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Scaling laws for harmonically trapped two-species mixtures at thermal equilibrium
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We discuss the scaling of the interaction energy with particle numbers for a harmonically trapped two-species
mixture at thermal equilibrium experiencing interactions of arbitrary strength and range. In the limit of long-
range interactions and weak coupling, we recover known results for the integrable Caldeira-Leggett model in
the classical limit. In the case of short-range interactions and for a balanced mixture, numerical simulations
show scaling laws with exponents that depend on the interaction strength, its attractive or repulsive nature, and
the dimensionality of the system. Simple analytic considerations based on equilibrium statistical mechanics
and small interspecies coupling quantitatively recover the numerical results. The dependence of the scaling on
interaction strength helps to identify a threshold between two distinct regimes. Our thermalization model covers
both local and extended interactions, allowing for interpolation between different systems such as fully ionized
gases and neutral atoms, as well as parameters describing integrable and chaotic dynamics.
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I. INTRODUCTION

Thermalization in many-body systems is a topic of broad
interest in a variety of contexts including fluids, plasmas,
and chemical reaction dynamics. An approach which has
been considered of universal character, as it may be used
for both classical and quantum systems, is based on a closed
Hamiltonian dynamics and referred to as the Caldeira-Leggett
model, though its origin can be traced to earlier contributions
[1–5].

In previous work [6,7], we explored thermalization in the
context of a model where the interaction, both in range and
strength, appeared as a generalization of this more familiar
Caldeira-Leggett model. Though the earlier context was the
sympathetic cooling of atomic gas mixtures, our model was
also intended to explore the realm of nonlinearities arising
in either, or both, interaction and confining potentials [8].
In particular, plasma physics offers a phenomenological plat-
form to discuss our model as scaling properties, turbulence,
strong coupling, and exothermic reactions all play a crucial
role.

An intriguing feature reported in Ref. [7] was power-law
scaling of the average total interaction energy with total num-
ber of particles, for equal number mixtures, as thermalization
was approached. Specifically, the scaling exponent was remi-
niscent of that associated with Kolmogorov scaling associated
with turbulent mixing in fluids. Within the explored range of
parameters, the scaling was persistent with changing dimen-
sionality of the dynamics. The suggested analogy between tur-
bulent mixing and thermalization originates from the common
issue of homogenization. As we show, the interaction energy
between the two species transitions from a dynamical regime
to one more attuned to a statistical analysis. Thermalization
of the two species coincides with the realization of this latter
regime, and we interpret this to be the well-mixed state.

In this paper, we explore in more detail this scaling behav-
ior. Aside from exploring a wider range of parameters in our
numerical simulations, we construct analytic estimates of the
scaling exponents from various thermodynamic perspectives
and with variable dimensionality. In one dimension, there
do exist conditions under which the exponent does indeed
coincide with that seen in Kolmogorov scaling while, under
analogous conditions, there are deviations at higher dimen-
sionality. It is worth noting that dimensional arguments behind
Kolmogorov scaling are scalar in nature, due to assumptions
of isotropy, resulting in an effective one-dimensionality. In
our dynamical situation, one-dimensionality favors energy
transfer due to the absence of constraints on head-on collisions
while, in higher dimensions, angular momentum serves to
restrict these, resulting in a slower rate of energy transfer.
Also, the scaling becomes extensive in the limit of infinite di-
mensions, as expected from mean-field constructs and phase-
space considerations.

On exploring a broader range of parameters, scaling indi-
cates a saturation in the total interaction energy. This satu-
ration phenomenon occurs when the interaction range is so
large that all possible pairwise interactions occur, regardless
of the interaction strength. Analogously, saturation also occurs
for any interaction range when the interaction strength is so
large that either clustering of particles of different species
(when their interaction is attractive) or nearly complete spatial
separation (when the interaction is repulsive) occurs. The phe-
nomenon is microscopically related to the two-point spatial
correlation function between particles of different species.
This effect also implies that in a more general setting in which
both attractive and repulsive interactions occurs, such as in
dense plasmas in the strong-coupling regime, the attractive
component dominates over the repulsive component in estab-
lishing the dynamics and the total interaction energy. Further
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relationships of our work to plasma physics, with particular
regard to possible future research directions on anisotropic
turbulence and efficient heating protocols, are highlighted in
the conclusions.

II. A GENERALIZED INTERACTION MODEL
BETWEEN TWO SPECIES

The Hamiltonian we consider is [6–8]

H =
NA∑

m=1

(
P2

m

2mA
+ 1

2
mAω2

AQ2
m

)
+

NB∑
n=1

(
p2

n

2mB
+ 1

2
mBω2

Bq2
n

)

+ γ

NA∑
m=1

NB∑
n=1

exp

[
− (Qm − qn)2

λ2

]
, (1)

where (Qm, Pm) and (qn, pn) are the positions and momenta of
each particle of the two species A and B, respectively, and po-
sitions lie in a generic D-dimensional space. The interspecies
term is governed by two parameters, the strength γ and the
range λ of the interaction, with the former representing the
typical energy exchanged between two distinct particles in a
close-distance interaction. Although the interaction Hamilto-
nian looks rather simple, it allows for the study of a variety
of situations, including balanced (NA = NB) and unbalanced
mixtures, attractive (γ < 0) and repulsive (γ > 0) interac-
tions, as well as long-range (λ → ∞) and short-range interac-
tions. In particular, for a completely unbalanced mixture (for
instance, NA = 1 and NB → ∞), small γ and large interaction
range, the model mimics, in the classical limit and for a
finite number of particles [9], the genuine Caldeira-Leggett
approach used to model dissipation in open systems. It should
be noted that we are considering the classical dynamics so
reference to Caldeira-Leggett is in terms of the functional
form of the interaction. Our choice of a Gaussian form of
the interaction term in the Hamiltonian allows for simple

analytical estimates based on the canonical ensemble, and
therefore in the thermodynamic limit of infinite particle num-
bers. As first emphasized in Ref. [10], thermalization and
equilibration processes are quite insensitive to the micro-
scopic details of the interaction. Therefore we expect our
results to be relevant beyond the specific, analytically conve-
nient, interaction term we have adopted.

The equations of motion corresponding to the Hamiltonian
in Eq. (1) can be numerically integrated to machine precision.
Given the harmonic trapping potential, the initial conditions
are drawn from canonical energy distributions consistent with
the initial temperatures of the two clouds (see Ref. [7] for
details). The time evolution of the particle trajectories, in the
presence of interactions, allows us to track the dependence
of the total interaction energy on time for typical param-
eters as shown in Fig. 1. Early on, the interaction energy
reflects the periodicity associated with the harmonic trap,
while increasing aperiodicity develops with time. For even
longer times, the interaction energy settles into a noisy time-
averaged value. The inset shows the evolution of the inverse
temperatures βA and βB of the two subsystems over the same
time, with equilibration coinciding with the settling down of
the interaction energy. The inverse temperature, as discussed
in detail in Ref. [7], is evaluated by looking at the energy
variance σ 2

E where

σE = (〈E2〉 − 〈E〉2)1/2 =
√

D/β, (2)

where D is the spatial dimensionality, and the averages are
taken over the ensemble of particles at any given time. This
simple relationship relies on Gibbs-Boltzmann statistics and
therefore a weak-coupling approximation [11–13]. The in-
teraction energy is a more robust, coarse-grained indicator
whose validity also holds in the strong-coupling limit. More
specifically, we have observed situations, for instance, due to
strong interspecies repulsion, for which the system does not
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FIG. 1. Left: Plot of the total interaction energy versus time for a given equal number of particles in the two systems. In the inset the inverse
temperatures of the two systems are shown versus time, confirming the presence of a regime in which thermalization is assured and showing
also the presence of an exothermic equilibration. The simulations were performed with NA = NB = 400 particles, γ = 20.0, λ = 0.1, βA = 2.0,
βB = 0.2, mA = mB = 1.0, ωA = 1.0, ωB = 144/89. Right: Same quantity for varying number of particles in the two systems, qualitatively
showing that the interaction energy increases with the number of particles and that its fluctuations after the thermalization stage decrease with
the number of particles.
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settle into an equilibrium state as defined by a common inverse
temperature, yet a stationary situation occurs with different
effective inverse temperatures as evaluated from Eq. (2) and
a stationary interaction energy. By repeating the numerical
simulations for different numbers of particles, we can high-
light the scaling behavior seen in the late time-averaged, total
interaction energy with respect to the number of particles,
reported in Ref. [7]. Note that for the rest of the paper, the
term total interaction energy, denoted by Ēint , will refer to
the postsaturation, time-averaged total interaction energy. In
the scaling context, the right panel of Fig. 1 notes both the
change in this average energy as well as the reduction in
fluctuations with increasing particle number. This will prove
relevant in determining the accuracy of the power-law scaling
results with changing system size.

III. NUMERICAL EXPLORATION

We have numerically evaluated the critical exponents for
a range of parameters and for balanced systems with N =
50, 100, 200, 400, 800 particles each. The acceptable lower
number of particles is determined by the large statistical
fluctuations of the interaction energy, while the higher number
is limited by the duration of the simulation (requiring about
2 weeks for the largest number of particles, N = 800, and
105 time steps on a single processor). Although, in many
cases, thermalization can occur on shorter timescales, we have
decided to standardize the simulations by considering a total
duration of 105 time steps in all cases. The interaction energy
is evaluated by averaging over the last 103 time steps of
each simulation, where the discussion of the inset plot in the
caption of Fig. 2 provides justification for this choice.

In our attempts to improve the precision of the power-law
exponent, we have extensively studied its dependence on the
run time, the series length of the time-dependent interaction
energy used in the time average, as well as the number of
particles. The latter is a crucial parameter because we expect
that for small number of particles the ergodic hypothesis does
not hold on the limited timescales we explore. A manifestation
of this can be seen in Fig. 2 where the variation of the time
averaged interaction energy with particle number is shown.
Deviations from the power-law behavior seen for the smaller
N values are a consequence of the absence of ergodicity on
the timescales of our simulations. By allowing enough time
for thermalization and optimizing the averaging time windows
in the thermalization regime, as indicated in the caption for
Fig. 2, we obtain the accuracy necessary (relative errors of
a few percentages) to validate the predicted behavior for the
scaling exponent.

In Fig. 3 we show the scaling of this time-averaged interac-
tion energy, in one dimension, with the number of particles for
various γ , corresponding to repulsive and attractive interac-
tions. The values of γ lie between the perturbative case (where
thermalization occurs on exceedingly long timescales but
there is some analytic tractability) and the strongly coupled
case, where any analytical perturbative construction is not
expected to hold. On comparing the repulsive and attractive
cases in Fig. 3, if all the other parameters are kept equal, then
the interaction energy (absolute value) for the attractive case
is at least one order of magnitude larger with respect to the
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FIG. 2. Total interaction energy Ēint versus the number of parti-
cles N , with both quantities shown on logarithmic scales, for a broad
range of N encompassing also the few-body case. Deviations from a
power-law scaling at small number of particles are attributable to the
few-body dynamics which does not allow for meaningful comparison
of the time-averaged total interaction energy to the corresponding
one obtained by a canonical ensemble average. Including points from
the few-body cases does indeed affect the best fit significantly. A
scaling exponent α = 1.80 ± 0.04 is obtained for a global fit (red
line). Considering only the four rightmost points gives α = 1.61 ±
0.04, while the eight rightmost result in α = 1.62 ± 0.02, showing
robustness of the fit for large N . The inset shows the dependence of
the standard deviation of the total interaction energy on the number
of time steps used for evaluating its average value at the end of the
simulation, for the case of N = 50 particles. The optimal choice is
a compromise between the larger standard deviations for smaller
time sequences and the need to avoid bias due to possible residual
thermalization dynamics for larger size of the sample. The coupling
strength is γ = 2.0, while the parameters λ, βA, βB, mA, mB, ωA, ωB

have the same values as in Fig. 1. The error bars in the inset
correspond to one standard deviation from the average value, while
the errors on the scaling exponent α here and in the following figures
are evaluated as one standard deviation in the least-squares analysis.
Based on this analysis, we use a minimum of N = 50 particles for
each species and 103 time steps for the time averaging in all other
figures.

repulsive case. This nontrivial feature may be interpreted as
due to the different role played by the interaction term in the
two cases. The textbook scenario of thermalization consists
of two compartments of particles where the interaction (wall
between them) is very weak, either due to the interparticle
interactions themselves or because the interface between the
subsystems is of lower dimensionality as compared with those
of the subsystems. The repulsive case follows this scenario.
However, this is not a likely scenario for attractive interactions
where aggregation or clustering can lead to increased strength
in the spatially dependent interactions. Using this notion,
the total interaction energy is bounded simply by E sat

int =
−γ NANB, when the distance between all pairs |Qm − qn| � λ.
Including the fact that the particles are moving means that the
asymptotic interaction energy seen in the numerics is consid-
erably less (in absolute value). The reduction factor can be
estimated, in the case of small λ, by comparing the timescale
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FIG. 3. Scaling of the total interaction energy with system size (NA = NB = N) for both repulsive (left) and attractive (right) cases. The
strength γ is specified while mA = mB = 1.0, λ = 0.1, ωA = 1.0, ωB = 144/89, βA = 0.2, and βB = 2.0.

on which the two particles are proximal, i.e., within λ (of order
λ/v where v is their relative velocity) with the period of the
harmonic oscillation in the trap. For the parameters in Fig. 3,
the typical saturation value is about 10 % of E sat

int .
Also, the attractive case is more efficient, for the same

choice of initial conditions, in increasing the total interaction
energy of the two systems. The interface between the two
systems is more extended in configurational space and there
is aggregation rather then phase separation as in the repulsive
case. As a consequence, the interactions proceed faster and
involve larger clusters of particles. Conversely, as shown by
numerical simulations and simple analytical estimates, ther-
malization in the case of strong repulsion occurs intermittently
as it involves small particle numbers at the tails of the already
phase-separated clouds. In the attractive case, the thermaliza-
tion phenomenon can be viewed as proceeding through latent
energy stored in the interaction term, which is then released as
kinetic and potential energy of each particle. In this sense, it
can be viewed as a generalization of Joule-Thompson effects
in real gases, with a compression and heating stage rather than
the usual expansion and cooling.

The view suggested above is further corroborated by in-
specting the total interaction energy at equilibrium, normal-
ized to the coupling strength γ , as a function of γ , shown in
Fig. 4. The interaction energy saturates both at large values
of γ due to species separation for repulsive interactions, at
a small value for Eint, and at large negative values of γ due
to species clustering, with a large absolute value of Eint. As
discussed in Ref. [7], the interaction energy is a macroscopic
indicator of the ensemble-averaged distance between two
different species particles, as

〈(qn − Qm)2〉 = −λ2 ln

( 〈Eint〉
γ NANB

)
. (3)

In Fig. 4 there is an intermediate region of values of
γ where these appears to be a crossover between the two
extreme values. As we will describe, this is where the con-
siderations of the analytical model we develop may apply.
It would appear that special care is required in the limit
as γ approaches zero, as the interaction energy is zero by

definition in the limit. The numerical analysis has been re-
peated in higher dimensions, confirming the general trend
with some distinguishing features. For the same parameters,
higher dimensions show ever smaller interaction energy, as
the particles may dilute in a progressively larger phase space.
Also, the presence of angular momentum allows for evasive
trajectories which are forbidden in the one-dimensional case.
The difference between attractive and repulsive interactions
is amplified by higher dimensionality, and in the full three-
dimensional (3D) case the asymptotic values of the interaction
energies differ by about three orders of magnitude, in contrast
to a single order of magnitude for the 1D case.

A second prominent feature in comparing the attractive
and repulsive cases in Fig. 3 is that the scaling exponent is
compatible with α = 2 within two standard deviations for
the attractive case and instead assumes values significantly
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FIG. 4. Total interaction energy at thermal equilibrium per unit
of coupling strength γ versus the coupling strength itself for baths
made of 102 particles each, and the same temperatures and interac-
tion range as in Fig. 3. The plots show evidence of the saturation
of the interaction energy in both extremes of strong attractive and
repulsive couplings in all dimensions.
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FIG. 5. Scaling exponent α versus the coupling strength γ for the
same temperatures and interaction range as in Fig. 4 in the 1D case.
A narrow region at small values of γ is visible in which anomalous
scaling occurs. Notice that the error bars in the region of small and
negative γ are large enough to make the values compatible with
α = 2 within three standard deviations at most, while the case of
anomalous scaling is statistically much stronger for positive values
of γ . Specifically, for our data, at γ = 1 we get α = 1.58 ± 0.06
which is about 1.3 standard deviations from the theoretically ex-
pected value 5/3 discussed in the analytical section. The analysis
has been repeated for the case of 2D and 3D systems at differ-
ent coupling strengths and all the other parameters kept constant
as in the 1D case, obtaining exponents of α = 1.85 ± 0.02 (γ =
1), α = 1.74 ± 0.05 (γ = 2), α = 1.82 ± 0.04 (γ = 20), for the 2D
case, and α = 2.03 ± 0.04 (γ = 1), α = 2.03 ± 0.04 (γ = 2), α =
2.26 ± 0.12 (γ = 20), for the 3D case. A comprehensive analysis
of anomalous scaling for the higher-dimensionality cases will be
the subject of future investigation, including the case of anisotropic
trapping.

lower in the repulsive case. This suggests the consideration
of a broader range of γ values (as in Fig. 4). The resulting
dependence of the scaling exponent on coupling strength γ

is shown in Fig. 5. At large absolute values of γ the scaling
exponent is compatible with 2. In this highly nonperturbative
regime, as noted above, the particles are strongly clustered in
the attractive case, and they all interact with each other. In
the repulsive case there is species separation so we expect
only intermittent interactions by particles at the boundary
between the two separated species. This constitutes a small
subset of each species, and as discussed above the interaction
energy should therefore scale with the square of the particle
number (for a balanced mixture) times a suppression factor
proportional to the thickness of the boundary region with
respect to the interaction range λ. In the weakly interacting
regime, the scaling exponent is in line with the expectations of
homogeneity and Kolmogorov-like mixing as discussed in the
next section. By contrast, at large γ , the strong interparticle
interaction is analogous to a high viscosity regime in fluids,
which precludes turbulence and the associated scaling. Once
again, the trend is confirmed in higher-dimensional cases, as
indicated by the data discussed in the caption of Fig. 5.

IV. ANALYTICAL CONSIDERATIONS

It turns out that much of the behavior seen can be recovered
using equilibrium statistical mechanics and thermodynam-
ics considerations. We begin by rewriting the Hamiltonian
Eq. (1) as the sum of the free and interaction Hamiltonians,
respectively, H = H0 + Hint . Having in mind weak-coupling,
perturbative expansions, we make explicit the interaction
strength γ in the interaction Hamiltonian, such that Hint =
γ I , where I is a dimensionless quantity. The corresponding
partition function and the expectation value of energy at
thermal equilibrium corresponding to inverse temperature β

are, respectively,

Z =
∫ NA∏

m=1

d�Qmd�Pm

NB∏
n=1

d�qnd�pn exp [−β(H0 + γ I )], (4)

〈E〉 = − 1

Z

∂Z

∂β
= 1

Z

∫ NA∏
m=1

d�Qmd�Pm

NB∏
n=1

d�qnd�pn

× (H0 + γ I ) exp[−β(H0 + γ I )]. (5)

We expand the expression for the energy in terms of the
coupling strength γ , to obtain

〈E〉 = D(NA + NB)

β
+ γ FD(ρA, ρB)NANB, (6)

where we have introduced a form factor FD(ρA, ρB), defined
as

FD(ρA, ρB) = (
1 + ρ2

A + ρ2
B

)− D
2

[
D + 1

− D

2

ρ−2
A

(
1 + ρ−2

A

) + ρ−2
B

(
1 + ρ−2

B

)
(
1 + ρ−2

A

)(
1 + ρ−2

B

) − 1

]
. (7)

Here ρA = ξA/λ, ρB = ξB/λ, where ξA =
√

2/βmAω2
A and

ξB =
√

2/βmBω2
B are the thermal lengths of the two species.

The analysis can be simplified by assuming that both species
have equal mass and, hence, identical frequencies in the
harmonic trap, which implies ξA = ξB = ξ corresponding to
the inverse equilibrium temperature β. The form factor can
also be re-expressed contrasting β with βλ defined as βλ =
2/(mω2λ2), which corresponds to ξ = λ.

Figure 6 shows the variation of the form factor with chang-
ing β normalized to βλ. We can now differentiate behavior
according to the importance of these thermal lengths with
respect to the interaction range, obtaining approximate ana-
lytical expressions for the different regimes visible in Fig. 6.
This is facilitated by considering the expression for FD when
ρA = ρB = ρ:

FD(ρ) = ρ−2(1 + 2ρ2)−
D
2 (D + 2 + ρ−2)

(1 + ρ−2)2 − 1
. (8)

In the limit of λ � ξ , or, equivalently, ρ → 0, FD → 1 and
the average total energy at equilibrium becomes

〈E〉 = D(NA + NB)

β
+ γ NANB. (9)

In this limit we recover the behavior of the Caldeira-
Leggett model. In particular, for the specific setting in which
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FIG. 6. Form factor FD versus the inverse temperature β normal-
ized to the interaction range inverse temperature βλ.

the model is usually applied, with one of the two species
playing the role of a large reservoir (for instance, if NA � NB),
the total energy becomes extensive, while being dependent
on N2 in the case of a balanced mixture (NA = NB = N ).
The latter result is consistent with the idea that long range
interactions are not extensive, as there will be N2 distinct
interparticle interaction energy terms.

We now consider the situation where the thermal lengths
are much larger than the interaction range, that is, λ � ξ (ρ �
1). In this regime the form factor FD depends on temperature,
as seen in Fig. 6, and may be approximated as FD 	 (1 +
D/2)(2ρ2)−D/2, with the corresponding expression for the
average total energy

〈E〉 	 D(NA + NB)

β
+ γ

(
1 + D

2

)(
β

2βλ

) D
2

NANB. (10)

In the 1D case and balanced mixtures (NA = NB = N), the
average total energy

〈E〉 	 2N

β
+ γ

3N2

2
√

2

λ

ξ
= 2N

β
+ γ

3N2

2
√

2

(
β

βλ

)1/2

. (11)

The two terms constituting the average total energy depend
linearly and quadratically on the number of particles, respec-
tively. We now impose a “generalized extensivity” property
such that 〈E〉 scales as Nα , where the exponent α should lie
between the genuine extensive case of α = 1 achieved in the
noninteracting case and α = 2 reached in the strong-coupling
limit of γ → ±∞. This homogeneity in the two contributions
to the total energy is achieved if the inverse temperature itself
depends on N with a power-law exponent, more precisely
if β ∝ N−τ . Then the two terms on the right-hand side will
depend on N1+τ and N2−τ/2, respectively. The request for
homogeneity is fulfilled if τ = 2/3. The average total inter-
action energy then will scale as 〈Eint〉 ∼ N5/3, i.e., α = 5/3.
The evaluation of the scaling exponent is readily extended to
D dimensions, based on the second term of the right-hand side
of Eq. (10) and, using the same reasoning as above, we find

the scaling exponent to depend on dimensionality as

α = D + 4

D + 2
. (12)

This means α = 5/3, 3/2, 7/5 in 1D, 2D, and 3D, respec-
tively. It is worth noting that the extensive case is obtained
in the limit of infinite dimensions and that quadratic scal-
ing corresponds to a zero-dimensional system. In order to
compare these expectations with numerical simulations, one
should add, on top of the request for a Maxwell-Boltzmann
distribution (which implies a sort of weak-coupling limit,
with small values of γ ) also the ergodic theorem in which
the ensemble averages evaluated above are matched by time-
averaged quantities. This is a requirement for thermal equili-
bration, as discussed in Ref. [8].

The scaling argument provided above may be considered
as a necessary, but not sufficient, condition for the stability
of the system. More insights on the stability with respect to
the sign and the magnitude of the interaction strength γ may
be arrived at by thermodynamic considerations. In a stable
thermodynamic system the entropy is a concave function of
energy [14], which is always satisfied if the heat capacity is
positive valued. In our case the heat capacity for short-range
interactions, where KB is the Boltzmann constant, is

C = d〈E〉
dT

= DKB

×
[

NA + NB − βγ

2

(
1 + D

2

)(
β

2βλ

)D/2

NANB

]
. (13)

A change in the sign of the curvature in the entropy is
indicative of a drastic change in the dynamical behavior, a sort
of phase transition. When the interaction is attractive (γ < 0)
the heat capacity is always positive. However, for a repulsive
interaction (γ > 0) there exists a critical inverse temperature
above which the system is unstable. This threshold is given by

βcrit = 2

[
βλγ

(
1 + D

2

)
NANB

NA + NB

] −2
D+2

βλ. (14)

The existence of a threshold can be simply understood by
inspecting the motion of two generic interacting particles in
the 1D case. Below the critical inverse temperature, both
particles are free to explore the entire trap while, at lower
temperatures, each particle is confined on one side of the
trap. This can be thought of in terms of a phase separation
which diminishes the interaction energy contribution and the
overall scaling with the number of particles, in analogy to
the discussion appeared in Sec. III of Ref. [6] in terms of
stability analysis. At the critical inverse temperature and for
an unbalanced mixture, the total interaction energy is given
by

〈Eint〉 ∼ γ 2/(D+2)(NANB)2/(D+2)(NA + NB)D/(D+2), (15)

which obviously becomes extensive in one of the two systems
when the other is composed of just one particle. For bal-
anced mixtures, the scaling confirms what was shown earlier,
namely 〈Eint〉 ∼ N

D+4
D+2 . We note that for our parameters (which

involve balanced mixtures), the critical values fall within the
inverse temperatures we consider for the two species. Further,
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we stress that the estimate is valid only in the thermodynamic
(large particle number) limit and that we expect deviations
given the small number of particles we consider.

In relation to an earlier comment on Fig. 4 about the ratio
of the interaction energy divided by γ in the limit γ → 0,
we need to extend the scaling relation (in N) to include the
effects of γ and λ. The equilibrium temperature reached can
be reasonably expected to depend on the strength γ and the
range λ of the interaction. In keeping with the earlier analysis,
we consider T ∝ Nαγ δλη and, using analogous dimensional
arguments, it can be shown that α = δ = 2/(D + 2) while
η = 2D/(D + 2). Thus, for fixed N and λ, the interaction
energy scales as γ 1−βD/2 = γ 2/(D+2) [consistent with Eq. (15)
derived from independent considerations] or γ 2/3 in one di-
mension. This clearly indicates that the interaction energy
goes to 0 as γ approaches 0 from either direction while the
ratio shown in Fig. 4 is ill defined as γ → 0.

V. CONCLUDING REMARKS

We have elaborated on scaling behavior, first reported in
Ref. [7], seen in the interaction energy, of a binary mixture
with short-range interactions, with respect to system size, at
the onset of thermalization. Contrasting extensive numerical
simulations with analytic constructs we find that the scaling
exponent that coincides with the one seen in turbulent mix-
ing occurs only for small positive values of the interaction
coupling strength. This is the regime where the interspecies
interaction can be considered as a small perturbation with
respect to the external harmonic potential experienced by both
species. The scaling behaviors in other parameter regimes are

more readily anticipated using simple analytic arguments. It
should be noted that scaling is also expected to break down
when using nonlinear trapping potentials, where thermaliza-
tion itself is also more involved, as discussed in Ref. [8].

Our results may have relevance in a variety of many-body
physics contexts, including ultracold atomic physics where
the turbulent cascade of energy has been recently studied
both theoretically [15] and experimentally [16], requiring
extension of our model to the quantum realm. Although plas-
mas contain both intraspecies and interspecies interactions,
the interplay among strong coupling, scaling behavior, and
turbulence discussed here may be of interest in the context
of extremely exothermic systems such as magnetically con-
fined fusion plasmas. Features of plasmas can be isolated
and simulated, in the spirit of the numerical studies for
evaluating nuclear reaction rates reported in Ref. [17]. In
particular, the relationship between Kolmogorov scaling and
effective dimensionality of confinement is crucial in magne-
tized fluids [18–21], and we plan to analyze scaling features
in the general case of anisotropic harmonic trapping. Our
model is also relevant to study efficient and fast heating,
for instance, transferring to the plasma physics context tech-
niques developed for fast cooling in ultracold atomic physics
[22–26]. Additionally, the Caldeira-Leggett model has been
shown to share similarities with the linearized Vlasov-Poisson
equation, including the presence of an analog of Landau
damping [27]. Our generalization of the Caldeira-Leggett
model to a nonperturbative setting should allow for the ex-
ploration of this analogy in a fully nonlinear regime, which
is presumably more appropriate for the description of plasma
dynamics.
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