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Some physical features of the Burr-type-XII distribution
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Aspects related to driven nonequilibrium systems considered in Beck-Cohen superstatistics (BCS) formalism
and, in addition, the unbiased maximum entropy density estimation, show the pertinence of considering the
three-parameter Burr-type-XII distribution as a suitable way to describe stationary states of complex and
nonequilibrium systems. The above is shown following a variant to the procedure presented in the formulation of
BCS, which consists of the incorporation of an expanded Boltzmann factor through the Mittag-Leffler function.
On the other hand, maximization of Shannon-Boltzmann-Gibbs entropy and other generalized forms of entropy
show that the Burr-type-XII distribution may emerge as the least informative distribution for the mentioned
systems.
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I. INTRODUCTION

The superstatistics model was presented in [1], proposing
that for an inhomogeneous driven nonequilibrium system
composed of many spatial cells, locally it behaves according
to equilibrium statistical mechanics, with inverse temperature
β, whereas globally it obeys another statistic that acts on said
parameter. So, stationary distributions B(E ) of superstatisti-
cal systems can be obtained by superposition of Boltzmann
factors e−βE weighted with the probability density f (β ) to
observe a particular value of β in a randomly chosen cell, so
that

B(E ) =
∫ ∞

0
e−βE f (β )dβ, (1)

where the intensive parameter β is considered approximately
constant during the observation. Beck and Cohen have found
that according to the function f (β ) chosen, several data
sets respond to one of three superstatistics classes, namely,
χ2 superstatistics, inverse-χ2 superstatistics, and log-normal
superstatistics. These cases correspond respectively to

f (β ) = 1

�(n/2)

(
n

2β0

)n/2

βn/2−1e− nβ

2β0 , (2)

f (β ) = β0

�(n/2)

(
nβ0

2

)n/2

β−n/2−2e− nβ0
2β , (3)

and

f (β ) = 1√
2πsβ

e− (ln β/μ)2

2s2 . (4)

So clearly, B(E ) could take different forms depending on the
distribution for β considered. Note that basically here it is
intended to obtain B(E ) = 〈e−βE 〉, which could not always be
solved in a closed manner.
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The idea of Beck-Cohen superstatistics (BCS) can be
followed, assuming that through some dynamical mechanism,
a nonequilibrium system could contain subsystems in steady
states close to equilibrium, with respective values of each β

(inverse of temperature) approximately fixed during a suitable
interval of time to perform an observation. The exponential
form of the Boltzmann distribution law can be expanded
through the Mittag-Leffler function, so a superposition of
statistics given by expanded Boltzmann factors can be per-
formed, as will be seen later, allowing us to reach the three-
parameter Burr-type-XII distribution.

The Mittag-Leffler function was presented by [2], and
generalizations have been introduced by other authors. A
known generalized form, presented in [3], is given by

Eγ

α,β (z) =
∞∑
j=0

(γ ) j z j

j!�(β + α j)
, (5)

with �(β ) > 0, �(α) > 0, and γ �= 0, where (γ ) j denotes
the usual Pochhammer symbol defined by (γ ) j = γ (γ +
1) · · · (γ + j − 1) and (γ )0 = 1.

What is remarkable is that the form (5) represents a natural
expansion of the exponential function, where, in particular,
E1

1,1(z) = ez, so it is possible to get behaviors that move away
or approach to the exponential form as much as you want.

On the other hand, it can be found that from the maximum
entropy principle, the Burr-type-XII distribution arises as a
suitable form to describe nonequilibrium systems, imposing
specific moments as constraints. This distribution is given by

p(x) = ckxc−1[1 + xc]−(k+1), (6)

with x > 0, c > 0, and k > 0. The Burr-type-XII distribution,
presented by [4], has an interesting versatility which is widely
known in statistics, as can be seen in several papers as in [5]
and [6]. Some of its different forms are shown in Fig. 1.

Reference [7] discusses the statistical and probabilistic
properties of the Burr-type-XII distribution, its relationship
to other distributions used in reliability analyses, its use as a
model for failure data, and methods for graphical estimation,
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FIG. 1. Some cases for the Burr-type-XII distribution: c = 6,

k = 5 (curve 1), c = 1, k = 2 (curve 2), c = 0.5, k = 1 (curve 3),
c = 1, k = 1 (curve 4), and c = 2, k = 1 (curve 5).

where it has been found that in comparison to the log-logistic
and the log-normal, the Burr’s additional flexibility provides a
better fitting model for failure data. In [8] there is an applica-
tion to heavy tailed lifetime data through the three-parameter
Burr-type-XII distribution, where results on a real dataset by
fitting this distribution to the survival time of breast cancer
patients in the Gaza Strip were obtained. The Burr-type-
XII contains the q-exponential and q-Weibull distributions as
particular cases, and with these a physical description has
been established that has allowed the study of some systems
of interest, as can be read in [9]. Also, Ref. [10] studies the
q-exponential and q-Weibull distributions as particular cases
of the Burr-type-XII distribution. In Ref. [11] an advantageous
description of the q-Weibull distribution for the analysis of
dielectric breakdown in oxides is presented. This distribution
is a generalization of the Weibull distribution, just as the
q-exponential function generalizes the exponential, and in
the mentioned work it has been found that the generalized
Weibull distribution leads to a better fit of experimental and
simulated data in comparison with the Weibull distribution.
This issue, regarding the generalization of the Weibull dis-
tribution, was studied in [12], where this distribution can be
useful in some situations where neither q-exponential nor
Weibull distribution provide satisfactory results, as in the case
of the distribution of the highway length. Also, in Ref. [13]
a study of the properties of the q-Weibull distribution and the
application to data on cancer remission times was carried out,
finding that this distribution gives a better fit than the Weibull
distribution. Also, results relating to reliability properties,
estimation of parameters, and applications in stress-strength
analysis were obtained.

Why choose the Mittag-Leffler function?

The Mittag-Leffler function has been chosen because of
the interesting properties it has, as well as by the wide
applications that have been made to a large number of physical
systems and others that are objects of study in the engineering

areas and other sciences. It has been found that fractional
order integral (or differential) equations provide solutions in
terms of the Mittag-Leffler function when studying fractional
generalization of the kinetic equation, random walks, levy
flights, superdiffusive transport, and in the study of complex
systems, explaining the behavior of some phenomena, inter-
polating between a purely exponential law and a power-law-
like behavior.

Of course, one could proceed using another function than
the Mittag-Leffler function, but there is nothing to suggest
which correct path to follow. Related to this, you can read,
for example, Ref. [14], where an alternative expression for the
blackbody radiation law is obtained, showing an analysis of
the residual monopole spectrum, applying the Bose-Einstein
distribution with a dimensionless chemical potential, also
applying a formula based on the nonextensive approach and
another based on fractional calculus (performing the Mittag-
Leffler function).

A very complete survey of the Mittag-Leffler function,
generalized Mittag-Leffler functions, and Mittag-Leffler–
type functions can be found in [15]. In that work there
are special cases, basic properties, recurrence relations,
asymptotic expansions, integral representations, relations with
Riemann-Liouville fractional calculus operators, generaliza-
tions, Laplace transform, Fourier transform, and fractional in-
tegrals and derivatives (which are related with the evolution of
some interesting physical processes, e.g. [16], where ordinary
differential equations of fractional order related to generalized
processes of relaxation and oscillation are considered). There
are several applications in complex systems through fractional
kinetic equations, time (or space) fractional diffusion equa-
tions, nonlinear waves, and fractional viscoelastic models. In
various cases the asymptotic behavior is an important ele-
ment for several physics situations. Reference [17] provides
descriptions of some physical models, showing the role of the
Mittag-Leffler function in fractional modeling. Reference [18]
shows the interpolation between a pure exponential and a hy-
perbolic function performed by the Mittag-Leffler function in
the description of relaxation phenomena in complex physical
systems within the framework of fractional kinetic equations.
On the other hand, the authors of Ref. [19] show that the
Mittag-Leffler function can be used as a universal fitting
function, explaining the behavior of some cases as monotonic
processes, oscillatory behavior, and damped oscillations.

Quoting [15]: “It is simply said that deviations of physical
phenomena from exponential behavior could be governed
by physical laws through Mittag-Leffler functions (power-
law).... This nonequilibrium statistical mechanics will focus
on entropy production, reaction, diffusion, reaction-diffusion,
and so forth, and may be governed by fractional calculus....”

II. A STATIONARY DISTRIBUTION FOR
NONEQUILIBRIUM SYSTEMS

A. Superposition of expanded Boltzmann factors

What is proposed below consists of a variant of the BCS
model for a nonequilibrium system, providing an alternative
expression for a stationary distribution of the system. To
get that, here we propose an extended Boltzmann factor for
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each cell through the Mittag-Leffler function Eγ
ν (−βνεν ),

assuming that the system is partitioned into cells, considering
each of them locally in a steady state close to equilibrium.
(Note that E1

1 = E1 = e−βε provides the classic Boltzmann
factor for the equilibrium situation.) In this perspective ν and
γ are fixed parameters throughout the system, but parameter
β can have any positive value in each cell, and its value is
approximately constant for a reasonably large time.

On the other hand, the following probability density func-
tion can be obtained (see, for example, [20]) for x > 0:

p(x) = νγ xν−1Eγ+1
ν,ν+1(−βνxν ), (7)

where 0 < ν � 1, γ > 0, and β > 0. The interesting thing
about this function is that it has been obtained from the
cumulative function F (x) = 1 − Eγ

ν (−βνxν ), incorporating
the Mittag-Leffler function with which we can represent the
expanded Boltzmann factor Eγ

ν (−βνεν ) associated with the
cells, so that we can get the macroscopic behavior of the
system through a linear average of the expanded Boltzmann
factors over β, where ν and γ are fixed global parameters.

If we take a look into the BCS formalism, χ2-
superstatistics appear as a remarkable superstatistics class. So
the probability density (2) for f (β ) seems important (because
the Tsallis nonextensivity distribution is obtained from that
case), and some authors (see Refs. [21,22], for example) have
justified this choice. Then, we take

f (β ) = λ−ν ′

�(ν ′)
βν ′−1e− β

λ , (8)

with ν ′ = ν + 1 and λ > 0, ν > 0 parameters.
Now we can obtain an alternative form of B(E ) [Eq. (1)]

by integrating from zero to infinity,

p(ε) =
∫ ∞

0
νγ εν−1Eγ+1

ν,ν+1(−βνεν ) f (β )dβ, (9)

which can be seen as a type-B superstatistics in the BCS
model shown in [1], due to the performance of locally nor-
malized distributions. Then,

p(ε) = νγ εν−1 λ−ν ′

�(ν ′)

∞∑
k=0

(γ + 1)k (−1)kενk

k!�(ν ′ + νk)

×
∫ ∞

0
βνk+ν ′−1e− β

λ dβ. (10)

After integration and algebraic manipulations, it can be writ-
ten

p(ε) = νγ εν−1λν[1 + (λε)ν]−(γ+1). (11)

This is the three-parameter Burr-type-XII distribution for
ε > 0, with γ > 0 and ν > 0 parameters.

B. Two remarkable particular cases

As a particular case, in the limit γ → ∞ of (11) and for
ν = 1 it is possible to obtain the equilibrium situation

lim
γ→∞ p(ε) = βe−βε, (12)

where the substitution λ = 1/(γ 1/νβ ) has previously been
carried out.

Moreover, with ν = 1, γ + 1 = 1
q−1 , and λ(γ + 1) =

β0, the expression (11) turns to p(ε) = β0(2 − q)[1 + (q −
1)βoε]−1/(q−1), with application to the so-called nonextensive
systems.

In this respect, we can see here that the q-exponential
distribution introduced by [23] is simply seen as a particular
case of the family (11), a question that is also present in [24],
where it has seen that the Burr-type-XII distribution provides
a better performance than the q-exponential distribution when
applied to fracture roughness data from materials such as
Bi2Sr2CaCu2O8+x, alumina (Al2O3), silicon nitride (Si3N4),
sialon (Si6−xAlxOx − N8−x), Pyroceram 9606, and titanium
tiboride (TiB2).

III. MAXIMUM ENTROPY PROBABILITY DISTRIBUTION

It is possible to obtain the Burr-type-XII distribution as the
most unbiased probability density function estimation from
the Shannon-Boltzmann-Gibbs entropy (SBG) maximization,
but it is also possible to obtain it from maximization of
generalized forms of entropy widely known today, such as
the Tsallis entropy and Mathai’s entropy. Regarding that last
matter, some authors do not believe it is adequate to deal
with generalized forms of entropy, suggesting that the chosen
moments used as constraints could allow appropriate distri-
butions to be built that could describe more complex systems,
in particular, through the generalization of said moments. This
issue has been addressed in several papers, e.g., Refs. [25–28],
examining logarithmic moments or with fractional order,
which are appropriate when working with a positive random
variable with distribution exhibiting fat tails. The mathemati-
cal background has been studied in some works such as [29]
and [30], where the type of density function and its link
with different moments has been extensively discussed, as
well as the limitations of the corresponding maximum-entropy
approach, the existence conditions for the respective solution,
and so on.

Whatever the case may be, the way to obtain the Burr-
type-XII distribution through the SBG entropy, or through a
generalized form of entropy and their respective maximization
process, both will be shown in the following.

A. Shannon-Boltzmann-Gibbs entropy

We can consider the SBG entropy:

S(x) = −k
∫ ∞

0
f (x) ln f (x)dx, (13)

with k Boltzmann’s constant. The application of the principle
of maximum entropy requires some constraints for estimating
the underlying probability distribution, which gives us the
minimum assumptions about the system. We have the normal-
ization condition ∫ ∞

0
f (x)dx = 1. (14)

Additional constraints allow different probability distributions
to be built, which can be obtained through different moments,
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namely,

〈gi(x)〉 =
∫ ∞

0
gi(x) f (x)dx. (15)

From the calculus variational method, we can obtain the
Euler-Lagrange equation:

δ

{
−

∫ ∞

0
f (x) ln f (x)dx

+
∑
i=0

φi

[
〈gi(x)〉 −

∫ ∞

0
gi(x) f (x)dx

]}
= 0, (16)

whose solution is given by

f (x) = e−φ0−
∑

i=1 φigi (x), (17)

where φi are the Lagrange parameters, determined through
constraints. By substituting (17) into (14), it can be found that

φ0 = ln Z (φ1...φi ), (18)

where Z (φ1...φi ) = e− ∑
i φigi (x). Along with this, we also have

the Jayne’s relations

〈gi(x)〉 = − ∂

∂φi
ln Z, (19)

∂S(x)

∂〈gi(x)〉 = φi. (20)

Of course, the form that the function f (x) can acquire will
depend at the same time on the form of each of the considered
gi(x). In particular, it can be founded in [31] that the following
moments can be chosen:

〈ln(x)〉 =
∫ ∞

0
ln(x) f (x)dx, (21)

〈
xα

p

〉 = 1

p

∫ ∞

0
ln(1 + pxα ) f (x)dx, (22)

where xα
p = 1

p ln(1 + pxα ) has been defined in such a way that
it can be seen as a generalization of xα , which is recovered
when p → 0.

The authors of the mentioned paper highlight the fact
that the expectation of ln x given by (21), apart from its
relationship to the geometric mean, represents an essential
constraint for positively skewed random variables. While the
arbitrary generalization given in (22) seems as reasonable as
the arbitrary choice of some generalized forms of entropy
used by some authors, the aforementioned paper can be read
to deepen understanding of the motivation for choosing these
moments (which can clearly be discussed as part of different
research).

So, with the above we can build the following Euler-
Lagrange equation:

∂

∂ f

{∫
f (x) ln f (x)dx + φ0

(∫
f (x)dx − 1

)

+φ1

(∫
ln(1+pxq)dx−g1

)
+φ2

(∫
ln xdx−g2

)}
= 0,

(23)

which gives the following density function (details can be seen
in [32]):

f (x) = 1

q
p

φ2−1
q

1

B
( 1−φ2

q ,− 1−φ2

q + φ1

p

)x−φ2 (1 + pxq)−
φ1
p .

(24)

After some algebra, the authors present the form

f (x) = γ3

βB(γ1, γ2)

(
x

β

)γ1γ3−1[
1 +

(
x

β

)γ3]−(γ1+γ2 )

. (25)

This fact reveals that a system responding to a power law is a
result which is not exclusive of a nonextensive entropy.

The three-parameter Burr-type-XII function arises imme-
diately from (25) with γ1 = 1 (there, B(·, ·) is the beta func-
tion with β > 0, γ1 > 0, γ2 > 0, and γ3 > 0).

B. Tsallis entropy

Nonextensive statistical formalism is a generalization of
Boltzmann-Gibbs (BG) statistical mechanics. It was intro-
duced in [23] and yields a new approach to explain the
non-BG behavior of systems that are not in equilibrium,
establishing that for those systems a general form of entropy
can be assigned that allows an adequate description.

Tsallis nonextensive entropy is given by

Sq(x) = k
1 − ∫ ∞

0 [ f (x)]qdx

q − 1
. (26)

q ∈ � is the entropic index, which represents the degree of
nonextensivity according to the property

Sq(A + B)/k = [Sq(A)/k] + [Sq(B)/k]

+ (1 − q)[Sq(A)/k][Sq(B)/k], (27)

when subsystems A and B are assumed to be probabilistically
independent. Taking the limit q → 1 the SBG entropy (13) is
obtained.

We can find in [9] the introduction of the fractional moment
〈xα〉 and the q-expectation value 〈x〉q,

〈xα〉 =
∫ ∞

0
xα f (x)dx, (28)

〈x〉q =
∫ ∞

0
xπ (x)dx, (29)

where π (x) is the escort probability (which can be found in
[33]),

π (x) = [ f (x)]q∫ ∞
0 [ f (x)]qdx

. (30)

Using (21) and (28) with (29), the moments 〈xα〉q and
〈lnq x〉q can be written as constraints, and in this way the
following Euler-Lagrange equation can be obtained:

∂

∂ f

{
Sq(x) + φ0

(∫ ∞

0
π (x)dx − 1

)

+φ1

(∫ ∞

0
xαπ (x)dx − 〈xα〉q

)

+φ2

(∫ ∞

0
lnq xπ (x)dx − 〈lnq x〉q

)}
= 0, (31)
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where lnq x = (x1−q − 1)/(q − 1) is the generalized logarith-
mic function, which can be found in [34], with the particular
case limq→1 lnq x = ln x (other features are presented in [35]).
Then, it is possible to obtain

f (x) = αxα−1

〈xα〉q

[
1 +

(
q − 1

2 − q

)
xα

〈xα〉q

]−1/(q−1)

. (32)

This result can be checked in [9], where it is used to describe
the relaxation dynamics in non-Debye complex systems. An-
alytically, (32) can be seen as the extended three-parameter
Burr-type-XII distribution, an issue reviewed, for example, in
Refs. [36,37].

C. Mathai’s entropy

In [38] is presented a generalized form of entropy, also as-
sociated with Shannon, Boltzmann-Gibbs, Rényi, Tsallis, and
Havrda-Charvát entropies. In the continuous case, Mathai’s
entropy has the form

Mα ( f ) =
∫ ∞
−∞[ f (x)]2−αdx − 1

α − 1
, (33)

with α �= 1 and α < 2, where 1 − α corresponds to the
strength of information content, which appears when a con-
nection with the Kerridge’s measure of inaccuracy ([39]) is
done. The SBG entropy (13) is obtained when the limit α −→
1 is taken.

The optimization of (33) can be done if it is subject to the
following conditions for all x:

(i) f (x) � 0
(ii)

∫ b
a f (x)dx < ∞

(iii)
∫ b

a x(γ−1)(1−α) f (x)dx = f ixed

(iv)
∫ b

a x(γ−1)(1−α)+δ f (x)dx = f ixed
with γ > 0, δ > 0, α �= 1, α < 2.
When variational calculus is performed, Euler-Lagrange

equations lead to

∂

∂ f

{∫ ∞
−∞[ f (x)]2−αdx − 1

α − 1

+φ1

(∫ b

a
x(γ−1)(1−α) f (x)dx − g1

)

+φ2

(∫ b

a
x(γ−1)(1−α)+δ f (x)dx − g2

)}
= 0. (34)

Then we get the function that maximizes (33), which is

f (x) = ςxγ−1[1 − β(1 − α)xδ]
1

1−α , (35)

with β > 0, 1 − β(1 − α)xδ > 0, and ς is the normalization
constant.

So, we have three cases: α < 1, where we get a family
of generalized β density functions of type 1; α > 1, where
a family of generalized β density functions of type 2 is
obtained; and α −→ 1, where a generalized � density can
be found. A Burr-type-XII function is contained in the case
α > 1, δ = γ with

ς = δ�
(

1
α−1

)
β(α − 1)

�
(

1
α−1 − 1

) . (36)

IV. FINAL REMARKS

Burr-type-XII distribution was presented as a suitable
function to describe stationary distributions of complex and
nonequilibrium systems. It can be seen as an alternative
to explain systems described by the superstatistical model
presented by [1], where it remains to determine with more
precision the scope that one model has in relation to the other.
In a work recently accepted in a different journal (which may
be revised in [40]) the application to traffic delay, medicine,
and turbulence explained by χ2 superstatistics, inverse-χ2

superstatistics, and log-normal superstatistics, respectively,
were treated with Eq. (11). (All those cases can be seen in
[41].)

Expression (11) has a construction inspired by the proce-
dure followed by Beck and Cohen but with a simpler and more
intuitive variant based in the great versatility shown by the
Mittag-Leffler distribution. On the other hand, by assigning
a SBG entropy to the types of systems mentioned, or even
associating them with a more general form of entropy than the
SBG form, it is possible to find the Burr-type-XII distribution
as the least informative form, estimated with constraints im-
posed through generalized forms of different moments, which
have been widely used in descriptions of non-Boltzmann-
type systems. But there could be other alternatives. For ex-
ample, if we think that the principle of maximum entropy
must be applied through the usual constraints (which lead
to the Boltzmann distribution via the SBG entropy), then,
according to [42], there exists an expression that allows us
to obtain a form that shows us the appearance of the entropy
of complex systems when considering some positive and
deformed function of the exponential function. The authors
show in this interesting research that the procedure uses the
appropriate physical context, lending reliability to its results,
since it is also able to address the thermodynamics of the
system. In another paper (see [43]), considering three of
the four Shannon-Khinchin axioms, the same authors present
a two-parameter family entropy form for complex systems,
which can be associated with functions of the Lambert-W
exponentials type when it is required to find the corresponding
distribution function. Clearly, we could check that here, but
we still cannot rule out that the use of generalized constraints
cannot be incorporated in the process of maximization of the
SBG entropy or another generalized forms of entropy, in order
to characterize a complex system.

It should be mentioned that other relations of the Burr-
type-XII distribution with some aspects of complex physical
systems have already been presented by other authors, among
which is Ref. [44], where a stochastic point of view about
the Burr-type-XII distribution is given, containing interest-
ing physical and statistical interpretations. Quoting Beck in
Ref. [1]: “...In general, complex nonequilibrium problems may
require different types of superstatistics. Tsallis statistics is
just one example of many possible new statistics. There is no
a priori reason to expect that other superstatistics would not
be present in nature....”

Therefore, the possibility that the Burr-type-XII function is
a more adequate way, than some existing ones, to explore sta-
tionary states of certain types of complex and nonequilibrium
systems should be taken into account.
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