N which indicates their
localization. As shown in Fig. 3(a) for case 3, 〈I2(O1)〉 =
〈I2(ON+1)〉 = 1/2 for the eigenfunctions corresponding to
largest eigenvalue pair e1, eN+1. This is indeed consistent with
condition Eq. (43), implying a localization of the correspond-
ing eigenfunctions if |en − em| ≈ √

2N . Note in case 5 there
are two such pairs of localized eigenfunctions with 〈I2〉 = 1/4
and 1/20 [Fig. 3(b)].
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FIG. 4. Fractal dimension Dq: The figure describes the size
as well as energy-dependence of the ensemble-averaged fractal
dimension Dq for the cases 2–5. Here, edge inter(mediate) and
center regions correspond to energies e ∼ e0 × √

2N with e0 ∼
−2, −0.75, 0, respectively. With Dq ≈ 0.7 in the intermediate en-
ergy range of each case, the figure indicates the multifractality of the
eigenfunctions in the regime. The behavior indicating localization
(Dq � 1) and delocalization (Dq ∼ 1) for case 3 in the edge and
center region, respectively, is similar to that of case 5; note both
cases are subjected to column constraints. But an almost delocalized
(Dq ∼ 0.9) and multifractal behavior (Dq ∼ 0.6) for case 2 (Toeplitz)
in the edge and center region, respectively, is similar to another case
without column constraint, i.e., case 4 (partial Toeplitz).

To rule out the possibility that higher order moments of
the eigenfunctions may indicate localization, we also analyze
〈Iq〉 for q > 2. Its size-dependence is a frequently used char-
acteristic of the eigenfunctions’s multifractality [25], 〈Iq〉 ∝
(2N )−(q−1)Dq , where Dq is the fractal dimension. For local-
ized eigenfunction, Dq = 0, whereas it increases to system
dimension d as localization decreases, with 0 < Dq < d an
indicator of the multifractality. Note each ensemble consid-
ered in our study corresponds to d = 1. Figure 4 displays
the q-dependence of the DqN = − 1

q−1
〈lnIq〉

ln(2N ) for many system
sizes; note Dq = limN→∞ DqN . As clear from the insets, DqN

for large q is less than 1 near e ∼ 0 and e ∼ −0.75
√

2N
for some of the cases which indicates weak multifractality
of the eigenfunctions in those energy ranges. Our numerical
analysis of DqN , for many N values of each case, indicates its
size-independence.

An analysis of the spectral fluctuations requires a prior
knowledge of the average spectral density which can be ob-
tained by averaging over an ensemble, over an spectral range
or both. The correct averaging procedure however depends
on the ergodic nature of the spectrum [34]. This can be
explained as follows. For complex systems, the density of

FIG. 5. Ergodicity in level density: Comparison between ensem-
ble averaged level density R1(e) ≡ 〈ρe〉 and 〈ρsm(e)〉 for matrix H of
fixed size 2N = 1000 and an ensemble of 5000 matrices. An almost
analogous behavior of R1(e) and 〈ρsm(e)〉 is visible for energy e ∼ 0
for all the cases with small nonnegligible deviation away from e ∼ 0
for cases 1, 2, 4, and 5, implying nearly ergodic level density for
them. For case 3, however, panel (c) indicates a clear nonergodicity
for the energy range other than e ∼ 0.

states ρe at an energy e, defined as ρe(e) = ∑N
k=1 δ(e − ek ),

can often be expressed as a superposition of the fluctuations
over an average smooth background: ρe(e) = ρsm(e) + ρfluc.
Here ρsm refers to the spectral average at e, defined as ρsm =

1

e

∫ e+
e/2
e−
e/2 de ρe(e), over a scale larger than that of fluctua-

tions; i.e.,
∫ e+
e/2

e−
e/2 de ρfluc(e) = 0. For comparison of the fluc-
tuations at an energy e (referred as local), therefore, it is neces-
sary to first rescale each spectrum so as to have a same mean
level density; this requires a prior information about ρsm(e).
In the case of an ergodic spectrum, ρsm(e) can, however,
be replaced by R1(e), the ensemble averaged level density
defined as R1(e) = 〈ρe〉 ≡ N

∫
Pe(e, e2, .., eN )

∏N
k=2 dek [4].

Note here the ergodicity condition of ρe implies 〈ρfluc〉 → 0
which leads to 〈ρsm(e)〉 ≈ 〈ρe(e)〉 = R1(e), where 〈.〉 is an
ensemble average for a fixed e [34] (see also Sec. 4.10 of
Ref. [3]).

Figure 5 compares the R1(e) as well as 〈ρsm(e)〉 for an
ensemble of matrices of fixed size (2N = 1000) for each of the
five cases. Here in case 3, a large deviation between the two
curves indicates the nonergodic tendency of ρe whereas for
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FIG. 6. Size-dependence of level density: This figure depicts the
size-dependence of the 〈ρsm〉 for the five cases. A rescaling of the
energy e → e/

√
2N along with 〈ρsm〉 → 〈ρsm〉 × √

2N results in
convergence of curves for different sizes in each case. Also note that
〈ρsm〉 varies significantly from cases 1 to 5, which clearly reflects the
effect of constraints on the mean level density.

other cases deviation is small, although not negligible, away
from the region e = 0. The figure also reveals a drastic change
of level-density from one case to the other, clearly indicating
its strong sensitivity to the number of constraints. Interest-
ingly, however, as displayed in Fig. 6, the rescaled 〈ρsm(e)〉
remains size-independent for all the five cases (with rescaling
e → e/

√
2N, 〈ρsm〉 → 〈ρsm〉 × √

2N), thus implying a same
N-dependence for all of them.

Due to lack of ergodicity, we unfold the spectrum in
each case by the local unfolding process; as described
in detail in Ref. [35], the later is based on first obtain-
ing a smoothed histogram of ρsm for each spectrum (i.e.,
for each matrix) followed by a numerical averaging (with
unfolded levels given by rn = ∫ eN

−∞ ρsm de). Here we con-
sider the local fluctuations for both high and low density
regions of the spectrum and choose an optimized range

e (5% of the total eigenvalues), sufficiently large for the
good statistics with minimum mixing of different statistics;
the chosen ranges are e ∼ (−2 ± 0.05) × √

2N,∼ (−0.75 ±
0.05) × √

2N,∼ (0 ± 0.03) × √
2N , later referred to as edge,

bulk, and center, respectively). It is worth noting here that
although the density in the bulk region is locally stationary,
there is a rapid variation of ρsm in the edge as well as center
for the cases with reduced number of independent parameters.
Hence, for comparison in the edge and center, it is necessary to

choose levels within smaller spectral ranges. The statistics can
however be improved by applying ensemble average along
with spectral average.

For fluctuations-analysis, we consider two spectral mea-
sures namely the nearest-neighbor spacing distribution P(s)
and the number-variance 2(r), the standard tools for the
short and long-range spectral correlations, respectively [3,5].
Here P(s) is defined as the probability of two nearest neighbor
eigenvalues to occur at a distance s, measured in units of
local mean level spacing D, and 2(r) as the variance in
the number of levels in an interval of length r mean level
spacings. As indicated by previous studies (see, for example,
Refs. [1,3,4]), the level fluctuations of a system subjected only
to Hermitian constraint along with time-reversal symmetry
in a fully delocalized wave limit behave similar to that of
a Gaussian orthogonal ensemble (GOE) [1,3,4] with P(s) =
π
2 s e− π

4 s2
and 2(r) ≈ 2

π2 (ln(2πr) + γ + 1 − π2

8 ) with γ =
0.5772. Similarly, the fully localized case shows a behavior
typical of a set of uncorrelated random levels, that is, expo-
nential decay for P(s), also referred as Poisson distribution,
P(s) = e−s, and 2(r) = r. But, as discussed in Ref. [29]
for the case of chiral circulant matrices, Poisson spectral
statistics appears along with delocalized eigenfunctions. This
indicates the influence of constraints on the relation between
statistics of the eigenvalues and eigenfunction which is further
confirmed by the present study of other four cases.

Figure 7 compares P(s) and 2(r) of the spectra for all five
cases at three different energy ranges, namely, at bulk (e ∼
−0.75 ± 0.05) × √

2N , near center (e ∼ 0 ± 0.03) × √
2N

and near edge (e ∼ −2.0 ± 0.05) × √
2N ; the ensemble in

each case consists of 850 matrices of size 2N = 5832. In
the bulk, the level statistics changes from Poisson to GOE
as the number of independent matrix parameters increase; as
displayed in the figure, both P(s) and 2(r) curves are very
close to corresponding GOE statistics for the cases 3, 4, and 5,
coincide with Poisson limit for the case 1 and are intermediate
to Poisson and GOE (relatively nearer to Poisson) for the case
2. The change is slower near the center, with case 2 now
moving closer to Poisson (compared to bulk) and case 3 now
lying intermediate to Poisson and GOE. Near the edge, cases
4 and 5 also deviate from the GOE and move towards Poisson.
Note the numerical behavior in all three regions is consis-
tent with our theoretical prediction discussed in previous
section.

It is important to note here that if one applies the same
criteria as that for Hermitian ensembles with no other con-
straint except symmetry, the Dq behavior for these cases is
often not consistent with that expected based on their spectral
statistics. This can further be clarified as follows: Based on
previous studies, a variation of spectral statistics from Poisson
to GOE limit is usually accompanied by the eigenfunctions
becoming increasingly delocalized, with Dq varying from
0 → 1, respectively. (Note, in the past, this has led to the use
of Poisson and Wigner-Dyson spectral statistics as the criteria
for the localized and delocalized eigenfunctions dynamics
in the basis space [2]). This correspondence however is not
applicable here. For example, for case 2, the spectral statistics
in the bulk and center of spectrum is although not Poisson
but relatively closer to Poisson limit [Figs. 8(a) and 8(b)],
the eigenfunction behavior is therefore expected to be almost
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FIG. 7. Constraint dependence of spectral statistics: P(s) and
2(r) for an ensemble of 850 matrices of size 2N = 5832 for cases
1–5 at three different spectral regimes (near e ∼ e0 × √

2N): (a,
b) at bulk (e0 ∼ −0.75), (c, d) at center (e0 ∼ 0), (e, f) at edge
(e0 ∼ −2). The behavior of both measures for cases 2, 3, 4, and
5 clearly indicates an energy dependence, with P(S) at a given
energy changing from Poisson to GOE as the number of constraints
decrease (thus, the free matrix elements increase). This behavior is
also supported by 2(r) statistics shown in panels (b, d, f).

localized implying Dq � 1 but the numerics gives Dq ≈
0.7 − 0.8 (Fig. 4), thus suggesting extended states with weak
multifractality. Similarly, for case 3, the spectral statistics in
the edge region is closer to GOE (Fig. 9), thus suggesting
eigenfunctions to be almost delocalized with expected Dq →
1 but numerics gives Dq ∼ 0.1 (Fig. 4). Further, the statistics
for case 3 near e ∼ −0.75 × √

2N approaches GOE but is
intermediate near e ∼ 0 (Fig. 9), which suggests Dq for the
former to be larger than the latter; Fig. 4, however, shows a
reverse trend.

Another important aspect revealed by our analysis is the
existence of a critical statistics, located between Poisson and
GOE limit, even when all free matrix elements are of the
same order (see Ref. [32] for more details). Note in case of
Hermitian matrix ensembles with no other constraint except
symmetry, this occurs when the matrix is sparse (for example,
see Refs. [24,32]). Here, the deviation of P(s) statistics from
both Poisson and GOE limits in the center e ∼ 0 for cases
2 and 3, and, in the edge e ∼ −2 × √

2N for cases 4 and 5
suggests the existence of a critical statistics. This motivates us
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FIG. 8. Criticality for case 2: Here, a size-independence of the
P(s) behavior in each energy range (e ∼ e0 × √

2N with e0 given in
each figure) is clearly visible from the panels (a, b, c). Further, P(s),
at center as well as in the bulk, lies intermediate to both Poisson and
GOE limits (although closer to Poisson but distinct from it), which
implies a critical spectral statistics. At edge, the spectral statistics
approaches Poisson for all system sizes (c).

to analyze the spectral statistics for many N values; here the
ensemble size for each N is chosen so as to keep same total
number of levels for the analysis. As displayed in Figs. 8–11,
the short range statistics, i.e., P(s) for the above cases is
indeed size-independent, thus implying an intermediate state
between Poisson and GOE even in an infinite size limit. This
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FIG. 9. Criticality for case 3: At bulk (e ∼ e0 × √
2N with e0

given in each figure), the spectral statistics approaches GOE for
all system sizes (a). But at center as well as in the edge, a critical
behavior of P(s), size-independent as well intermediate to both
Poisson and GOE limits, is clearly visible from panels (b) and (c).
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FIG. 10. Criticality for case 4: At bulk and center of the spec-
trum, the spectral statistics approaches GOE for all system sizes
(a, b). But in the edge region, a critical behavior of P(s), size-
independent as well intermediate to both Poisson and GOE limits,
is clearly visible from the part (c).

behavior is typical of a critical point of the spectral statistics
[32]. This is also confirmed by a similar analysis for the
size-dependence of 2(r) for each case (figures not included
in this work).

In the case of disordered Hamiltonians, a mobility edge is
defined as the critical energy which separates the localized
states from extended ones; in terms of the spectral statistics,
this translates to Poisson and Wigner-Dyson statistics above
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FIG. 11. Criticality for case 5: Similar to case 4, here again the
spectral statistics in the bulk and center of the spectrum approaches
GOE for all system sizes (a, b). But part (c) indicates a critical
behavior of P(s), size-independent as well intermediate to both
Poisson and GOE limits.

and below the critical energy. But the Hamiltonians consid-
ered previously are usually those with no other constraint
except those leading to Hermitian matrices. It is then relevant
to question whether such a mobility edge can exist also for
the Hamiltonians subjected to higher number of constraints?
Note the spectral statistics for case 3 varies significantly with
energy, from almost GOE type behavior (in the bulk) to an
intermediate state between Poisson and GOE (in the center
and edge). Although the IPR study for this case (shown in
Fig. 2) indicates the extended states for almost all energies
but Dq behavior is clearly energy-dependent (Fig. 4). This
suggests the existence of a mobility edge in this case too.

VI. CONCLUSION

Based on the present study of a few structured matrix en-
sembles, we find that the relation between the statistics of the
eigenvalues and eigenfunctions of a generic random matrix
ensemble is a lot more complicated than previously believed
on the basis of Hermitian ensembles with symmetry as the
only constraint. In fact it seems while the spectral statistics is
primarily governed by the number of independent matrix pa-
rameters, the eigenvector statistics is sensitive to their relative
degree of randomness. More clearly, as far as the independent
matrix elements are statistically of the same strength (e.g.,
same mean and variance) irrespective of their number, it will
always lead to almost all extended eigenfunctions (except for
a very few strongly localized ones). The eigenvalue statistics
however undergoes a significant change as the number of
independent parameters vary. Our analysis also reveals the
possibility of a critical statistics without changing disorder
and just by imposing specific constraints. More clearly, it
is possible to undergo a localization-delocalization transition
without varying disorder or energy and just by imposing a
specific set of constraints on the disordered Hamiltonians.

Another important aspect of our results is following: in
analogy with standard Gaussian ensembles (i.e., Gaussian
ensembles subjected only to Hermitian and chiral constraints,
referred below as minimum-constraint case), each ensemble
considered in this study is essentially parameter-free. But
contrary to former, the latter are not only basis dependent
but the statistics of eigenvalues and eigenfunctions for them
is energy-dependent as well as different from the minimum-
constraint cases and therefore represent new universality
classes. Again, in analogy with previously known ten univer-
sality classes of Gaussian ensembles, these new universality
classes also arise from different types of matrix constraints;
but, while former are based on symmetry conditions, the
latter belong to more complicated system conditions, e.g., a
combination of conservation laws and symmetry conditions.
Although the present work focuses only on five types of
matrix constraints, it is possible to consider many other types,
while keeping the ensemble free of parameters, which may
lead to many new universality classes lying between Pois-
son and standard Gaussian cases. It is worth emphasizing
that the matrix constraints considered here are not just pure
academic pursuit, they arise in real physical situations too.
For example, as discussed in Ref. [31], the ensembles with
column constraints appear in a wide range of areas and the
ensemble with topological constraints appear in disordered
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systems [10]. Furthermore, a large range of matrix constraints
can appear in a weight matrix, an important component of
deep learning in artificial intelligence, and which depends on
training of the neural network to a series of commands.

The present analysis suggests many new directions for
future studies. Here we have considered ensembles subjected
to many constraints but with their free elements independent
and identically distributed; as confirmed by our numerics, the
latter lead to weakly multifractal eigenstates in the bulk. It
is relevant to know whether nonidentical distributions may
lead to the eigenfunctions with strong multifractality and how
will that affect the corresponding eigenvalue distributions.
Further the existence of a critical statistics between Poisson

and Wigner-Dyson for a specific set of matrix constraints,
with fractal dimension 0 < Dq < 1, (as in cases 2 and 3)
indicates the possibility of a localization-delocalization tran-
sition even for a very weak disorder and arbitrary dimensions
if those constraints can be engineered in a disordered lattice
(or more generally in a complex system). This also gives
rise to the curiosity about the possibility of such a transition
for other symmetry classes, e.g., particle-hole symmetries.
Further, for applicability to a wider range of complex systems,
e.g., complex networks with asymmetric couplings, a gener-
alization of our analysis to non-Hermitian ensembles is also
desirable.
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