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Localization-delocalization transition in discrete-time quantum walks
with long-range correlated disorder
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We study the effects of spatially long-range correlated phase disorder on the Hadamard quantum walk on a
line. The shift operator is built to exhibit an intrinsic disorder distribution featuring long-range correlations. To
impose such, we resort to fractional Brownian motion with power-law spectrum 1/k2α with α � 0 being the
exponent that controls the degree of correlations. We discuss the scaling behavior of the walker’s wave packet
and report a localization-delocalization transition controlled by α. We unveil two intermediate dynamical regimes
between exponential localization and full delocalization.
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I. INTRODUCTION

Quantum walk is the quantum mechanical analog of the
classical random walk. Interest in the subject emerged roughly
three decades ago after Aharonov et al. [1] put forward the
main idea. As classical random walks have been of great util-
ity in computer science, quantum walks are a formidable tool
for designing quantum algorithms and for running quantum
simulations (see Refs. [2,3] for reviews of the subject).

One of its main features is that the particle’s wave function
spreads out ballistically (rather than diffusively) on a regular
lattice due to intrinsic quantum interference effects. Thereby,
quantum walks yield significantly faster hitting times when
compared to the classical case and thus readily find appli-
cations in quantum search problems [4–6]. Moreover, it was
shown that quantum walks feature the necessary ingredients
for universal quantum computation [7,8].

Quantum walks can be divided into two main kinds.
Continuous-time quantum walks [9] are performed by defin-
ing a hopping Hamiltonian on a chosen graph and letting
the system evolve through the Schrödinger equation. In a
discrete-time quantum walk (DTQW) [1], the standard un-
derlying mechanism consists of a set of internal degrees of
freedom (e.g., spin) being the coin space (not necessarily
being restricted to a two-dimensional subspace) alongside
a configuration space denoting the walker’s position. The
protocol itself is triggered by repeatedly executing a “coin
toss”—a unitary transformation acting on the coin space that
scrambles wave-function components—followed by a condi-
tional displacement obeying the coin state. Experimentally,
this can be implemented using, e.g., NMR [10], ion traps [11],
waveguide arrays [12,13], and superconducting devices [14].

The freedom in setting up the coin entails that very rich
dynamics can be generated from rather simple rules thereby
allowing one to obtain a handful of dynamical regimes at
will [15]. After all, DTQWs can also be seen as a quantum
cellular automaton [16]. Moreover, the interest in this kind of
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procedure is far from being restricted to single-particle dy-
namics. Quantum walks of two interacting or noninteracting
particles have also been addressed [17–21] and proved to be
experimentally feasible [13,22]. This opens up the possibility
of probing multiparticle entanglement and the role of interac-
tions between them and, due to its greater complexity, may
also be useful to deal with challenging computational tasks
such as the graph isomorphism problem [23,24].

DTQWs then provide a powerful framework for study-
ing complex quantum behavior, including decoherence [25],
strongly correlated phenomena [26,27], topological phases
[14,28–32], and localization [28,31,33–39], to name a few.
This last in particular has been a relevant subject with some
experiments being carried out [40,41]. In general, we expect
the walker to undergo Anderson localization when subjected
to disorder. It thus becomes important to find out how the
transport properties of DTQWs are affected against different
forms of noise.

In Refs. [28,31] the authors addressed dynamical regimes
where Anderson localization in a DTQW is bypassed even
in the presence of disorder, with the wave function avoiding
complete trapping over a finite region of lattice. They further
explained it in terms of topological phases of the quantum
walk. Another remarkable feature in particular, as showed by
Vieira et al. [42], is displayed by a class of dynamically disor-
dered one-dimensional (1D) DTQWs in which spin-position
entanglement reaches its maximum asymptotically for any
input, thus outperforming its ordered counterpart. This was
further investigated including fluctuating and static disorder
[43], and an experiment has recently been performed in a
photonic platform [44].

These examples make the case that disorder can be a handy
resource, especially when one has some degree of control
over it. Properly tailored disordered DTQWs thus possess
enormous potential in quantum information processing. Our
goal here is to unveil transport properties of a class of cor-
related, static disorder known for inducing a localization-
delocalization transition [45].

In condensed matter physics, the breakdown of Anderson
localization can be spotted in 1D tight-binding models with
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disorder featuring short- [46,47] or long-range correlations
[45,48]. The latter was found to undergo a metal-insulator
transition with sharp mobility edges indicating the presence
of extended states [45,48]. Its rich dynamics has been ex-
ploited since then in various frameworks [49–55], includ-
ing experimental verification using waveguides [56,57]. The
interplay between localization and delocalization also finds
use in quantum-communication tasks such as entanglement
distribution [54] and quantum-state transfer [55].

In this work we aim to explore the wave-packet dynam-
ics of a 1D DTQW embedded with long-range correlations
following a power law encoded as on-site static phase dis-
order [39] in the conditional translation operator. In our
calculations, the shift operator is built using as the source
of disorder a fractional Brownian motion with power-law
spectrum having a characteristic exponent α accounting for
the degree of correlations within the shift unitary operator
(α � 0). In particular, we rely on finite-size scaling analysis
to characterize the transition from exponential localization to
delocalization of the walker’s wave packet.

II. MODEL AND FORMALISM

We deal with a Hadamard quantum walk on an open
line. Let Hp be the Hilbert space spanned by the positions
{|n〉} (n = 1, 2, . . . , N ) of the particle alongside a two-level
coin space defined by HC . This last may be associated with
internal degrees of freedom of the walker, say, its spin
({|↑〉, |↓〉}). The total Hilbert space of the quantum walk is
thus H = HC

⊗
Hp. The evolution for a given initial state

|ψ (t = 0)〉 can be evaluated using a unitary operator U de-
fined as U = S(C

⊗
I ) where S is the conditional translation

operator including on-site static phase disorder [39],

S = | ↑〉〈↑ |
∑

n

(ei2πζn+1 |n + 1〉〈n|)

+ | ↓〉〈↓ |
∑

n

(ei2πζn−1 |n − 1〉〈n|), (1)

with ζn denoting the disordered phase, and C being the
Hadamard coin operator,

C = 1√
2

(
1 1

1 −1

)
. (2)

The quantum state of the walker at the time t is given by
|ψ (t )〉 = Ut |ψ (t = 0)〉. In this work, ζn takes values obtained
from a disorder distribution with intrinsic long-range correla-
tions. To generate these numbers we consider the trace of the
fractional Brownian motion defined by [45]

Vn =
N/2∑
k=1

1

kα
cos

(
2πnk

N
+ φk

)
, (3)

where φk represents a random phase distributed within the
range [0, 2π ]. We emphasize that the sequence {Vn} features
a power spectrum of approximately 1/k2α [45]. For α = 0,
the sequence is fairly uncorrelated. On the other hand, α > 0
introduces long-range correlations in {Vn}. Therefore, expo-
nent α ultimately controls the degree of correlations within
the disordered sequence. In addition, hereafter we normalize
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FIG. 1. Left: Vn and ζn landscapes for a chain with N = 16 000
sites and α = 0.5. The mapping transformation restricts ζn to the
interval [0,1]. Right: Spectral densities of the potential landscapes. Vn

has a pure power-law spectrum (solid line). The spectral density of ζn

exhibits the same overall power-law decay with random fluctuations.
The dashed line is a guide for the eye.

{Vn} so that 〈Vn〉 = 0 and 〈V 2
n 〉 = 1. This effectively modifies

the disorder strength locally while keeping the global disorder
strength the same for any α [58].

With all that set up, we define ζn = 0.5 tanh (Vn) + 0.5 to
adjust the range of the correlated disordered phases within the
interval [0, 2π ]. We stress that this transformation does not
change the asymptotic correlation function of the sequence.
In Fig. 1 we illustrate this aspect by plotting both Vn and ζn

together with their respective spectral densities for the partic-
ular case of α = 0.5. Note that both series have a power-law
spectrum, and the mapping between them only adds random
fluctuations to the overall 1/k decay. The resulting series
develops distinct statistical properties depending on the value
of α. For α < 1/2 it remains statistically stationary. For 1/2 <

α < 3/2 it generates a landscape with a fractional dimen-
sionality and Hurst exponent H = α − 1/2 [59]. This implies
that the series is similar to the trace of a fractional Brownian
motion with antipersistent increments for 1/2 < α < 1 and
persistent increments for 1 < α < 3/2. For larger values of
α the series has H = 1 and the underlying disorder becomes
irrelevant. In what follows we show that the dynamics of the
quantum walker is strongly dependent on the statistical regime
of the random phase landscape.

Most of our analysis is made upon the wave-packet
spreading

σ (t ) =
√∑

n

[n − 〈n(t )〉]2Pn(t ), (4)

where Pn(t ) = |〈ψ (t )| ↑, n〉|2 + |〈ψ (t )| ↓, n〉|2 is the proba-
bility of the walker to be found at the nth site and 〈n(t )〉 =∑

n nPn(t ) is the walker’s mean position. In short, σ measures
the width of the wave packet. This piece of information
allows us to tell about how fast it goes over time as well as
its localization properties. The latter can be inferred from a
finite-size scaling analysis. If, after a very long time, σ ∝ N
(σ remains constant), this means delocalization (localization).
Further, σ ∝ t1 indicates ballistic dynamics with constant
velocity while σ ∝ t1/2 points to diffusive spreading. Now
equipped with the tools above, we are ready to perform a
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FIG. 2. Time evolution of the wave-packet probability distribu-
tion Pn(t ) versus n and t for α = 0, 1, and 3 averaged over 103

realizations of disorder. For weak correlations (α = 0 and 1) a finite
fraction of the the walker remains localized around the initial position
n0 = N/2 = 3000. For α = 3 the state acquires a delocalized-like
behavior.

detailed investigation into the dynamics of the disordered
DTQW.

III. RESULTS AND DISCUSSION

In the following we discuss our results based on numerical
simulations of the disordered quantum walk. In all figures
displayed hereafter, the initial state is a symmetric one of the
form |ψ (t = 0)〉 = 1√

2
| ↑, n0〉 + i√

2
| ↓, n0〉 with n0 = N/2.

Let us first take a look over the dynamics profile of the
walker upon varying α. In Fig. 2 we plot the time evolution
of Pn(t ) versus n and t for α = 0, 1, and 3 in an open chain.
We observe that for α = 0 the walker remains trapped around
the initial position n0 as expected since this case represents a
quantum walk evolving in a chain with uncorrelated disorder.
As widely known [28,31,35,37–41], disordered DTQWs share
some similarities with the standard Anderson localization
theory, meaning that the random scattering of the wave packet
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FIG. 3. σ (t ) versus t for α = 0.25, 0.75, and 1.5 averaged over
103 distinct samples. For α = 1.5 the walker wave-packet width
exhibits ballistic dynamics with σ ∝ t before saturating due to
finite-size effects. Data collapse is obtained by rescaling the width
and time linearly by the chain size. Note that for α = 0.25, σ is
size independent. For α = 0.75, data collapse is seen after properly
rescaling the width and time by a sublinear power of the chain size.

leads to exponential localization of the quantum walker. This
scenario changes when long-range correlations are added into
disorder. For α = 1 we already note that a fraction of the prob-
ability spreads within the chain while another finite fraction of
the initial wave packet remains trapped around the initial site.
For α = 3 the wave-packet probability profile readily suggests
delocalization of the quantum walker. We can see that the

022117-3



MENDES, ALMEIDA, LYRA, AND DE MOURA PHYSICAL REVIEW E 99, 022117 (2019)

0 1 2 3
α

0

0.02

0.04

0.06

0.08
σ/

Ν N=2000
N=4000
N=8000
N=16000

FIG. 4. Scaled long-time wave-function width σ (t = 5N )/N ver-
sus α for N = 2000 to 16 000 averaged over 103 distinct disorder
samples. Note that σ/N remains finite and size independent for
large α.

wave front advances linearly in time, and the fraction of wave
packet around the initial position (return probability) becomes
vanishingly small. Those findings are preliminary indications
that the walker wave function acquires an extended behavior.

A more precise description, though, can be obtained by
analyzing the evolution of the wave-packet width in chains
with distinct sizes. In Fig. 3 we plot σ (t ) versus t for three rep-
resentative values of α and chain sizes N = 2000 to 16 000. In
the small α regime (α = 0.25), the width σ is size independent
and saturates after an initial diffusive spreading. In the inter-
mediate regime (α = 0.75) the wave-packet width presents
a sublinear size dependence. Data from distinct chain sizes
are fairly collapsed by using proper width and time scales.
The last panel accounts for the regime of large α, represented
by α = 1.5. In this case the wave-packet asymptotic width
scales linearly with the system size after an initial ballistic
spreading at which the wave packet displays a constant speed
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FIG. 5. Size dependence of the long-time wave-function width
σ (t = 5N ) versus N for α = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 (from
bottom to top). The crossover from the size independent to the linear
scaling regime can be effectively described by a sublinear power-law
behavior of the form σ ∝ N� .
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FIG. 6. Finite-size scaling exponent of the wave-packet width
σ ∝ N� , with σ = σ (t = 5N ). The power-law exponents are esti-
mated for sizes N = 2000 to 16 000. We note three distinct regimes:
(1) full localization with � = 0; (2) sublinear scaling with 0 < � <

1; and (3) full delocalization with � = 1.

v(α = 1.5) � 0.54. Data collapse is now achieved by scaling
both width and time linearly with the system size.

In order to talk about the boundaries of each dynamical
regime described above more precisely, we turn our atten-
tion to the long-time behavior of the wave-packet width.
Considering that the statistically stationary state in the bal-
listic regime is reached for t/N > 1, we evaluate the wave-
packet width around t = 5N by averaging it over 100 time
steps and 1000 distinct disorder configurations. Figure 4
shows the scaled long-time behavior of the walker’s wave-
function width σ/N versus α. This gives further support to
the above indication that the wave-packet width remains finite
for small values of α while scaling linearly with the system
size for large values of α. In Fig. 5 we show in a log-log scale
the size dependence of the wave-packet width for values of
α within interval [0,1.4] and chain sizes ranging from N =
2000 to N = 16 000. There we clearly see that the crossover
from the size-independent to the linear regime can be well
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FIG. 7. Long-time behavior of the return probability R =
Pn0 (t = 5N ) versus α for N = 2000 to 16 000 averaged over 103

distinct disorder samples. Note that the return probability remains
finite and does not depend on the system size for α < 1/2.
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chain size for representative values of α in the strongly correlated
regime. The size independence of RN/ ln N readily tells us how
relevant this logarithmic correction is.

represented by an intermediate profile in which the wave-
packet width depicts an effective sublinear finite-size scaling
as σ ∝ N� , with 0 < � < 1. The estimated values of the
effective exponent � as a function of α are plotted in Fig. 6.
It shows that the regime at which the wave packet remains
fully localized, i.e., � = 0, persists up to α � 0.5. The fully
extended state, corresponding to � = 1, emerges when α > 1.
In the range 0.5 < α < 1 the wave packet exhibits a sublinear
finite-size scaling, signaling weak localization.

Further scaling analysis can also be performed for another
very relevant property of the wave-packet dynamics, namely,
its return probability R(t ) = Pn0 (t ). In Fig. 7 we plot its
statistically stationary value as a function of α obtained from
distinct chain sizes. The return probability remains finite for
small values of α and vanishes as it increases, in agreement
with the localization-delocalization transition reported above.
In order to unveil the finite-size scaling behavior of the return
probability in the strongly correlated regime, we plot RN as
well as RN/ ln N as a function of the chain size in Fig. 8.
There one observes that the proper scaling variable is the
one that takes a logarithmic correction to the linear scaling
into account, thus yielding a size-independent behavior. This
very result indicates that in the strongly correlated regime the
asymptotic return probability decays as R ∝ ln (N )/N .

Now taking Ñ = N/ ln N as the (more appropriate) scal-
ing variable, we explore the size dependence of the return
probability for a wide range of α. Our results are summarized
in Fig. 9. Note that the crossover from the size independent
to the linear scaling (with a logarithmic correction) regime
can also be effectively described by an intermediate sublinear
power-law scaling regime on which R ∝ Ñβ , with 0 < β < 1.
The estimated values for the scaling exponent β are reported
in Fig. 10. In the fully localized regime (α < 0.5), the return
scaling exponent β = 0, as expected. However, differently
from the linear scaling behavior of the wave-packet width
σ that develops at α = 1, the linear scaling of the return
probability is reached only for higher values of α.

Due to the intrinsic logarithmic correction to scaling of
the return probability, numerical calculations carried out for
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FIG. 9. Return probability R versus scaling variable N/ ln N for
α = 0, 0.2, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 3.0 (from top to bottom). The
intermediate scaling regime can be effectively represented by a
sublinear power law R ∝ Ñ−β with 0 < β < 1.

larger chain sizes would be necessary to accurately determine
the upper bound of the regime with sublinear, finite-size
scaling of the return probability. However, we conjecture that
the exact bounds for the regimes reported above are directly
related to the distinct statistical regimes of the underlying ran-
dom phase landscape. When α < 1/2 the phase sequence is
stationary, thus leading to full localization. For nonstationary
phase sequences with antipersistent increments, 1/2 < α < 1,
one gets weak localization of the quantum walk wave function
with a sublinear finite-size scaling of the wave-packet width.
Localization also develops for phase sequences with persistent
increments, α > 1, which leads to the linear scaling of σ ∝ N .
However, a roughly uniform, statistically stationary wave-
packet profile is reached only when the fractal character of
the underlying phase landscape is lost, which makes disorder
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FIG. 10. Finite-size scaling exponent of the return probability
R ∝ 1/Ñβ , with R = Pn0(t = 5N ), for N = 2000, 4000, 8000, and
16 000. Here Ñ = N/ ln N . For each α and N we averaged Pn0(t )
over 103 distinct realizations of disorder, picked out the last 100
steps before t = 5N , and then took another average to finally set R.
We note three distinct regimes: (1) β = 0; (2) 0 < β < 1; and (3)
β = 1 (signaling a linear behavior with logarithmic correction). An
intermediate, sublinear regime develops in the range 1/2 < α < 3/2.
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FIG. 11. Top: long-time wave-packet profile for some represen-
tative values of the correlation exponent α. The local occupation
probability Pn was evaluated at t = 5N with N = 16 000. The main
panel shows the development of an exponential tail while the inset
emphasizes the power-law decay at intermediate values of α prior to
the exponential cutoff. Bottom: cutoff length Lc versus α for various
sizes N averaged over 103 distinct realizations of disorder. While
the cutoff is size independent for α < 1/2, it scales linearly with the
system size for α > 3/2.

irrelevant. This is the case for α > 3/2 whereupon the return
probability scales almost linearly with the chain size. The
slight deviation from the linear scaling near α = 3/2 suggests
that much larger chain sizes would be required to accurately
capture the asymptotic scaling in the vicinity of this point.

Last, in order to go deeper towards understanding the
several scenarios unveiled by the finite-size scaling behavior,
we plot the wave-packet profile after a large number of
steps in the top panel of Fig. 11 for some representative
values of α. For small degree of correlations (α < 1/2), the
wave packet remains strongly localized around the initial
position. Above this value, the wave packet develops a slowly
decaying power-law behavior interrupted by an exponential

cutoff. Then the wave packet gets about a flat profile for
α > 3/2—presenting a very slow decay followed by the
cutoff—thereby reaching the ultimate delocalized regime. In
this case, σ ∝ N while R ∝ ln N/N . In the bottom panel of
Fig. 11 we display the cutoff length Lc against α for various
N . The cutoff is estimated as the distance to the initial position
at which the statistically stationary wave function becomes
smaller than 10−30. For α < 1/2 the cutoff is size independent
while it reaches a plateau for α > 3/2 on which Lc ∝ N .

IV. CONCLUDING REMARKS

In this work we unveiled the dynamics of a disordered
DTQW featuring long-range correlations controlled by a sin-
gle parameter, α, displaying a power-law spectrum of the
form 1/k2α . Our results showed that ballistic dynamics is
maintained in the presence of disorder provided the degree
of correlations is high enough. Four distinct regimes were
identified from the finite-size scaling analysis of the wave-
packet width σ and the return probability. Strong localization
persists for α < 1/2, when the underlying random phase
landscape is stationary. The usual regime of nearly uniform
delocalization sets in for α > 3/2 reflecting the nonfractal
aspect of the phase distribution. We also identified the exis-
tence of two intermediate regimes on which the wave packet
develops a slowly decaying power-law tail. Whenever the
random phase landscape has antipersistent increments (1/2 <

α < 1) the quantum walker presents weak delocalization, with
σ scaling sublinearly with the chain size. For nonstationary
phase sequences with persistent increments (1 < α < 3/2), σ

spans over a finite fraction of the chain, although the return
probability still scales sublinearly.

Our work builds upon the impact of Anderson localization-
delocalization transitions in DTQWs. Quantum walks are
convenient platforms for quantum simulation [26,35,40,41],
and the role of different kinds of noise must be taken into
account, such as those able to drive a Anderson localization
breakdown [45]. The interplay between localized and delocal-
ized dynamics can also be very useful in the realm of quantum
communication protocols [54,55].

Further extensions of our work can be carried out by
considering the effects of coin disorder [26] and the overall
relationship between localization properties and the underly-
ing topological phases [32]. Another direction can be taken
towards studying the dynamics of many-particle quantum
walk [13] against correlated disorder.
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Potoček, C. Hamilton, I. Jex, and C. Silberhorn, Science 336,
55 (2012).

[23] J. K. Gamble, M. Friesen, D. Zhou, R. Joynt, and S. N.
Coppersmith, Phys. Rev. A 81, 052313 (2010).

[24] S. D. Berry and J. B. Wang, Phys. Rev. A 83, 042317 (2011).
[25] V. Kendon, Math. Struct. Comp. Sci. 17, 1169 (2007).
[26] C. M. Chandrashekar, Phys. Rev. A 74, 032307 (2006).
[27] P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P.

Zupancic, Y. Lahini, R. Islam, and M. Greiner, Science 347,
1229 (2015).

[28] H. Obuse and N. Kawakami, Phys. Rev. B 84, 195139
(2011).

[29] T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg,
I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Nat.
Commun. 3, 882 (2012).

[30] T. Kitagawa, Quant. Info. Proc. 11, 1107 (2012).
[31] T. Rakovszky and J. K. Asboth, Phys. Rev. A 92, 052311

(2015).
[32] J. M. Edge and J. K. Asboth, Phys. Rev. B 91, 104202 (2015).
[33] A. Wójcik, T. Łuczak, P. Kurzyński, A. Grudka, T. Gdala, and
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