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Soft trapping lasts longer: Dwell time of a Brownian particle varied by potential shape
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It is often regarded that the dwell time (or residence time, escape time, trapping duration) of trapped Brownian
particles is described by the multiplication of two separate factors, i.e., the diffusive traveling time of the trapping
domain size without taking into account the trapping force, and the stochastic event of overcoming the trapping
energy by thermal one instantaneously. However, we show that the ratio of dwell time to the typical traveling
time for the trapping domain size depends on the shape of the force field. The shape of the trapping potential
affects this ratio even if the trapping energy gap is the same and the smooth potential has a single minimum. Our
finding suggests the possible application of the potential shape to realize the desired trapping characteristics.
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I. INTRODUCTION

It has long been recognized that the technology to precisely
control the position of a nanoscale object is important for
the progress of nanoscience and nanotechnology in general
[1–4]. One of the typical techniques to achieve such control
is optical trapping, where small particles with diameters less
than or equal to micrometers can be trapped in space near
the focus of a laser beam by the optical force based on the
gradient of the electric field [5]. Optical trapping has found
many applications in the physical and life sciences, ranging
from single-molecule force measurements to optical particle
sorting [6–11]. However, optical trapping of nanoparticles,
especially smaller than 100 nm, is still challenging, because
the gradient optical force becomes much weaker with the
smaller particles, scaling with the third power of its size [12].
The main approach to stably trap nanoparticles has been to
increase the laser intensity and consequently the depth of
the trapping potential. In fact, the trapping techniques are
not necessarily based on the optical principle, but there are
some other principles, such as electrostatic fluidic trap [13],
dielectrophoretic tweezer in microfluidic device [14], and Paul
trap [15–17].

The escape event from the trapped state of a Brownian
particle subject to the conservative force field with trapping
energy �E (>−0) is often modeled by the Arrhenius-type equa-
tion, i.e., the simplest form of chemical reaction with the rate
constant kTST as follows [18–22]:

kTST = k0 exp

(
− �E

kBT

)
, (1)

*Corresponding author: hanasaki@cc.tuat.ac.jp

where kB is the Boltzmann’s constant, T is the absolute
temperature, and k0 corresponds to the rate constant without
energy barrier, i.e., the travel of a particle subject to Brownian
motion. This functional form is widely used in the context
of stochastic event subject to thermal fluctuation, where trav-
eling distance or duration by Brownian motion is negligible
in the reaction event. With this assumption, the dwell time
(or residence time, escape time, trapping duration) τTST is
expressed as

τTST = τ0 exp

(
�E

kBT

)
. (2)

The timescale τ0 is usually regarded as the characteristic for
a Brownian particle with a diffusion coefficient D to travel a
distance ds/2 from the bottom of potential to the boundary,
which can be expressed as

τ0 = d2
s

8D
, (3)

considering that
√

2Dτ0 = ds/2. The diffusion coefficient of a
spherical particle with a diameter dp in a fluid with a viscosity
η is described by the Stokes-Einstein relation as follows:

D = kBT

3πηdp
, (4)

and D is directly related to the friction coefficient γ by the
Einstein relation as follows:

D = kBT

γ
, (5)

where the validity range of the Stokes-Einstein relation and
linear Langevin picture in terms of molecular drag has been
studied recently [23,24]. Equation (2) is widely used in the
field of laser trapping or optical force on colloidal parti-
cles [18–22]. This equation indicates that the dwell time
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τd does not depend on the details of force field, but the
energy difference �E alone. The trend of pursuit to achieve
as high laser power as possible to realize the trapping of
as small particle as possible originates from this picture of
simplified mechanics. Depending on the situations, the higher
laser power also cause heating of the medium [5], which is
desired to be circumvented since it blurs the pure optical effect
and sometimes undermines the functionality for biomedical
applications [25,26].

However, the typical trapping force fields in reality have
finite breadth of the trapping domain, and the trapped parti-
cles exhibit Brownian motion in the domain with finite time
duration before escaping from it. Although the assumption of
Eq. (2) does not take into account the finite spatiotemporal
effect in terms of overcoming the energy difference, the
particle climbs the force field with finite time, instead of
instantaneously jumping the finite energy gap with infinite
force and vanishing slope length. Therefore, we examine the
validity range of this apparently oversimplified model through
the numerical analysis. We show that there exists significant
finite spatiotemporal effect of the trapping force field, which
is promising for the stable trapping of smaller particles. If we
look into each of the specific principle of trapping techniques,
there are diversity in the factors that affects the dwell time. For
example, nonconservative scattering force is also important
in the case of laser trapping in the bulk environment. On
the other hand, the effect of proximity to the solid wall in
the fluid is also important in the case of electrostatic fluid
trap in the nanochannel. Partly because of such diversity in
specific situations, the basic and universal characteristics with
respect to the conservative trapping force field in fluid has
not been fully addressed. We focus on this common aspects
of the role of force field on the dwell time of the Brownian
particles.

II. MODEL AND METHODS

We consider the Brownian dynamics of particles suspended
in fluid subject to trapping force field. The schematic diagram
of the model system is shown in Fig. 1. The essential param-
eters that affects the dynamics is the trapping energy �E , the
domain of this force field ds, and the diameter dp of the trapped
particle. It should be noted that dp affects only D through the
Stokes-Einstein relation, i.e., Eq. (4). We assume that these
parameters can be independently tuned, even if such a fine
tuning is still challenging in laboratory experiments today.

As widely used in many literature and experimental data
analysis [27], we employ the harmonic force field as follows
[28]:

�E (r) =

⎧⎪⎪⎨
⎪⎪⎩

kBT

2σ 2
r2 (0 <− r <− ds/2)

kBT d2
s

8σ 2
(r > ds/2)

, (6)

where σ is the essential parameter that determines the trapping
energy. To vary α ≡ �E/kBT without affecting the rest of the
parameters, �E (r) for r = ds/2 can be tuned through σ by

FIG. 1. Schematic diagram of the model system. A Brownian
particle with a diameter dp is suspended in a fluid. The particle is
subject to a trapping force field of harmonic potential that depends
only on the distance r with its origin defined at the minimum
potential energy. The trapping force field acts in the finite domain
with a width of ds, and the trapping energy is denoted as �E (r). The
escape event is judged with the position of the central position of
the particle. dp affects only the diffusion coefficient D through the
Stokes-Einstein relation [cf. Eq. (4)].

�E = αkBT = kBT (ds/2)2/(2σ 2) as follows:

σ = ds

2
√

2α
. (7)

We also examine the effect of the potential shape on the
system characteristics by the variation of a single parameter
n to define the simple potential energy function as follows:

�En(r) = αkBT

(ds/2)n
rn, (8)

where n = 2 corresponds to Eq. (6). The effect of potential
steepness in the vicinity of the boundary r = ds/2 can be
varied by n without changing other parameters such as α and
ds. Namely, variation of ds keeping �E (ds/2) fixed leads to
the variation of the spring constant ks:

ks = αkBT

(ds/2)n
, (9)

where n = 2 corresponds to the cases of Eq. (6). �E , ds or
ks, and dp are independent factors of the particle dynamics
although it is still challenging to perform such an experi-
ment using optical trapping based on current status of the
technology.

The particle exhibits Brownian motion governed by the
over-damped Langevin equation [28,29]:

�r(t ) ≡ r(t + �t ) − r(t ) = fc(r)D

kBT
�t +

√
2D�tψ (t ),

(10)

where �r(t ) is the displacement at time t , D is the diffusion
coefficient as mentioned in Eq. (4), fc(z) is the conservative
force, �t is the time step of the dynamics, and ψ is the normal
random number. The force fc(r) is simply derived from the
trapping energy:

fc(r) = − ∂

∂r
�E (r). (11)
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We numerically solve this equation [28,29] with a time res-
olution of ca. τ0/�tdyn = 106, where �tdyn is the time step
of numerical integration of the equation. The simulations
are run until the number of the frames of �tfrm = 10−2 s
without any escaping event reaches 105, or the number of time
steps reaches 1012. The escaping event means the particle’s
stepping out of the force field domain with a width of ds.
We define the ambient temperature T = 298.15 K and use
the corresponding viscosity η = 0.890 × 10−3 P of water. The
random number generator is the Box-Muller method. When
the particle reaches the boundary of the force field, the posi-
tion is initialized at the bottom of the potential (i.e., r = 0).
The dwell time τd is defined as the time required for (the
center of) the particle to reach the boundary r = ds/2 of the
trapping force field from its initial position r = 0.

III. RESULTS AND DISCUSSION

In fact, Eq. (10) can be nondimensionalized by employing
the unit length scale of ds/2 and unit timescale of τ0 [cf.
Eq. (3)] as follows:

�r∗(t∗) ≡ r∗(t∗ + �t∗) − r∗(t∗)

= − 1
2 nα(r∗)n−1�t∗ +

√
�t∗ψ (t ), (12)

where the specific form of the potential defined in Eq. (8)
is taken into account. This dimensionless equation indicates
that the system behavior is fundamentally determined by α

and n. Hereafter, we examine how these parameters affect
the dwell time τd. The dependence of the dwell time τd on
α and n is shown in Fig. 2. The dwell time is evaluated by
the dimensionless form τd/τ0, which enables the essential
characterization of α dependence without being affected by
the growth of τd by the mere increase of ds. Figure 2 clearly
shows that τd/τ0 depends not only on α but also n. The actual
τd/τ0 is always smaller than τTST/τ0. Larger τd/τ0 is realized
for the smaller n.

According to the Arrhenius equation (Eq. (2)), the height
of the potential should be the only factor to affect the dwell
time irrespective of its shape. However, as seen in Fig. 2(a),
the deviation from such classical formula is clearly observed.
From the comparison of the data for different n, one can see
that higher n results in smaller dwell times. This observation
can be quantitatively rationalized using an analytical expres-
sion τA to estimate the dwell time. Indeed, as detailed below,
we derive the following expression:

τA = τ0 2F2

(
2

n
, 1;

n + 1

n
,

n + 2

n
; α

)
, (13)

for any even number n, where 2F2 is a generalized
hypergeometric function. (A generalized hypergeometric
function pFq is defined as pFq(a1, . . . , ap; b1, . . . , bq; z) =∑∞

m=0
(a1 )m···(ap)m

(b1 )m···(bq )m

zm

m! , where (a)m is the Pochhammer sym-
bol: (a)0 = 1 and (a)n = a(a + 1)(a + 2) · · · (a + n − 1).) In
Fig. 2(a), we plot this analytical expression τA for n = 2
and 20, which show excellent agreements with the numerical
simulations. The dependence of numerical errors on the time
resolution of the simulation is shown in Fig. 3. The hyperge-
ometric function 2F2 has the following asymptotic form for
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FIG. 2. Dependence of dwell time on (a) the trapping energy
α ≡ �E (ds/2)/(kBT ) and (b) the potential shape represented by the
exponent n of Eq. (8). τTST and τA correspond to Eqs. (2) and (13),
respectively.

large α:

2F2

(
2

n
, 1;

n + 1

n
,

n + 2

n
; α

)
∼ 2�(1/n)

n2α1+1/n
eα, (14)

where �(z) is the gamma function. (The gamma function
is defined as �(z) = ∫ ∞

0 t z−1e−t dt .) The Arrhenius equation
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eα is thus recovered as the leading term of this asymptotic
form, showing the consistency between our result Eq. (13) and
the classical Arrhenius equation. Note, however, that in the
range of α that we consider in this paper, there are substantial
deviations from the Arrhenius equation. To get an intuition
how varying n affects these deviations, we take the large n
limit in the hypergeometric function, which leads to

2F2

(
2

n
, 1;

n + 1

n
,

n + 2

n
; α

)
= 1 + 1

n
g(α) + O

(
1

n2

)
, (15)

where g(α) consists of the derivatives of the hyper-
geometric function. (More precisely, g(α) is defined
as [2 2F (0,0;0,1)

2 (1, 0; 1, 1; α) + 2F (0,0;1,0)
2 (1, 0; 1, 1; α)

+ 2 2F (0,1;0,0)
2 (1, 0; 1, 1; α)], where 2F

(na1 ,na2 ;nb1 ,nb2 )
2 (a1, a2;

b1, b2; α) is the (na1 , na2 ; nb1 , nb2 )th-order partial derivative
of 2F2(a1, a2; b1, b2; α) by (a1, a2; b1, b2), respectively.)
This indicates that the dwell time converges to τ0, which
is the one without any trapping potential, as n increases:
limn→∞ τA = τ0. For a fixed potential height, softer the
potential increases, much longer the particle can be trapped.
In the large n limit, the potential barrier resembles a solid wall
that might give an impression that the particle can be trapped
longer. However, this is wrong: The particle can easily escape
from such an extreme potential shape.

Next, we briefly explain how to derive the result Eq. (13).
We use a well-known method to study the escape time of
Brownian particles from a given domain. Since good text-
books to refer the detail of the derivation are largely available,
we here only describe the outline of the derivation based on
Ref. [30]. We first consider a probability density P(r, t |r0, 0)
of r at time t with the initial condition r0 at time 0. The
boundary conditions of P(r, t |r0, 0) are absorbing boundary
conditions P(±ds/2, t |r0, 0) = 0 or P(r, t | ± ds/2, 0), to de-
scribe our setup of simulations in which we reset the position
of the particle each time it reaches the boundaries r = ±ds/2.
Using this probability density P(r, t |r0, 0), the probability that
the particle still remains in the potential trap at time t is
given as

Q(r0, t ) ≡
∫ ds/2

−ds/2
P(r, t |r0, 0)dr. (16)

Since the derivative of −Q(r0, t ) is the probability rate to
escape the trap at time t , we get the escaping probability
R(r0, t )dt during the time interval between t and t + dt
as R(r0, t )dt = −[∂Q(r0, t )/∂t]dt . By taking the integral of
this escaping probability multiplied by t , we thus get an
equation to describe the average first-passage time, T (r0) =∫ ∞

0 tR(r0, t )dt = ∫ ∞
0 Q(r0, t )dt . This means that once we

know the time-evolution equation of the remaining probability
Q(r0, t ), we can get an equation to determine T (r0). Using
the Fokker-Planck equation as such a time-evolution equation
[30], the following ordinary differential equation is derived:

fc(r)D

kBT

dT (r)

dr
+ D

d2T (r)

dr2
= −1. (17)

By solving this differential equation with boundary conditions
T (±ds/2) = 0 and by noticing T (0) = τA, we get Eq. (13).

It is worth addressing the sensitivity and numerical values
between the relevant basic physical quantities under such
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circumstances. In particular, the spring constant ks is an
important property to link the intuition of many scientists and
engineers engaged in experimental works to our numerical
and analytical results. As far as we employ the definition of
spring constant ks in Eq. (9), the increase of n means that of ks.
If we consider the case of technologically realistic order of
ds = 10−6 m, the numerical value of ks is drastically varied
by the variation of n, compared to the variation of α. In
spite of this apparent numerical values, Fig. 2, τd/τ0 is much
more sensitive to α compared to n at first sight. However, the
physically important range of α today is rather mainly close
to the kBT partly because of the available potential for smaller
nanoparticles, and partly because of the relevance to the soft
matter physics and biological context.

The variation of n in Eq. (8) causes the variation of the
functional shape of the potential and the generalized spring
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constant ks of the potential as shown in Fig. 4. The larger
n causes the steeper potential in the vicinity of r = ds/2,
whereas it is less steep in the vicinity of r = 0 as shown
in Fig. 4(a). The larger spring constant for a linear spring
corresponds to the stiffer spring. The variation of the spring
constant with a fixed n is realized by α [Eq. (9)], but it
corresponds to the increase of potential energy gap. The
variation of ds leads to that of the spring constant ks as well. It
leads to the increase of τ0 but τd/τ0 remains the same as far as
α and n is kept constant. For example, ks for the case of n = 2
does not affect τd/τ0 as far as α is kept the same, although
the variation of ks by that of ds causes the variation of both τd

and τ0. The dependence of τd/τ0 on n is essentially important,
considering the fact that Eq. (2) has long been employed in
many situations of research without caring about the potential
shape. Furthermore, it should also be noted that the potential
shape depends on the specific systems of interest. Even within
the case of laser trapping, the shape of the trapping potential
depends on the specification of the laser [31].

Since the escape of the trapped Brownian particle is ob-
viously the stochastic event, it is scattered around the mean
dwell time. Therefore, we also examine the distribution of
τd to understand the system characteristics by the numerical
analysis. Figure 5 shows the distribution of τd scaled by
its mean values for different combinations of α and n. The
scaling of each result for (α, n) by the mean values almost
collapse into a single curve. The peak is located at the values
smaller than the mean, and the distribution beyond the peak
value appears linear in the semilog plot. In other words, the
probability distribution of τd/〈τd〉 follows the exponential
distribution for the most part, except for sufficiently small τd.
The exponential distribution of the event indicates that the
escape event of the particle originates from the probability
that does not explicitly depend on time. The distributions also
resembles those of Gumbel distribution. The Gumbel distribu-
tion often appears for the stochastic event of extreme values.
In this case, the escape event takes place when sufficiently
large displacement(s) by thermal fluctuation for a fixed kBT
takes place. The same probability distribution when scaled by
the mean value indicates that the breadths of distribution are
wider for the cases with larger mean values 〈τd〉. The standard
deviation of the dwell time is important when evaluating its
mean value from the experimental measurements. Figure 6
shows the dependence of the standard deviation of τd scaled
by τ0 on α and n. The standard deviation of τd/τ0 drastically
increases for large α (closer to 101), and it is smaller for
large n. The sensitivity of this standard deviation to n grows
with increasing α. In other words, the trend of the standard
deviation of τd/τ0 with respect to α and n is the same as the
mean value of τd/τ0 (cf. Fig. 2).

IV. CONCLUSIONS

We have shown both numerically and analytically that
the dwell time is affected not only by the trapping energy
but also by the force field shape. We have revealed that the
smaller spring constant by smaller number of exponent in the
polynomial potential function is advantageous for the longer
dwell time when the trapping energy is the same. This is
of fundamental importance in the application to the optical
tweezers, and plasmon trapping in particular. The desired
characteristics of optical force field to control crystallization
[32] and those to trap a single particle precisely in a desired
position are likely to be different. “Soft yet long” trapping
may be preferred for the former situation compared to the
“tight yet short” one. This specification is also likely to be
more nontrivial when considering the capacity of the number
of trapped particles.
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