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Entropy-driven docosahedral short-range order in simple liquids and glasses
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The energetically favored icosahedral structure has been seen as the central figure for describing the local
structure of simple liquids and glasses. Although regular icosahedral structures are rarely found, it is accepted
that distorted icosahedral structures occur in simple liquids and glasses. However, which local structure
dominates and why it is more frequent than the others remain unanswered questions. In this study, by using
a recently developed structure descriptor, we show that docosahedral structures are the most favored not only
in models of simple liquids and glasses but also in an experimental colloid glass. We also show that the
the predominance of docosahedral structures is entropy-driven. Our findings represent a significant milestone
towards comprehending mysterious phenomena such as supercooling, glass transition, and crystallization, where
local structures play a key role.
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I. INTRODUCTION

Liquid is one of the three major states of matter. Since
its atomic structure is believed to be related to mysterious
phenomena such as supercooling, glass transition, and crys-
tallization, enormous effort has been devoted to its under-
standing. Simple liquids, which consist of identical spherical
atoms, are one of the simplest classes of disordered systems.
Even for this simple case, the atomic structure remains poorly
understood. A tendency to favor a particular type of local
structure (a structure composed of a central atom and its
neighbors) is called short-range order. It is well known that, at
a shorter-range scale, four neighboring atoms in simple liquids
tend to form a regular tetrahedral structure [1–3]. However, it
remains mysterious how the tetrahedral order develops into
the short-range order.

To explain the supercooling phenomenon [4], Frank pro-
posed that simple liquids contain many icosahedral local
structures [5]. This hypothesis is based on the energetic anal-
ysis of arrangements of 13 atoms interacting via a Lennard-
Jones (LJ) potential: an icosahedral cluster has a lower energy
than a face-centered-cubic (fcc) and a hexagonal close-packed
(hcp) cluster. Frank’s argument has been a good working
hypothesis motivating numerous studies of the structure of
disordered systems [2,6–22]. A few papers were against this
hypothesis, for nearly regular icosahedral structures were
rarely found in the LJ liquid or the modified LJ liquid [19–22].
On the other hand, many others advocated it by assuming that
icosahedral structures include not only regular icosahedral
structures but also distorted (or defective) icosahedral struc-
tures [2,6–15]. However, the term “distorted icosahedron” is
ambiguous. Some authors meant a local structure with a value
of the W6 order parameter below a certain threshold [6,7,11],
some meant a thermally vibrated regular or twisted icosahe-
dral structure [10,13], and some meant a local structure with
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a Voronoi index 〈0, 2, 8, 1〉, 〈0, 2, 8, 2〉, or 〈0, 1, 10, 2〉 [8].
Thus, a clear picture of the local structure is still missing.

In contrast to Frank’s energetic approach, Bernal proposed
the dense random packing of hard spheres as a structure
model of simple liquids [1,3,23–25]. This model ignores
energetic effects but captures entropic ones. Despite the fact
that the density assigned to a local structure is maximized
for a regular icosahedral structure [26], it is well known
that icosahedral structures are rarely found in the hard-sphere
system [3,23–25]. We point out that there is an overlooked
paradox between the currently accepted picture of the hard-
sphere system and that of the LJ liquid. Purely entropic effects
determine the local structure of the hard-sphere system, while
it is generally believed that the energetic effects dominate that
of the LJ liquid. Nevertheless, the hard-sphere packing repro-
duces the overall features of the radial distribution function of
liquid Ar [1,25], which is well reproduced by the LJ potential.

The questions of which local structure dominates in simple
liquids and why it is more frequent than the others still remain
unanswered. The lack of the fundamental understanding of
the local structure stems from a profound but overlooked
problem: although a liquid consists of an unlimited variety
of local structures, there was no reliable method for clas-
sifying them. A popular approach to studying the atomic
arrangement is to represent it as a tiling of Voronoi polyhedra
[7,8,12,18,23–25,27–31] [Fig. 1(a)]. Each polyhedron con-
tains one atom, and the shape of the polyhedron corresponds
to the local structure [Fig. 1(b)]. The short-range order of
disordered structures has been investigated by classifying
their Voronoi polyhedra according to the Voronoi indices.
Although the Voronoi index specifies how many i-gons (i = 3,
4, 5, . . . ) are contained in a polyhedron, it does not spec-
ify how these polygons are arranged. As a result, different
polyhedra may have the same index [7,27,29,32]. This de-
generacy prevents proper classification of the local structures.
The Voronoi index analysis of disordered structures thus
potentially leads to a misunderstanding of their short-range
order.
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FIG. 1. Method for describing the atomic arrangements. (a) The
arrangement of atoms can be represented as a tiling of Voronoi
polyhedra. (b) Relation between a Voronoi polyhedron and its cor-
responding local structure. By using the p3 codeword [27–29], the
Voronoi polyhedron associated with the central atom (orange) is
represented by 512 (dodecahedron). The polyhedron formed by the
atoms (green) surrounding the central one is the dual of the 512-
polyhedron and is represented by �512 (icosahedron). The local
structure composed of the central (orange) and its neighbors (green)
is represented by @512 (icosahedral structure).

To paraphrase Galileo’s Il Saggiatore [33], mathematics for
classifying the local structures is necessary to comprehend
disordered structures. We therefore developed a method for
giving a unique codeword (which we call p3) to any polyhe-
dron in terms of how the building-block polygons are arranged
to form that polyhedron [27–29]. In the present study, we
apply this method to elucidate the short-range order in simple
liquids and glasses: the LJ liquid, from which the Frank’s
hypothesis originates [5], the LJ glass, the dense random
packing of hard spheres, and even an experimental colloid
glass [34].

II. METHOD

A. Brief explanation of p3 codeword

A polyhedron is constructed by gluing polygons side to
side. By using a recently developed mathematical method
called the p3-code [27–29], any polyhedron can be repre-
sented by a unique codeword p3, in which the information
of how the building-block polygons are arranged is stored. In
general, a p3 codeword consists of a polygon-sequence code-
word (ps2) and a side-pairing codeword (sp) and is expressed
as p3 = ps2; sp, where “;” is a separator. However, all the p3

codewords of the Voronoi polyhedra found in this work do not
contain sp, namely, p3 = ps2. The ps2 codeword is expressed
as ps2 = p2(1)p2(2)p2(3) · · · p2(F ). Here p2(i) is the number
of sides of the ith polygon. F is the number of polygons of
the polyhedron. Each p2(i) indicates the ith building-block
polygon, and the sequence of the p2(i)’s designates how to
assemble the building-block polygons into a polyhedron. By

using a decoding algorithm [27–29], the original polyhedron
(combinatorial structure) can be reconstructed from its p3

codeword.
A polyhedron represented by p3 is henceforth called a p3-

polyhedron. Figure 1(b) briefly illustrates how a local struc-
ture is represented by using p3. When the Voronoi polyhedron
associated with an atom is a p3-polyhedron, its neighboring
atoms are placed at the vertices of a �p3-polyhedron, where
�p3 denotes the dual of a p3-polyhedron. The arrangement
of the central atom and its neighbors is represented by @p3.
Thus, “@” is the symbol that links a Voronoi polyhedron to
its corresponding local structure.

Note that there are several methods for classifying poly-
hedra. For example, polyhedra can be classified according
to the t-indices [35], which were developed for classifying
the hydrogen network of ice clusters. However, the t-index is
significantly lengthy. Polyhedra can also be classified accord-
ing to the Weinberg codewords [36], which were developed
for classifying planer-triply connected graphs. The Weinberg
codeword is less redundant than the t-index. However, it
is still lengthy. For example, the Weinberg codeword of a
dodecahedron is “1 2 3 4 5 1 5 6 7 8 1 8 9 10 2 10 11 12
3 12 13 14 4 14 15 6 15 16 17 7 17 18 9 18 19 11 19 20
13 20 16 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
3 2 1.” The same polyhedron is briefly encoded as 512 by
using the p3 code [27–29]. We emphasize that the p3-code
is designed to describe local structures [Fig. 1(b)]. In contrast,
both the t-index and the Weinberg codeword are not designed
for describing local structures. Therefore, they can denote
a Voronoi polyhedron, but they are unable to designate the
corresponding local structure.

B. Lennard-Jones systems

The LJ liquid is a representative model of simple liquids
such as rare-gas liquids and metallic liquids. The LJ potential
[37,38] is expressed as

φLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
. (1)

Here r is the distance between the two atoms, ε is the potential
well depth, and σ is the distance at which the potential
becomes zero. The triple point temperature and pressure of
the LJ system are Ttp = 0.694ε and Ptp = 0.0203ε/σ 3, respec-
tively [39]. As an example, we use the parameter values for
Ar [37], namely, ε/kB = 120 [K] and σ = 3.4 [Å], where kB

is the Boltzmann constant. In this case, Ttp = 83.3 [K] and
Ptp = 0.86 [MPa]. We cut off the interaction at a distance of
4σ . To remove the discontinuity of the potential, we use a
cut-and-shifted potential expressed as

φcs-LJ(r) =
{
φLJ(r) − φLJ(4σ ) (0 < r � 4σ )
0 (4σ < r) . (2)

We study liquids composed of 6912 atoms at different
temperatures and pressures: (T, P) = (0.80Ttp, Ptp ), (Ttp, Ptp ),
(0.90Ttp, 49.20Ptp ), and (1.12Ttp, 49.20Ptp ). Note that the
melting point is 1.12Ttp at a pressure of 49.20Ptp [39]. We
use a self-developed program to perform isothermal-isobaric
molecular dynamics simulations. We solve Hamilton’s equa-
tions derived from a Poincaré transform of the Nosé-Andersen
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FIG. 2. Distribution of most frequent local structures for (a) the LJ liquid at 0.80Ttp and Ptp, (b) the LJ liquid at Ttp and Ptp, (c) the LJ liquid
at 0.90Ttp and 49.20Ptp, (d) the LJ liquid at 1.12Ttp and 49.20Ptp, (e) the inherent structure of the LJ liquid at 0.80Ttp and Ptp, (f) the LJ glass, (g)
the dense random packing of hard spheres, and (h) the experimental dense random packing of colloid particles [34]. Each number in brackets
on the left of the @ symbol indicates the rank in the LJ liquid at 0.80Ttp and Ptp.

Hamiltonian [40–44] using the integrator described in the
Appendix. After equilibrating each system for more than
20 ps, we perform a 100-ps simulation. We analyze the atomic
configuration every 0.01 ps. Thus, a total of 10 000 atomic
configurations are analyzed. We also construct inherent struc-
tures of the LJ liquid at 0.80Ttp and Ptp by optimizing the
instantaneous atomic configurations and cell volume every

10 ps, and analyze a total of 10 inherent structures. In addition,
we study a total of 10 LJ glasses. To generate a glass, we cool
a liquid from Ttp to 0.004Ttp at a pressure of Ptp at a cooling
rate of 1013 K/s, and then optimize the atomic configurations
and cell volume.

For reference, we also study a fcc crystal composed of 864
atoms, hcp crystal composed of 448 atoms, and bcc crystal

022121-3



NISHIO, LU, AND MIYAZAKI PHYSICAL REVIEW E 99, 022121 (2019)

FIG. 3. Docosahedral structure (@4(56)258) found in the LJ
liquid at a temperature of 0.80Ttp and pressure of Ptp. It consists of
a central atom (orange) and its 13 neighbors (green) placed at the
vertices of a docosahedron (�4(56)258-polyhedron).

composed of 686 atoms at a temperature of 0.80Ttp and pres-
sure of Ptp. We use isothermal-isobaric molecular dynamics
simulations for the fcc and bcc crystals. However, since the
hcp crystal is not a cubic crystal system, the Nosé-Andersen
method cannot be used for it. We therefore perform isothermal
molecular dynamics simulations by solving Hamiltonian’s
equations derived from a Poincaré transform of the Nosé
Hamiltonian [41,42]. In this case, a rectangular simulation cell
is used. The values of the cell parameters are fixed so that the
density of the hcp crystal equals that of the fcc crystal. For
each crystal, we perform five independent 100-ps simulations,
and a total of 50 000 atomic configurations are analyzed.

C. Dense random packing of hard spheres

We generate a total of 10 dense random packings of 6912
hard spheres using DynamO [45], an event-driven molecular
dynamics program. We first generate hard-sphere fluids with
packing densities of 0.1, 0.2, 0.3, 0.4, and 0.5. For each
packing density, two structures are generated: one is obtained

TABLE I. Frequency of occurrence of most frequent local struc-
tures found in the LJ liquid at a temperature of 0.8Ttp and pressure
of Ptp. A rank vector (l, f , h, b) is assigned to each structure. Here
l , f , h, and b are the ranks in the liquid, fcc crystal, hcp crystal,
and bcc crystal, respectively. For example, the rank vector(1, 25,
37, 57) for @4(56)258 indicates that this structure ranks first in the
liquid, 25th in the fcc crystal, 37th in the hcp crystal, and 57th in the
bcc crystal. A minus sign means that the considered structure is not
found. For example, the minus sign in the rank vector(5, −, −, 206)
of @452625657 indicates that this structure is not found in the fcc
and hcp crystals.

Local structure Frequency (%) Rank vector (l, f , h, b)

@4(56)258 3.51 (1, 25, 37, 57)
@4526256524645 2.25 (2, 5, 1, 16)
@4563554652 1.77 (3, 1405, 34, 29)
@4526256245346 1.66 (4, 2, 7, 18)
@452625657 1.65 (5, −, −, 206)
@4526254452 1.58 (6, 30, 44, 107)
@45635346452 1.42 (7, 8, 19, 11)
@4(56)34655 1.32 (8, 12, 28, 47)
@512 1.27 (9, 101, 99, 449)
@45262526454 1.12 (10, 1006, 31, 62)

TABLE II. Frequency of occurrence of most frequent local struc-
tures found in the fcc crystal of the LJ system at a temperature of
0.8Ttp and pressure of Ptp.

Local structure Frequency (%) Rank vector (l, f , h, b)

@452654645246 9.52 (88, 1, 32, 23)
@4526256245346 6.99 (4, 2, 7, 18)
@4(56)3465(64)2 5.86 (22, 3, 3, 7)
@456356452(46)2 5.62 (26, 4, 30, 14)
@4526256524645 4.88 (2, 5, 1, 16)
@4536546454 4.55 (143, 6, 26, 12)
@452635645464 4.01 (23, 7, 15, 9)
@45635346452 3.28 (7, 8, 19, 11)
@4536545245 3.16 (270, 9, 2825, 60)
@45262562456452 3.05 (119, 10, −, 103)

after 106 collisions, while the other is after 2 × 106 collisions.
The 10 structures are compressed to obtain dense random
packings with a packing density of 0.637, which is close to
a maximum random packing density [1,25].

D. Experimental colloid glass

Kurita and Weeks experimentally generated a dense ran-
dom packing of colloid particles and determined the three-
dimensional positions of the particle centers by using confocal
microscopy [34]. They provided the coordination data set
for the colloid glass with a size of 492 × 514 × 28 [μm3]
containing 453 136 particles. To remove the surface effects,
we analyze the 183 030 particles far away from the surfaces.

III. RESULTS AND DISCUSSION

The distributions of most frequent local structures found in
the LJ liquids at (0.80Ttp, Ptp ), (Ttp, Ptp ), (0.90Ttp, 49.20Ptp ),
and (1.12Ttp, 49.20Ptp ) are shown in Figs. 2(a), 2(b), 2(c),
and 2(d), respectively. In all the cases, the most frequent
type of local structure is the 14-atom structure represented by
@4(56)258 (Fig. 3). The distribution for the inherent structure
of the LJ liquid at 0.80Ttp and Ptp, where thermal motion is
frozen, is also shown in Fig. 2(e). As with the parent liquid,
docosahedral structures are dominant in the inherent structure.

TABLE III. Frequency of occurrence of most frequent local
structures found in the hcp crystal of the LJ system at a temperature
of 0.8Ttp and pressure of Ptp.

Local structure Frequency (%) Rank vector (l, f , h, b)

@4526256524645 4.62 (2, 5, 1, 16)
@4(56)34624654 4.16 (30, 937, 2, 8)
@4(56)3465(64)2 3.60 (22, 3, 3, 7)
@456352(64)2654 3.59 (19, 17, 4, 2)
@452625653(64)2 3.56 (17, 1130, 5, 36)
@4526356452456 3.25 (24, −, 6, 22)
@4526256245346 3.13 (4, 2, 7, 18)
@4(56)2(624)2(64)2 2.70 (138, 15, 8, 3)
@4526252(654)2 2.52 (14, 1561, 9, 13)
@4563(564)26564 2.36 (37, 13, 10, 10)
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TABLE IV. Frequency of occurrence of most frequent local
structures found in the bcc crystal of the LJ system at a temperature
of 0.8Ttp and pressure of Ptp.

Local structure Frequency (%) Rank vector (l, f , h, b)

@464(46)44 50.06 (185, 24, 21, 1)
@456352(64)2654 9.95 (19, 17, 4, 2)
@4(56)2(624)2(64)2 8.17 (138, 15, 8, 3)
@4563465(46)24 8.00 (44, 11, 11, 4)
@3672(46)245(46)2 2.16 (205, 66, 66, 5)
@357262(46)44 2.16 (481, 65, 67, 6)
@4(56)3465(64)2 1.95 (22, 3, 3, 7)
@4(56)34624654 1.54 (30, 937, 2, 8)
@452635645464 1.19 (23, 7, 15, 9)
@4563(564)26564 1.14 (37, 13, 10, 10)

Essentially the same result is also obtained for the LJ glass
[Fig. 2(f)]. We call an @4(56)258 structure a docosahedral
structure because it consists of a central atom and its 13 neigh-
bors placed at the vertices of a docosahedron [�4(56)258-
polyhedron]. The predominance of docosahedral structures
distinguishes the liquid from crystals. In fact, the rank vector
of @4(56)258 is (1, 25, 37, 57), meaning that @4(56)258

ranks 1st in the liquid, 25th in an fcc crystal, 37th in an
hcp crystal, and 57th in a bcc crystal (Table I). Note that
the most frequent type of local structures in the fcc crystal,
the hcp crystal, and the body-centered-cubic (bcc) crystal are
@452654645246 (Table II), @4526256524645 (Table III), and
@464(46)44, respectively (Table IV).

The 10 most frequent local structures in the LJ liq-
uid at a temperature of 0.80Ttp and Ptp are derivatives of
the (parent) docosahedral structure (Fig. 4). In fact, the

FIG. 4. Relation between the docosahedral structure (@4(56)258) and its derivatives at a temperature of 0.80Ttp and pressure of Ptp. The
local structures are represented by graphs of the corresponding Voronoi polyhedra. The blue, red, and green insets on the right schematically
illustrate the effects of local atomic rearrangement, addition of an atom, and removal of an atom, respectively. The structures corresponding
to the blue graphs can be obtained by locally rearranging atoms of the docosahedral structure. The red structures can be obtained by adding
an atom to the docosahedral structure. The green structures can be obtained by removing an atom from the docosahedral structure. The gray
structure can be obtained either by adding an atom to the second-ranked structure or by locally rearranging the third-ranked structure.
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FIG. 5. Distribution of most frequent Voronoi indices for the LJ liquid at a temperature of 0.80Ttp and pressure of Ptp. For the secondary
pie chart on the right, the labels are p3 codewords. Note that 〈0, 1, 10, 2〉 corresponding to the docosahedron ranks fourth, while 〈0, 0, 12, 0〉
corresponding to the icosahedron ranks 18th.

@4526256524645 (ranked second), @45635346452 (seventh),
and @45262526454 (10th) structures can be obtained from the
docosahedral structure by locally rearranging the atoms. The
@4563554652 (third), @452625657 (fifth), and @4(56)34655

(eighth) structures can be obtained by adding a 15th atom
to the docosahedral structure, while the @4526254452 (sixth)
and @512 (ninth) structures can be obtained by removing an
atom. The @4526256245346 (fourth) structure can be obtained

FIG. 6. Radial distribution function (g(r)) of the LJ glass. The
arrow indicates the position corresponding to the average distance
(r4) of the central atom of the docosahedral structure to its neighbor
corresponding to the square face of the Voronoi polyhedron.

either by adding a 15th atom to the second-ranked structure
or by locally rearranging atoms of the third-ranked one. Note
that the icosahedral structure (@512) is merely one of the
derivatives, ranking ninth.

The previous Voronoi index analyses overlooked the im-
portance of docosahedral structures [7,31] since the most
frequent Voronoi index is 〈0, 3, 6, 4〉. However, the high fre-
quency of occurrence of 〈0, 3, 6, 4〉 arises merely because the
Voronoi index fails to distinguish different types of polyhedra.
In fact, our p3 analysis shows that as many as 11 different
polyhedra have the same index 〈0, 3, 6, 4〉 (Fig. 5). As a
result, we uncover the importance of docosahedral structures.
The docosahedral structure, which has a Voronoi index of
〈0, 1, 10, 2〉, has been regarded as a distorted icosahedral
structure. However, this is unreasonable for the following
two reasons. First, this is a category error. Given that the
docosahedron is a polyhedron with 22 faces, while the icosa-
hedron has 20 faces, a docosahedron will not be any type
of icosahedron. Second, the atoms in simple liquids tend to
form the docosahedral structure, and icosahedral structures
are formed only when atoms fail to do it. Thus, not the
icosahedral but the docosahedral structure is the central figure
for describing the local structure.

To identify the origin of the docosahedral short-range order
of the LJ liquid, we first define the energy ei of the atom i as

ei = 1

2

∑
j

φcs-LJ(ri j ). (3)
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Here ri j is the distance between the atoms i and j. The average
of eis of the central atoms and their neighbors of the docosa-
hedral structures in the inherent structure of the LJ liquid
(ēdoc = −7.65ε) is higher than that of the icosahedral struc-
tures (ēico = −7.68ε). In other words, docosahedral structures
are energetically less favored than icosahedral structures. In
addition, as with the LJ liquid, docosahedral order dominates
in the dense random packing of hard spheres [Fig. 2(g)]. These
results provide firm evidence that the docosahedral order of
the LJ systems is entropy-driven, disproving the generally
accepted picture that the energetic effects dominate the local
structure of simple liquids.

The entropy maximization of a hard-sphere system can be
achieved by optimizing local sphere packing [46]. Although
the density assigned to a local structure is maximized for
a regular icosahedral structure [26], there are gaps between
the atoms. When some gaps are narrowed by rearranging the
atoms, the other gaps are inevitably enlarged. As a result,
an additional 14th atom fits in one of the enlarged gaps of
a 13-atom local structure such as @512 and @4526254452

to form a docosahedral structure. This is the reason why
docosahedral structures are favored in simple liquids, but
regular icosahedral structures are not.

To identify which atom is the 14th atom, we calculate the
average distance r̄i of the central atom of the docosahedral
structure to its neighbor corresponding to the i-gonal face
of the Voronoi polyhedron. Note that the central atom of a
docosahedral structure has one neighbor corresponding to the
square, 10 neighbors corresponding to the pentagons, and two
neighbors corresponding to the hexagons. r̄4, r̄5, and r̄6 of
the LJ glass are 1.40, 1.12, and 1.07σ , respectively. Thus, the
atom corresponding to the square is found to be the additional
one. Essentially the same results are obtained for the inherent
structure of the LJ liquid. As well known [7] and as illustrated
in Fig. 6, the first and second peaks of the radial distribution
function of the LJ glass is not separated. The r̄4 lies between
the position of the first peak and that of the second one.
Thus, the nonseparated peaks are a sign of the docosahedral
structure.

Finally, we demonstrate the presence of docosahedral order
in an experimental sample: a dense random packing of colloid
particles [34]. Figure 2(g) illustrates that docosahedral order
is also dominant in the experimental colloid glass despite the
fact that the colloid particles has a polydispersity of 5% in
their diameters.

IV. CONCLUSION

By combining the recently developed p3 codeword and
molecular dynamics simulations, we have demonstrated that
docosahedral order is dominant in the LJ liquid and glass.
The docosahedral order is entropy-driven because docosahe-
dral structures are energetically less favored than icosahedral
structures and also dominant in the dense random packing
of hard spheres. Thus, we disprove the misconception that
the energetic effects dominate the local structure of simple
liquids. As a result, the paradox in the generally accepted
pictures of the hard-sphere system and the LJ liquid has
been resolved. We have also shown that docosahedral order is

dominant in the experimental colloid glass, strengthening the
reliability of our theoretical prediction. Our observation that
docosahedral order is dominant independently of the details
in atomic interactions and thermodynamic conditions repre-
sents the robustness and importance of docosahedral order in
disordered systems composed of spherical particles. The role
of icosahedral structures in fundamental phenomena such as
supercooling, glass transition, and crystallization in simple
liquids has been extensively studied from the 1950s to the
present [2,5–7,10–14,18,30,47]. However, our findings sug-
gest that further attention should be paid to the most frequent
docosahedral structures to comprehend those phenomena.
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APPENDIX: INTEGRATOR FOR ISOTHERMAL-ISOBARIC
MOLECULAR-DYNAMICS SIMULATIONS

A Poincaré transform [41] of the Nosé-Andersen Hamilto-
nian HNA [43,44] is expressed as

H = s[HNA − H0]

= s

[
N∑

i=1

p̂2
i

2miV
2
3 s2

+ U (V
1
3 q̂) + π2

2Q

+
[

3NkBT ln(s) + P2
V

2W
+ PV − H0

]
. (A1)

Here p̂i is the virtual momenta of the atom i. q̂ =
(q̂1, q̂2, q̂3, . . . , q̂N ), where q̂i is the virtual coordinates of the
ith atom, and N is the number of atoms. mi is the mass of the
ith atom. U is the potential energy. T is the target temperature.
π and s are the conjugate pair describing a thermostat. Q is
the artificial mass associated with s. P is the target pressure.
PV and V are the conjugate pair describing a barostat. W is the
artificial mass associated with V . The value of the constant
H0 is chosen so that H is zero at the initial time (t = 0). The
real momenta pi and coordinates qi are given by the relations
pi = p̂i/V

1
3 s and qi = V

1
3 q̂i, respectively.

The time evolution of a quantity A(�(t )) in the phase
space � = (q̂, p̂, s, π,V, PV ) from time t to time t + �t is
described as

A[�(t + �t )] = exp(DH�t )A[�(t )]. (A2)

Here exp(DH�t ) is the time evolution operator, and the
operator DH is defined by

DH ≡ �̇ · ∂

∂�
. (A3)

We follow Nosé’s approach [42] to formulate an explicit
symplectic integrator and decompose H into the following
four terms:

H = H1 + H2 + H3 + H4, (A4)
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where

H1 = s

[
N∑

i=1

p̂2
i

2miV
2
3 s2

+ 3NkBT ln(s) + PV − H0

]
, (A5)

H2 = sP2
V

2W
, (A6)

H3 = sU (V
1
3 q̂), (A7)

H4 = sπ2

2Q
. (A8)

We then decompose DH into four terms as follows:

DH = DH1 + DH2 + DH3 + DH4 , (A9)

where

DH1 = −
N∑

i=1

{
∂H1

∂ q̂i

∂

∂ p̂i
− ∂H1

∂ p̂i

∂

∂ q̂i

}
− ∂H1

∂s

∂

∂π

+ ∂H1

∂π

∂

∂s
− ∂H1

∂V

∂

∂PV
+ ∂H1

∂PV

∂

∂V

=
N∑

i=1

p̂i

miV
2
3 s

∂

∂ q̂i

+
{

N∑
i=1

p̂2
i

2miV
2
3 s2

−3NkBT [1 + ln(s)] − PV +H0

}
∂

∂π

+ s

(
2

3V

N∑
i=1

p̂2
i

2miV
2
3 s2

− P

)
∂

∂PV
, (A10)

DH2 = − P2
V

2W

∂

∂π
+ s

PV

W

∂

∂V
, (A11)

DH3 =
N∑

i=1

sV
1
3 F i

∂

∂ p̂i
− U (V

1
3 q̂)

∂

∂π

+ s

(
Pins − NkBTins

V

)
∂

∂PV
, (A12)

DH4 = − π2

2Q

∂

∂π
+ sπ

Q

∂

∂s
. (A13)

Here Pins and Tins are instantaneous pressure and temperature,
respectively. Note that

Pins = NkBTins

V
+ 1

3V

N∑
i=1

(V
1
3 q̂i ) · F i, (A14)

Tins = 2

3NkB

N∑
i=1

p̂2
i

2miV
2
3 s2

, (A15)

∂

∂ q̂i
sU (V

1
3 q̂) = sV

1
3

[
∂U (q)

∂qi

]
q=V

1
3 q̂

= −sV
1
3 F i, (A16)

∂

∂V
sU (V

1
3 q̂) = s

N∑
i=1

(
1

3
V − 2

3 q̂i

)
·
[
∂U (q)

∂qi

]
q=V

1
3 q̂

= −s
1

3V

N∑
i=1

(V
1
3 q̂i ) · F i

= −s

(
Pins − NkBTins

V

)
. (A17)

We neglect the terms of order higher than two in �t and obtain

exp(DH�t )

≈ exp

(
DH4�t

2

)
exp

(
DH3�t

2

)
exp

(
DH2�t

2

)

× exp
(
DH1�t

)
exp

(
DH2�t

2

)
exp

(
DH3�t

2

)

× exp

(
DH4�t

2

)
. (A18)

Finally, the time evolution of the system is described as
follows:

(1) Operation of exp (
DH4 �t

2 ):

s(n+ 1
2 ) = s(n)

(
1 + π (n)

2Q

�t

2

)2

,

π (∗1) = π (n)

1 + π (n)

2Q
�t
2

.

(2) Operation of exp (
DH3 �t

2 ):

p̂
(n+ 1

2 )
i = p̂(n)

i + s(n+ 1
2 ){V (n)} 1

3 F (n)
i

�t

2
,

π (∗2) = π (∗1) − U (n) �t

2
,

P(∗1)
V = P(n)

V + s(n+ 1
2 )

(
P(n)

ins − NkBT (n)
ins

V (n)

)
�t

2
.

(3) Operation of exp (
DH2 �t

2 ):

π (∗3) = π (∗2) −
{
P(∗1)

V

}2

2W

�t

2
,

V (n+ 1
2 ) = V (n) + s(n+ 1

2 ) P(∗1)
V

W

�t

2
.

(4) Operation of exp (DH1�t ):

q̂(n+1)
i = q̂(n)

i + p̂
(n+ 1

2 )
i

mi
{
V (n+ 1

2 )
} 2

3 s(n+ 1
2 )

�t,

π (∗4) = π (∗3) +

⎡
⎢⎣ N∑

i=1

1

2mi

(
p̂

(n+ 1
2 )

i

{V (n+ 1
2 )} 1

3 s(n+ 1
2 )

)2

− 3NkBT
(
1 + ln s(n+ 1

2 )
) − PV (n+ 1

2 ) + H0

⎤
⎥⎦�t,
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P(∗2)
V = P(∗1)

V + s(n+ 1
2 )

×
⎡
⎣ 2

3V (n+ 1
2 )

N∑
i=1

1

2mi

(
p̂

(n+ 1
2 )

i

{V (n+ 1
2 )} 1

3 s(n+ 1
2 )

)2

− P

⎤
⎦�t .

(5) Operation of exp (
DH2 �t

2 ):

π (∗5) = π (∗4) −
{
P(∗2)

V

}2

2W

�t

2
,

V (n+1) = V (n+ 1
2 ) + s(n+ 1

2 ) P(∗2)
V

W

�t

2
.

(6) Operation of exp (
DH3 �t

2 ):

p̂(n+1)
i = p̂

(n+ 1
2 )

i + s(n+ 1
2 ){V (n+1)} 1

3 F (n+1)
i

�t

2
,

π (∗6) = π (∗5) − U (n+1) �t

2
,

P(n+1)
V = P(∗2)

V + s(n+ 1
2 )

(
P(n+1)

ins − NkBT (n+1)
ins

V (n+1)

)
�t

2
.

(7) Operation of exp (
DH4 �t

2 ):

s(n+1) = s(n+ 1
2 )

(
1 + π (∗6)

2Q

�t

2

)2

,

π (n+1) = π (∗6)

1 + π (∗6)

2Q
�t
2

.

Here the superscript (n) in s(n), for example, represents the

quantity s at the nth time step. s(n+ 1
2 ), p̂

(n+ 1
2 )

i , π (∗1), . . . , π (∗6),
V (n+ 1

2 ), P(∗1)
V , and P(∗2)

V are intermediate variables.
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