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Dynamics around the site percolation threshold on high-dimensional hypercubic lattices
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Recent advances on the glass problem motivate reexamining classical models of percolation. Here we
consider the displacement of an ant in a labyrinth near the percolation threshold on cubic lattices both
below and above the upper critical dimension of simple percolation, du = 6. Using theory and simulations,
we consider the scaling regime and obtain that both caging and subdiffusion scale logarithmically for d �
du. The theoretical derivation, which considers Bethe lattices with generalized connectivity and a random
graph model, confirms that logarithmic scalings should persist in the limit d → ∞. The computational
validation employs accelerated random walk simulations with a transfer-matrix description of diffusion to
evaluate directly the dynamical critical exponents below du as well as their logarithmic scaling above
du. Our numerical results improve various earlier estimates and are fully consistent with our theoretical
predictions.
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I. INTRODUCTION

Transport in disordered media is anomalous compared to
its counterpart in homogeneous space [1–3]. Diffusion in
systems as diverse as porous rocks, aerogels, and biological
cells is indeed much more complex than Einstein’s description
of Brownian motion [3,4]. The paradigmatic minimal model
for such transport is de Gennes’ ant in a labyrinth [5], which
consists of randomly displacing a tracer on covered lattice
sites, around the percolation threshold. While, far above that
threshold, transport is unremarkable—other than being more
sluggish than an unimpeded random walk—near the threshold
a clear subdiffusive regime emerges and below the threshold
transport stops altogether.

Most features of this model have by now been extensively
studied by theory and simulations. Scaling relations, series
expansions, and renormalization group treatments are very
well developed, and most critical exponents are known with
high precision [6]. Many aspects of the process have even
been fully mathematically formalized [7–10]. Yet some of
its features remain actively pursued, thus reflecting the con-
tinued importance and elegance of the underlying physical
model. Improved numerical estimates of the thresholds, for
instance, keep appearing [11,12]. Careful studies of the lo-
calized regime, which has traditionally been less studied than
the conduction side, are also now emerging, especially on
higher-dimensional lattices. Mertens and Moore, for instance,
recently improved the high-dimensional series expansion for
the threshold from a finite-cluster expansion [13] and em-
ployed specialized simulation techniques to compute more
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precise Fisher exponents, which describe the large cluster size
distribution [12].

Recent advances in the field of glasses also motivate re-
examining the subdiffusive and localized regime of the ant
in a labyrinth. The study of the Mari-Kurchan model, which
offers a finite-dimensional mean-field description of glasses in
continuous space [14–16], indeed suggests that a percolation-
like process might play a role in the dynamical slowing down
in finite d [17,18]. More specifically, it has been observed that
a small fraction of particles can diffuse even at densities at
which the vast majority of particles are perfectly localized
[17]. This process is reminiscent of the dynamics of a random
Lorentz gas, but even this simpler description remains theoret-
ically challenging to solve [18]. The study of a simpler lattice-
based model could, therefore, provide additional insight into
the physics of caging. An interesting putative commonality
between Mari-Kurchan glass formers and ants in labyrinths
is that the power-law scaling of subdiffusion could vanish in
high spatial dimension, d , for both models. In the former, true
caging is expected at the dynamical transition in the limit
d → ∞, but in the latter the situation is more ambiguous.
While the power-law exponent of subdiffusion is expected to
vanish approaching the upper critical dimension for simple
percolation, du = 6, what then follows is unclear. In particular,
is caging taking place? Or, does subdiffusion rather become
slower than any power law?

In this article, we provide an answer to these questions and
present a direct evaluation of the critical exponents associated
with caging and with subdiffusion from d = 3 to d = 13.
Although caging exponents have not been previously evalu-
ated directly, our results are fully consistent with the relevant
scaling relations. The subdiffusion exponents we obtain are
also consistent with scaling theory predictions but are one
order of magnitude more accurate than previous numerical
estimates in d = 3 and 4. We also derive the logarithmic
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scaling behavior for Bethe lattices of arbitrary connectivity
and for random graphs and observe the corresponding scaling
form on hypercubic lattices with d � du. The rest of the paper
is organized as follows. In Sec. II we generalize both the
scaling analysis that relate caging and dynamical exponents
and the description of caging on Bethe lattices and on random
graphs. In Sec. III we describe the computational scheme
used to evaluate these predictions. Section IV presents and
discusses the numerical results for d = 3 to 13, and we briefly
conclude in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, we obtain relations between three dynam-
ical exponents by scaling analysis below the upper critical
dimension, du, and discuss the case d � du. We also compute
the critical behavior for caging on a Bethe lattice of arbitrary
connectivity and separately consider the same problem on a
random graph, which recovers the fully connected limit of the
Bethe lattice.

A. Scaling analysis

In order to investigate the dynamical exponents around the
site percolation threshold, pc, we consider the mean-square
displacement of the tracer, D2(t, p) = 〈r2(t )〉, at covering
fraction p and time t . On general grounds [3], we expect the
following scaling forms to be obeyed:

D2(t → ∞, p) ∼

⎧⎪⎨
⎪⎩

(pc − p)−μ− , p < pc

t (p − pc)μ, p > pc

t2/d ′
w , p = pc

, (1)

where the exponent μ characterizes the decay of the diffu-
sivity upon approaching pc from above, μ− is the caging ex-
ponent that characterizes the growth of the infinite-time limit
of the mean-square displacement, limt→∞ D2(p < pc, t ) ≡
�2(p), upon approaching pc from below, and d ′

w > 2 de-
scribes the subdiffusive scaling at pc. The subdiffusion be-
hvaior is caused by the presence of fractal-like infinite clus-
ter. This set of relationships gives rise to the following
(nonunique) scaling collapse for ε ≡ (p − pc)/pc:

D2(t, p) = |ε|−μ− f [sgn(ε)|ε|μst], (2)

along with three relations. First, caging for p < pc corre-
sponds to

lim
x→−∞ f (x) = const

with a negative argument to f (x). Second, diffusion for p >

pc is recovered if

lim
x→∞ f (x) = x,

and thus tεμ = tεμs−μ− . Third, at (reasonably) short times
subdiffusion is recovered if

f (x → 0) = x2/d ′
w ,

or, equivalently,

D2(t, p) ∼ |ε|−μ− (|ε|μst )2/d ′
w . (3)

Because the subdiffusive scaling should be independent
of ε, we must have μ− = 2

d ′
w
μs. Altogether, we therefore

obtain

μs = μ + μ−, (4)

d ′
w = 2

(
μ

μ−
+ 1

)
. (5)

Based on the known critical scaling relations [3,6], one can
also compute the caging exponent μ− as [6]

μ− = 2ν − β (6)

= 2
τ − 1

σd
− τ − 2

σ
, (7)

and the subdiffusion exponent as

d ′
w = 2

(
μ

2ν − β
+ 1

)
, (8)

where ν is the correlation length exponent, β is the exponent
that characterizes the fraction of infinite network sites, τ is
the Fischer exponent for the cluster size distribution at pc, and
σ is the exponent that characterizes the scaling of the large
cluster cutoff for p < pc. Specifically, the cluster distribution
is expected to scale as Ns(p) ∼ s−τ e−cs with c ∼ |p − pc|1/σ

for p → p−
c .

Interestingly, for d � du = 6, which is the upper critical
dimension for simple percolation, these scaling relations sug-
gest that μ− = 0 and d ′

w → ∞. The subdiffusive regime is
then either slower than any power law or fully arrested, as
would be a glass former beyond the dynamical transition [19].
In order to settle the issue and, especially, working out the
percolation behavior in the limit d → ∞, a more detailed
treatment is needed. This is the focus of the next subsections.

B. Upper critical dimension and above

Based on the standard theory of critical phenomena, the
critical behavior in d � du = 6 is expected to be mean-field-
like and independent of d . As discussed above, because 2/d ′

w
vanishes for d → d−

u , however, it is not clear whether the
subdiffusive regime is then slower than any power law or fully
arrested. In order to clarify this point, we briefly recall the
physics behind the above scaling relations.

Consider the scaling behavior at p = pc. Percolation theory
[6] indicates that a tracer belongs to a cluster of size s with
probability P(s) ∼ s1−τ . On the infinite cluster—as well as
on a large cluster—a tracer subdiffuses with a scaling law
r(t ) ∼ t1/dw , which is distinct from d ′

w. Given that a cluster
of linear size � and fractal dimension df contains s ∼ �df

sites, after a time t a tracer can fully explore clusters of size
s < s∗ ∼ t df /dw . For tracers on larger clusters, only part of
the available sites can be explored. To compute the mean-
square displacement one should thus consider two contri-
butions: one for a tracer on a cluster with s < s∗, and the
other for clusters with s � s∗. The mean-square displacement
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then reads

D2(t → ∞, pc) ∼
∫ s∗

1
dsP(s)s2/df +

∫ ∞

s∗
dsP(s)t2/dw

∼ (s∗)2−τ+2/df + (s∗)2−τ t2/dw

∼ t
df
dw

(2−τ+ 2
df

)
, (9)

where in the last step we replaced s∗ with t df /dw . Note that
because the two contributions grow similarly, we can consider
the scaling of either for our analysis.

Using scaling relations, one also gets

2

d ′
w

= df

dw
(2 − τ + 2/df ) = 2 − β/ν

dw
. (10)

Given that df → 4, dw → 6, and (2 − β/ν) → 0 upon ap-
proaching du from below [3], one finds that the subdiffusion
exponent vanishes, which is the result quoted above. In this
case, one should compute the integral in Eq. (9) as

D2(t → ∞, pc) ∼
∫ s∗

1
dsP(s)s2/df +

∫ ∞

s∗
dsP(s)t2/dw

∼
∫ s∗

1
s−1ds + (s∗)2−τ t2/dw

∼ ln s∗ + const

≈ AD ln t, (11)

where we explicitly denote the prefactor as a dimensionally
dependent constant, AD(d ). The scaling analysis thus predicts
for d � du that D2(t, pc) grows logarithmically with time.
One can similarly obtain the scaling behavior of caging for
p < pc. Because the power-law scaling of P(s) is cut off at
s∗ ∼ ε−1/σ , the singular contribution to the long-time mean-
square displacement can again be obtained from Eq. (9),
after replacing s∗ with ε−1/σ . This leads to μ− = 2ν − β,
which vanishes for d → d−

u . Integrating similarly gives �2 =
−A� ln |ε|, with the prefactors A� and AD satisfying the
relation

D2(t → ∞, pc) = −A� ln |ε| = AD ln t

⇒ −A� ln[(s∗)−σ ] = AD ln[(s∗)dw/df ],

and thus

A� = dw

σdf
AD. (12)

Inserting the critical exponents for d � du immediately gives
A� = 3AD.

This derivation pinpoints the origin of the phenomenon we
wish to understand. That is, subdiffusion disappears because
the exponent relating the mean-square displacement to s∗(t )
vanishes, whereas the time-dependence of s∗(t ) remains a
power law. One indeed expects that above the upper critical
dimension s∗(t ) scales as t df /dw = t2/3. Analogously, the de-
pendence of s∗ on ε is ε−1/σ with σ = 1/2 for all d > du.

Mertens and Moore considered the possibility of a loga-
rithmic correction to the Fischer exponent in d = 6 [12], as
suggested by early renormalization group treatments [26,27].

Under this correction, we would have

P(s) ∼ s1−τ (ln s)θ , (13)

and Eq. (11) then would become

D2(t → ∞, pc) ∼
∫ s∗

1
s−1(ln s)θds

≈ AD(ln t )1+θ ,

(14)

and similarly

�2 ≈ A�(− ln |ε|)1+θ , (15)

with A� = 31+θ AD. The logarithmic correction should thus be
observed in both the scaling of the caging and of the dynamics
at pc.

The above analyses, however, predict only a logarithmic
scaling in d � du, not how its prefactor evolves with d , and
especially whether this prefactor remains finite in the limit
d → ∞. This question can be resolved only by computing
explicitly the full dependence on ε, and hence on s∗, for
p < pc, which we do for mean-field lattices in the following
two subsections.

C. Tracer on a Bethe lattice

In this section, we extend the computation of Straley [28],
to obtain the mean-square displacement for p < pc on Bethe
lattices of fixed general connectivity z (Straley only consid-
ered the case z = 3). Our main aim is to establish generically
the behavior �2(p) ∼ A�(z) ln |p − pc| and to study A�(z),
especially its large z behavior, which is equivalent to the d →
∞ limit in a hypercubic lattice. As z → ∞, the logarithmic
divergence of the mean-square displacement could indeed
vanish and let weaker divergences or even proper caging
emerge.

Consider a tracer initially on site 0. By symmetry, we can
examine any of the branches connected to 0, hence, without
loss of generality, we define the cluster as all occupied sites
that are accessible to the tracer from site 0 in one such branch
(Fig. 1). Note that by convention the branch size does not
include site 0. (This convention, which differs from that of

0 10 1

)b()a(

FIG. 1. (a) Sketch of a fragment of a Bethe lattice with z = 3
with occupied (full circles) and unoccupied (empty circles) sites. A
tracer on site 0 connects to one of the branches through site 1. (b) A
sketch of a cluster branch of size s = 8. This branch can be further
decomposed into two subbranches of sizes s1 = 4 (blue) and s2 = 3
(red) connected by site 1.
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Ref. [28], simplifies the analysis for arbitrary z, while the
alternate convention only simplifies the case z = 3.) In addi-
tion to the branch size, s, another key quantity is the sum of
chemical distance Y = ∑

i di0. On a finite-dimensional lattice,
one would normally compute the sum of Euclidean distances,∑

i |ri − r0|2, but high-dimensional percolation clusters are
effectively trees embedded on an hypercubic lattice. Explor-
ing the tree is thus equivalent to performing a random walk on
that lattice, and because the chemical distance is the number
of steps of the random walk, the mean-square displacement
in chemical distance measurement grows as the Euclidean
distance on the hypercubic lattice: di0 ∼ |ri − r0|2. (This iden-
tity has long been assumed in physics and is now rigorously
proven to a large extent [8,29,30].) In summary, if the tracer
belongs to a cluster of size s, the mean-square displacement
for large t is given by Y/s.

Following Ref. [28], we then compute the average of this
quantity over the cluster distribution. If site 1 on the branch is
not covered, then the branch size is s = 0 and Y = 0. But if
site 1 is covered, then inserting site 0 adds an additional step
to each (ri − r1) → (ri − r0) for a tracer on site 0 instead of
site 1. In other words, a branch with a tracer at site 0 can be
decomposed into (z − 1) subbranches that overlap at site 1.
The recurrence equations for s and Y thus read

s = s1 + s2 + · · · + sz−1 + 1,

Y = Y1 + Y2 + · · · + Yz−1 + s,

and the probability of having a cluster with given s and Y is

P(s,Y ) = qδ(Y, 0)δ(s, 0) + p
∑

s1,...,sz−1;Y1,...,Yz−1

× δ

(
s, 1 +

z−1∑
i=1

si

)
δ

(
Y, s +

z−1∑
i=1

Yi

)
z−1∏
i=1

P(si,Yi ),

(16)

where δ denotes the Kronecker delta function, and q ≡ 1 − p
denotes the probability that a site not be covered. Taking the
Laplace transform on s, we obtain

P̂(x) =
∑
s,Y

e−xsP(s,Y ) = q + pe−xP̂(x)z−1 (17)

and

P̂Y (x) =
∑
s,Y

e−xsY P(s,Y )

= −p
d[e−xP̂(x)z−1]

dx
+ (z − 1)pe−xP̂Y (x)P̂(x)z−2

= −dP̂(x)

dx
+ (z − 1)pe−xP̂Y (x)P̂(x)z−2, (18)

where the summation is over all integer s and Y from 0 to
infinity.

Considering the whole cluster as z independent
branches joined at site 0, we can then write the expected

displacement

�2 =
〈∑z

i=1 Yi∑z
i=1 si

〉

=
∑
s,Y

[
Y1 + Y2 + · · · + Yz

s1 + s2 + · · · + sz + 1

z∏
i=1

Pi(Yi, si )

]

= z
∫ ∞

0
e−xP̂Y (x)P̂(x)z−1dx. (19)

Note that from Eqs. (17) and (18), we have

e−x = P̂ − q

pP̂z−1
,

P̂Y = dP̂

dx

[
P̂(x)

P̂(x)(z − 2) − q(z − 1)

]
.

Because P̂(0) = 1 and limx→∞ P̂(x) = q, we can change the
integration variable from x to P̂ in Eq. (19) to obtain

�2 = − z

p

∫ 1

q

P̂(P̂ − q)

P̂(z − 2) − q(z − 1)
dP̂

= − z(zq + z − 2)

2(z − 2)2
+ q2(z − 1)z

p(z − 2)3
ln

qpc

pc − p
, (20)

where for a Bethe lattice pc = 1/(z − 1). In the limit p → p−
c ,

we finally have

�2 ∼ q2(z − 1)z

p(z − 2)3
ln[(pc − p)−1]

= A�(z) ln[(pc − p)−1], (21)

with A�(z) = z/(z − 2). For z = 3, this expression reduces
precisely to that of Ref. [28, Eq. (2.10)]. Because in the limit
z → ∞, A�(z) → 1, we conclude that �2(p → pc) diverges
logarithmically in all dimensions.

D. Random graph analysis

As a validation of the d → ∞ result, we separately con-
sider confinement upon approaching percolation on a random
graph, which directly evaluates the fully connected limit. For
convenience, we specifically consider Erdös-Rényi random
graphs [31], which are obtained by considering s → ∞ ver-
tices and connecting each pair of vertices by an edge with
probability p/s, where p does not scale with s, i.e., p ∝ O(1).
The percolation threshold is then pc = 1.

In order to compute �2, we take site 0 uniformly at random
as the initial position of the tracer and then let that tracer
diffuse for an infinite amount of time. As on a Bethe lattice,
we then have

�2 =
〈∑

i∈S

d0i

s

〉
, (22)

where the sum is over all sites that belong to the cluster, S,
to which site 0 belongs, s = |S| is the cluster’s size, and the
chemical distance d0i is here the smallest number of edges
needed to go from site 0 to site i. The factor of 1/s accounts for
the equiprobability of each site in the infinite-time limit. In the
notation of Sec. II C, we have Y = ∑

i∈S d0i, which recovers
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�2 = 〈Y/s〉, as above. The only distinction is that we here
treat the whole cluster at once and do not identify a specific
cluster branch.

In order to compute Y , we study the probability distribution
function P(s,Y ) using recurrence relations. Adding a new
vertex to a graph with s vertices merges into a single cluster all
clusters that contain this vertex (recalling that all such clusters
are finite because we are considering p < pc), and hence

s = s1 + · · · + sk + 1,

Y =
k∑

l=1

∑
i∈Sl

(di,new + 1),

where s1, s2, . . . , sk are the sizes of the clusters to which the
new vertex is attached. We can thus write that for the new site

Ps+1(s,Y ) = ρ0δ(s, 1)δ(Y, 0) +
s∑

k=1

ρk

∑
s1,...,sk ;Y1,...,Yk

× δ

(
s, 1 +

k∑
i=1

si

)
δ

(
Y,

k∑
i=1

Yi + si

)
k∏

i=1

Ps(si,Yi ),

(23)

where ρk = pk

k! e−p is the probability that a given site has
exactly k neighbors.

Introducing the generating function

G(y, z) =
∑
s,Y

e−yY −zsP(s,Y ),

we can rewrite Eq. (23) as

G(y, z) = e−z exp[p(G(y, z + y) − 1)], (24)

because in the large s limit the right- and left-hand sides of
that distribution have the same limit. We then have

�2 = 〈Y/s〉 = −
∫ ∞

0
dz∂yG(y, z)|y=0, (25)

where Eq. (24) gives

∂yG(y, z)
∣∣
y=0 = pG(0, z)∂zG(0, z)

1 − pG(0, z)
.

We finally obtain

�2 = −
∫ ∞

0
dz

pG(0, z)∂zG(0, z)

1 − pG(0, z)

=
∫ 1

0

pG

1 − pG
dG = −1 − 1

p
ln(1 − p), (26)

which logarithmically diverges when p → pc = 1 with pref-
actor A�(∞) = 1. This result is therefore fully consistent with
the limit of infinite connectivity, z → ∞, for Bethe lattices
(Sec. II C), and confirms that a logarithmic divergence of
�2(p → ∞) is expected in all d � du with a monotonically
decreasing, but nonvanishing prefactor A�(z).

III. NUMERICAL SIMULATIONS OF A HYPERCUBIC
LATTICE

In order to validate the above scaling predictions numer-
ically, we separately consider the scaling of the mean-square

displacement on systems around the percolation threshold and
evaluate the dynamical exponent directly at the percolation
threshold. This section details the two computational schemes
employed.

A. Generating clusters

Below the percolation threshold the mean-square displace-
ment of a random walk eventually approaches a finite-height
plateau. Because the finite state of the tracer decorrelates from
its initial position in the infinite-time limit, we then have

�2(p) =
∑
{S}

P(S, p)

s2

∑
i, j∈S

R2
i j, (27)

where S refers to a given finite cluster of size s = |S|, and
P(S, p) is the probability that a tracer falls within this cluster
at covering fraction p. Note that the second summation is
over all pairs of sites within S, with s2 terms in total, hence∑

R2
i j/s2 gives the mean square displacement at t → ∞ for

this cluster.
In order to minimize the contribution of finite-size cor-

rections, we implement the Leath algorithm [12,32], which
grows a cluster from the origin outward without storing the
whole hypercubic lattice that embeds it. Under this sampling
scheme, Eq. (27) becomes

�2(p) =
⎡
⎣∑

{S}

1

s2

∑
i, j∈S

R2
i j

⎤
⎦

=
⎡
⎣∑

{S}
2(

〈
R2

i

〉 − 〈Ri〉2)

⎤
⎦, (28)

where the inner average 〈· · · 〉 is over the different cluster sites
and the outer average [· · · ] is over the clusters generated.
Because periodic boundary conditions are not employed by
the Leath algorithm, a percolating cluster cannot be generated
for any p < pc. Finite-size effects are then of a different
nature; they arise when the cluster volume becomes larger
than the available memory of the computer (in practice we
here use 60 GB). This weaker size constraint allows us to
push computations by at least one order of magnitude in |ε|
compared to the direct generation of a periodic hypercubic
lattice.

Note that in our implementation, the coordinates of the
visited sites, which include both the cluster and the neigh-
boring sites (the cluster perimeter), are stored in a tree-based
set. While hash tables are generally used to index sites in
the context of percolation [12,33], an efficient hash function
that would limit hashing collisions even for large clusters is
challenging to design. Because hashing collisions increase the
search complexity by the maximal size, O(n), of the associ-
ated linked lists, their computational cost can grow quickly
for large clusters. (Although rare, large clusters contribute
most to �2 as ε → 0−.) Tree-based sets, by contrast, cap the
complexity at O(log N ), irrespective of the implementation,
and were found to be more robustly efficient in the size regime
studied here.
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B. Dynamics

In order to probe the time evolution of the tracer, one may
implement a dynamical equivalent of the Leath algorithm.
Specifically, a tracer (blind ant) is first placed at the origin
and then performs a random walk, attempting to jump over
an edge to one of the neighboring sites with equal probability
pb = 1/2d . (Other tracer dynamics are possible, but the criti-
cal behavior is unaffected by this choice.) If the attempted site
has never been visited, occupancy of that site is assigned with
probability p, and the coordinates and occupancy of that site
are stored as key-value pairs in a map. If the site has been
previously or deemed occupied (or vacant), then the tracer
position is updated (or not) and time is incremented.

While straightforward to implement, this brute-force
method encounters a couple of difficulties at and around pc.
First, the time required to approach the asymptotic scaling
can be long, especially near the upper critical dimension. For
instance, performing a random walk on a single cluster up to
t = 1010 steps takes minutes, and is barely sufficient in d = 6.
Second, Eq. (9) suggests that while both clusters with s � s∗
and s > s∗ contribute equally to D2(t ), the latter are rarely
generated by the Leath algorithm. In fact, the probability of
generating clusters of size s > s∗ scales as s2−τ . Assuming
that a fixed number of clusters of size s > s∗ is needed to
obtain reliable estimates at times t ∼ (s∗)dw/df , then the total
number of samples, Nsample, should grow with t as

Nsample ∼ 1/(s∗)2−τ ∼ t
df
dw

(τ−2), (29)

where the net power-law exponent is about 0.12, 0.20, 0.26,
and 0.33 for d = 3, 4, 5 and d → 6−, respectively. In other
words, in order to keep the accuracy of D2(t ) constant while
increasing t by an order of magnitude, one has to generate 1.3,
1.5, 1.8, and 2.1 times more clusters, respectively. The scale
of the numerical challenge thus increases with d � du. (For
d � du, the computational difficulty remains roughly constant
because the critical exponents remain unchanged.)

In order to mediate these issues, we devise a scheme to
compute the dynamical contribution of small and intermediate
size clusters without explicitly simulating the random walk.
Our approach relies on approximating the mean-square dis-
placement of clusters of size s < s∗ by its infinite-time limit
plus corrections [see Eq. (9)]. One then needs to determine
an appropriate s∗ (not only its scaling) at a given time t , or,
equivalently, for a given cluster determine the relaxation time,
t∗, such that for t > t∗ the mean-square displacement can be
similarly approximated.

More specifically, consider a cluster S with sites i =
0, 1, . . . , s − 1, and denote P(i, j, t ) the probability that a
tracer at site i travels to site j in t steps. For instance, for
t = 1, we have

P(i, j, t = 1) =

⎧⎪⎨
⎪⎩

1
2d , j ∈ ∂i,

0, j �∈ ∂i and i �= j,

1 − |∂i|
2d , i = j,

(30)

where ∂i denotes sites neighboring site i. Obviously, we have
P(i, j, 1) = P( j, i, 1), and for t > 1

P(i, j, t ) =
∑
k∈S

P(i, k, t − 1)P(k, j, 1). (31)

For convenience, we define the transfer matrix of diffusion
with entries Pi j = P(i, j, 1), and hence P(i, j, t ) = Pt

i j . The
mean-square displacement on S is then

D2(t ) = 1

s
Tr(Pt R2) = 1

s
Tr(�t QTR2Q), (32)

where the entry R2
i j is the square distance between sites i and

j. Because P is real and symmetric, its eigendecomposition
gives orthogonal eigenvectors, such that P = Q�QT. One
can then straightforwardly obtain D2(t ) of a given cluster at
arbitrary t by Eq. (32).

From this scheme, it is also possible to determine the
asymptotic dynamics on a finite cluster with arbitrary accu-
racy. Because D2(t → ∞) = const, the leading eigenvalue
of P is 0 = 1 and the corresponding eigenvector q0 has
identical elements qi = 1/s(∀i = 0 to s − 1). For a cluster S,
we can then consider the ith dynamical relaxation time in
relation to the ith subleading eigenvalue, i,

t∗
i (S) = −1/ ln

i

0
= −1/ ln i, (33)

and thence

D2(t ) = �2 +
s−1∑
i=1

qT
i R2qie

−t/t∗
i = �2 −

s−1∑
i=1

cie
−t/t∗

i (34)

with prefactor ci = −qT
i R2qi. Because |ci| tends to decrease

with i, t∗
i provides a rough upper bound on the time at which

the pre-asymptotic corrections due to all c j with j � i are
significant. In other words, if one uses the first i leading
eigenvalues and eigenvectors to approximate D2(t ), the result
is robust when

ci

�2
e−t/t∗

i � 1,

⇒ t > t∗
i = −1/ ln i ≈ 1

1 − i
. (35)

The pre-asymptotic behavior of D2(t ) can thus be evaluated
directly at short times and computed by Eq. (34) for t > t∗

i .
In particular, the mean-square displacement of a tracer on a

single cluster of size s∗ ∼ (t∗
1 )df /dw approaches a constant for

t > t∗
1 = −1/ ln 1. This relation suggests that the distance

between the second leading eigenvalue and unity, 1 − 1 ∼
s−dw/df , sets the maximal cluster size that can be treated by the
transfer matrix approach for a finite machine precision. Here
we apply the transfer matrix approach only for the clusters
smaller than the threshold cluster size st = 5000. The machine
error under double precision is then about 10−10 times smaller
than 1 − 1.

Our detailed implementation runs as follows. We first apply
the Leath algorithm to generate a cluster. If the algorithm
stops with s < st , then the transfer matrix approach is used
to compute the long-time dynamics and a direct evaluation
of the dynamics is run for 1 � t < t∗

i , where i � 19, i.e.,
up to the 20th leading eigenvalue. If the Leath algorithm
returns a cluster with a boundary that is not closed, then we
place a tracer at the origin and simulate the random walk by
brute force. Because the tracer can then reach undetermined
sites, the cluster keeps growing along the walk. Because these
brute-force simulations are performed only for clusters with
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FIG. 2. (a) Cluster size distributions, Ns(s, p), for different p <

pc in d = 3, 4, 5, 6 (as given in panel labels). The Fisher power-law
scaling (dashed line) describes well the large-cluster regime. (b)
The rescaled cluster size distribution Ñs(s̃, p), shows a very good
collapse for the exponential cutoff of the cluster size distribution in
all dimensions, but more sizable pre-asymptotic effects for the Fisher
tail can be observed as d increases.

s � st , which are rare, using the transfer matrix approach
accelerates the computation by orders of magnitude, even
without carefully optimizing st and the eigensolver.

IV. RESULTS AND DISCUSSION

In this section, we evaluate the caging and subdiffusive
behavior of tracers on hypercubic lattices by the simulation
methods described in Sec. III and compare the results with
the theoretical predictions presented in Sec. II.

A. Cluster size distribution

We first consider the distribution of cluster sizes, Ns, gen-
erated by the Leath algorithm near the percolation threshold.
Figure 2(a) suggests that for ε → 0, the intermediate decay
of Ns can be fitted to a power law; at larger sizes, Ns system-

atically deviates from this scaling, but the closer p is to pc,
the more extended the power-law scaling regime. The specific
scaling prediction for the cluster distribution is that

Ns(p) = s−τ [ f0(s̃) + s−� f1(s̃) + · · · ] (36)

for the rescaled cluster size s̃ = |ε|1/σ s. This form suggests
that the largest likely cluster scales as smax ∼ |ε|−1/σ , before
the cluster size distribution deviates from the Fisher power
law, and that the cluster size distributions can be asymptot-
ically collapsed by considering the rescaled function Ñs =
sτ Ns versus s̃.

Figure 2(b) shows that for the reference exponents τ and
σ (Table I), all cluster size distributions asymptotically col-
lapse onto the single master function f0(s̃). Because previous
numerical results for Ns either considered a finite periodic box
[34] or truncated the cluster size distribution before smax could
be reached [12], this master function to our knowledge had not
before been seen all at once. The Leath algorithm here enables
us to grow directly clusters up to 108 sites, hence the master
curve clearly showcases the two regimes: a flat τ -dominated
regime and a sharply decaying σ -dominated regime, with a
crossover around smax.

In addition to validating our implementation of the Leath
algorithm, this analysis allows us to validate the reported
values of the relevant critical exponents. While the most recent
estimates τ are seemingly very accurate [12], those for σ are
not all consistent [23,24]. In d = 3, in particular, the simu-
lation estimate for σ [23] leads to a better rescaling than the
best renormalization group (RG) prediction [24], especially
in the σ -dominated regime. Because increasing d closer to du

makes the RG predictions increasingly accurate, for the rest
of our analysis, we use σ determined by simulations in d = 3
and by the RG treatment in d = 4 and 5.

B. Critical caging regime

Using the clusters generated by the Leath algorithm, we
next compute �2(p) for a tracer using Eq. (28) (Fig. 3).
Directly evaluating the critical exponent μ− is challenging
because of the growing variance of the cluster size distribution
as ε → 0, and because of the sizable pre-asymptotic correc-
tions. In order to assess the convergence of our results and
identify the pre-asymptotic regime, we use the estimate

μ− = −d ln(�2)

d ln |ε| = (pc − p)

�2

d�2(p)

d p
, (37)

which becomes exact in the limit ε → 0. Because clusters
are grown by random addition, the probability that a site
belongs to any generated cluster i ∈ S, with cluster size s
and perimeter b, is uniformly distributed. The weight of this
cluster upon changing p to p′ is then [33]

w(p′)
w(p)

=
(

p′

p

)s(1 − p′

1 − p

)b

, (38)

and �2(p′) = 〈D2〉w(p′ ) is the weighted average of limiting the
mean-square displacement, D2, for every cluster i sampled,

�2(p′) =
∑N

i=1 wiD2
i∑N

i=1 wi

, (39)
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TABLE I. Reference percolation thresholds and critical exponents used in this work.

Dimension pc [12] ν [20] β [21] μa τ [12] σ b

3 0.3116077(4) [22] 0.8774(13) 0.405(25) 2.00(2) 2.1892(1) 0.4522(8) [23]

4 0.19688561(3) 0.6852(28) 0.639(20) 2.42(2) 2.3142(5) 0.4742 [24]

5 0.14079633(4) 0.5723(18) 0.835(5) 2.74(2) 2.419(1) 0.4933 [24]

�6 · · · 1/2 1 3 5/2 1/2

aComputed from the scaling relation, μ = ζ̃R + ν(d − 2), with ζ̃R from Ref. [25] and ν from this table.
bNumerical result for d = 3 and renormalization group (RG) prediction for d = 4 and 5. Existing RG predictions for d = 3 lie outside of the
numerical error bars.

where N is the number of clusters sampled. Because D2 for
one single cluster does not depend on p, we can calculate
explicitly the derivative of Eq. (38),

dwi

d p′

∣∣∣∣
p

= s

p
− b

1 − p
, (40)

and combine the result with Eq. (39) to obtain

d�2

d p
= 1

N2

[∑
i∈S

(
s

p
− b

1 − p

)
D2

i

−
∑
i∈S

(
s

p
− b

1 − p

) ∑
i

D2
i

]
. (41)

It is therefore possible to obtain an estimate μ− by generating
a sufficiently large number of clusters and by then calculating
the local slope for a given fixed p (Fig. 3, inset). As expected,
the numerical results agree with those obtained by scaling
relations in d = 3 and 4 at small enough ε. For these two
cases, we can directly read off the proper fitting range and the
numerical estimates of μ− (Table II). In d = 5, however, small
systematic deviations persist within the whole numerically

accessible regime. Such a slow convergence to the asymptotic
scaling is characteristic of approaching du. In this case, we
therefore employ a form with correction terms

ln �2 = −μ− ln |ε| + C + B/ ln |ε| (42)

to fit the pre-asymptotic estimates. Because the resulting
estimate of μ− is then to some degree sensitive to the fitting
range, we choose that range, such that μ− is minimal. The
resulting critical exponent is then consistent with the scaling
relation prediction for d = 5 (Table II).

For d � du, scaling relations predict that μ− = 0, and
the inset in Fig. 3 indeed indicates that no finite μ− value
is reached over the numerically accessible regime in d =
6. We instead consider the logarithmic scaling prediction,
�2 ≈ −A�(d ) ln |ε|, with a dimensional-dependent prefactor
A�(d ). Figure 3(b) repeats the above analysis for this other
scaling form. For the critically marginal d = 6, the growth of
�2 seems to be accompanied by a fairly wide pre-asymptotic
regime under the local slope analysis. It is also likely that �2

actually scales with a different form, such as that given in
Eq. (15). We come back to this hypothesis below. For now,
we treat the d � 6 results on the same footing by using the

FIG. 3. �2 on (a) log-log scale for d = 3 to 6 and (b) on a lin-log scale for d = 6 to 13. Linked data points are used for estimating μ−
in Table II. Gray points denote conditions under which at least 10−3% of the clusters reached the maximal memory size and are therefore
numerically suspicious. These points are provided for context alone; they are not used in the analysis. (inset) (a) Estimates of μ− obtained
from the local slope of �2 by Eq. (41), and (b) estimates for the prefactors obtained from the finite differentiation. Error bars denote 95%
confidence intervals. Dotted lines are (a) the scaling prediction given by Eq. (7) and (b) the fitting results of the main plot. The error bar on the
estimate for d = 6 is denoted by vertical stripes.
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TABLE II. Caging critical exponent μ− obtained as described in
the text. Scaling predictions use reference exponents in Table I.

d This work Eq. (6) Eq. (7)

3 1.3377(15) 1.35(2) 1.335(2)
4 0.73(1) 0.73(2) 0.723
5 0.31(2) 0.310(6) 0.301

fitting form

�2 = −A� ln |ε| + B� + C�ε, (43)

where the results of A�(d ) are displayed in Table IV. Unsur-
prisingly, these values differ from the Bethe lattice predictions
for d = 2z, which would be z/(z − 2) = 1 + 1/(d − 1). In-
cluding higher order corrections, such that

A�(d ) = 1 + 1

d − 1
+ c2

(d − 1)2
+ c3

(d − 1)3
+ o

[
1

(d − 1)4

]
(44)

fits A�(d ) reasonably well (Fig. 4). Note, however, that the
fitting constants are fairly large, as c2 ∼ 101 and c3 ∼ 102,
which signals significant loop corrections to the Bethe lattice,
and suggests that the investigated dimensions are still far from
the asymptotic regime. Theoretically computing these loop
corrections is beyond the scope of this work, and is left as
a challenge. We can nontheless confirm that the prefactors,
monotonically decrease with increasing d and remain above
unity 1, which is the expected d → ∞ prefactor for both
Bethe and hypercubic lattices.

C. Subdiffusive scaling

Because of the availability of very precise estimates of the
percolation threshold [12], d ′

w can be obtained by running
dynamical simulations essentially at pc. The growth of the
mean-square displacement with time is shown in Fig. 5. In
order to estimate the pre-asymptotic scaling for d < du, we
consider the empirical form

D2(t, pc) = Ct2/d ′
w + B + o(t−1). (45)

where B and C are fitting constants. The constant B is chosen
because we expect the subleading term after a positive power
law would be constant (0th order). Note that in practice, the
fit is done on a logarithmic scale:

ln D2(t, pc) ≈ 2

d ′
w

ln t + ln C + B

C
t−2/d ′

w . (46)

We use t � 216 as fitting range, which appears to fall near the
end of the pre-asymptotic corrections that are not captured by
this form.

TABLE III. Subdiffusion exponent d ′
w obtained as described in

the text along with earlier numerical estimates. Scaling predictions
use reference exponents in Table I.

d This work Eq. (8) Ref. [35]

3 4.94(1) 4.96(8) 5.04(1)
4 8.64(4) 8.6(2) 8.37(1)
5 20(3) 19.7(13) –

TABLE IV. Prefactors of the logarithmic growths of �2(ε) and
D2(t, pc ) for d � 6.

d A� 3AD

6 7.7(4) 6.4(1)
7 3.79(7) 3.69(3)
8 2.62(6) 2.57(1)
9 2.14(5) 2.24(2)
10 1.83(4) 1.88(1)
11 1.70(10) 1.73(1)
12 1.63(2) 1.63(1)
13 1.53(2) 1.55(1)

In order to independently identify the pre-asymptotic
regime, we also consider the evolution of the local slope,
2/(∂ ln D2/∂ ln t ) with ln t . Here again for d = 3 and 4 the
numerical estimates of d ′

w (Table III) agree with the scaling
predictions given by Eq. (8). Note that our implementation
of the transfer matrix scheme allows us to average over
many more clusters and to run longer trajectories than was
previously possible, which likely explain the discrepancy
with older numerical estimates [35]. For d = 5, however,
the computationally accessible regime remains nonetheless
somewhat distant from the asymptotic scaling. Although no
precise numerical estimate is thus available, Eq. (46) plausibly
gives dw ≈ 20, which is consistent with the scaling prediction.

From the scaling analysis of Sec. II, we expect �2(t )
for d � du to grow logarithmically with time. Figure 5(b)
explicitly tests this prediction, and we implement the fitting
form

D2(t, pc) = AD ln t + BD + CD/t (47)

to approximate the prefactor AD of the logarithmic growth.
The numerical results supports the logarithmic scaling, and
the values of 3AD are displayed in Table IV. As expected,
AD(d ) monotonically decreases with increasing dimension
and are remarkably consistent with the expected relation

FIG. 4. Prefactors A� and 3AD in the logarithmic scaling for d =
7 to 13, from right to left. The curves are fitted with Eq. (44).
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FIG. 5. D2(pc ) on (a) log-log scale for d = 3 to 6, and (b) on a lin-log scale for d = 6 to 13. Fitted results for d ′
w are given in Table III.

(inset) Pre-asymptotic corrections captured by the evolution of the local slope: (a) 2/(∂ ln D2/∂ ln t ) and (b) (∂D2/∂ ln t ). Dotted lines are (a)
the scaling predictions given by Eq. (8) and (b) the predicted prefactor relationship, AD(d ) = A�(d )/3, where A�(d ) is obtained from Fig. 3(b).
Note that quantitative agreement for the prefactors is observed in d � 7, but that in d = 6 discrepancies are observed, despite the large error
bar [see Fig. 3(b)].

A� = 3AD for d � 7 (Table IV and Fig. 4), although not for
d = 6. The discrepancy in d = 6 may be caused either by
the large pre-asymptotic corrections, as suggested by Fig. 5(b,
inset)—the local slope does not reach the expected value given
by the caging side—or by the more subtle nature of the critical
scaling at du.

D. Logarithmic correction for d = 6

We have thus far assumed that discrepancies from loga-
rithmic scaling in d = 6 were due to large pre-asymptotic
corrections. We shall now examine the possibility that a
logarithmic correction to the logarithmic scaling might be
applied to exponent τ . By explicitly presenting the constant
term in Eq. (14) as

D2(t, pc) = AD(ln t )1+θ + B,

and taking the logarithm on both side gives

log D2 = (1 + θ ) ln ln s + ln AD + ln

[
1 + B

AD(ln s)1+θ

]
.

(48)

Fitting this nonlinear equation (Fig. 6), however, gives results
that are sensitive to the number of short time data we discard
(as observed in Ref. [12]). For instance, we get θ = 0.58(4)
by fitting the results for t � 215 or 0.40(4) for t � 220, both
of which are inconsistent with Ref. [12] and the theoretical
prediction θ = 2/7. This inconsistency might be the result
of the large pre-asymptomatic corrections in d = 6. It is
also not possible determine whether or not θ is actually 0,
which would correspond to a simple logarithmic scaling. By
comparison, similar fitting gives θ (d = 7) = 0.06(10) and
θ (d = 8) = 0.003(3), both of which are consistent with the
expected simple logarithmic scaling. Note that attempting to
extract θ from the caging side dubiously gives θ ≈ 1, which
likely reflects even more significant pre-asymptotic behaviors

on this quantity. In short, the current results show only limited
evidence in support of θ �= 0.

E. Rescaled mean-square displacement

As a final test of the above critical exponents, we explicitly
consider the scaling collapse discussed in Sec. II for d �
du. Figure 7(a) shows that the mean-square displacement
qualitatively exhibits the trend caging-subdiffusion-diffusion,
as p traverses the critical regime. The long-time dynamics
is either caged or diffusive, separated by the subdiffusion
line at pc. The subdiffusion behavior is also observable at
intermediate times for p around pc. Note that at short times the
slope of all dynamical curves tends to 1 with an intercept at

FIG. 6. Growth of �2 with ln t at pc for d = 6. For comparison,
results for d = 7 and 8 as well as the fitting to Eq. (48) are plotted on
the same scale.
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FIG. 7. (a) Original and (b) rescaled time and MSD for d = 3, 4, 5, and 6. The dashed line in panel (b) denotes the subdiffusive scaling of
D̃ ∼ t̃2/d ′

w .

D2(t = 1) = p, which is characteristic of the blind ant tracer
dynamics.

Rescaling time and D2 as

t̃ = |pc − p|μ+μ−t, (49)

D̃2 = |pc − p|μ−D2 (50)

reveals the quality of the expected collapse, shown in Fig-
ure 7(b). In the long time, D̃2 collapses onto a plateau for
p < pc or a single line with slope of 1 for p > pc. While in
d = 3 and 4 a reasonably good collapse can be obtained, for
d = 5 no neat collapse emerges over the accessible dynamical
regime. This relatively poor scaling reflects the large pre-
asymptotic corrections to scaling in both the caging and the
subdiffusive regimes. For d � 6, the power-law scaling of
�2 is replaced by a logarithmic growth, and a collapse is,
therefore, not expected for any ε < 0, as observed.

V. CONCLUSION

We have investigated the mean-square displacement of an
ant in a labyrinth on hypercubic lattices in d = 3 to 13. For
d < du = 6, the expected power-law scalings of μ− and d ′

w
are observed in simulations. Although pre-asymptotic correc-

tions partially obfuscate the measurement of d ′
w in d = 5, in

d = 3 and 4, we manage to obtain critical exponents that are
almost an order of magnitude more accurate than previous
estimates. For d � 6, we derive the logarithmic scaling of
both caging and subdiffusion, as well as the relation between
their prefactors from the scaling analysis, which we validate
in simulations. By our explicit consideration of Bethe lat-
tices and random graphs, we confirm that this logarithmic
growth persists in the limit d → ∞, because its prefactor is
nonvanishing. The ant in a labyrinth thus never undergoes a
glasslike caging transition. Whether that is true for off-lattice
percolation processes, which would be more akin to the Mari-
Kurchan model, however, remains to be studied.

Data associated with this work are available from the Duke
Digital Repository [36].
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