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Analysis of human DNA through power-law statistics

M. O. Costa,1,* R. Silva,1,2,† D. H. A. L. Anselmo,2,‡ and J. R. P. Silva1,§

1Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró, 59610-210, Brazil
2Universidade Federal do Rio Grande do Norte, Departamento de Física, Natal-RN, 59072-970, Brazil

(Received 21 September 2018; published 11 February 2019)

We report an analysis of Homo sapiens DNA through the formalism of κ statistics, which encompasses
power-law correlations and provides an optimization principle that permits us to model distinct physical systems;
i.e., the power-law distribution of the length of DNA bases is calculated from a general model which follows
arguments similar to those proposed in Maxwell’s deduction of statistical distributions. The viability of the model
is tested using a data set from a catalog of proteins collected from the Ensembl Project. The results indicate that
the short-range correlations, always present in coding DNA sequences, are appropriately captured through the
Kaniadakis power-law distribution, adequately describing the cumulative length distribution of DNA bases, in
contrast with the case of the traditional exponential statistical model.
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I. INTRODUCTION

The DNA molecule in several eukaryotic organisms has
been widely studied from a statistical physics standpoint
[1–9]. In this connection, various analyses, including random-
walk simulations [10–12], wavelet transforms [13,14], and
1D Ising models [15], have successfully demonstrated that
these statistical frameworks had enabled us to face the grow-
ing DNA sequences data. All these efforts have led to the
conclusion that the DNA is associated with an aggregation
phenomenon, resulting in a fractal cluster with power-law cor-
relations in space or time. Furthermore, some statistical prop-
erties (e.g., long-range and short-range correlations, among
others) have also been widely discussed in the context of
many living organisms (see, e.g., [16] and references therein).
Specifically, some approach on the length distribution of both
coding and noncoding sequences of many living organisms,
including human DNA, has been investigated in connection
with the long-range and short-range correlations [17–21].

On the other hand, statistical frameworks based on the
so-called generalized entropies have been used in order to
investigate several complex systems [22,23]. From the DNA
molecule standpoint, Refs. [24,25] have used the Tsallis
statistics to describe both coding and noncoding human DNA
sections. The behavior of the electronic specific heat at low
temperature, by considering a quasiperiodic model of the
DNA molecules, as well as parts of the real genomic DNA
sequence have also been discussed through nonadditive statis-
tics [26,27]. Thus the Tsallis approach, which has used a
power-law distribution as an efficient tool in order to capture
the so-called long-range correlations (LRCs) present in DNA
molecules, has also been used as a useful framework in this
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subject (see, e.g., [28] and the references therein for this
connection).

Within these entropic generalizations, there are other
frameworks which have also been considered as a consistent
approach in order to face complex systems [29]. Indeed, by
considering connections between the Tsallis statistics and
the DNA sequence, we are going to propose a statistical
framework in order to address statistical issues associated with
the DNA which is based on the concept of another generalized
entropy as well as the power-law distribution. Like Tsallis
entropy, the so-called Kaniadakis entropy depends on a free
parameter (the κ parameter) and provides a power-law distri-
bution rather than the exponential one [30–32]. Recently, this
statistical framework has also been used to investigate some
complex systems [33], and an application of the Kaniadakis
framework has been proposed in connection with the DNA
molecule. This study addresses the introduction of the κ-
entropic effect on the geometry of the Y chromosome and
the role of the correlations in the DNA molecule in order to
encompass the concept of block entropy. The relationships be-
tween a set of κ-entropic parameters and the linear dimensions
of the Y chromosome were calculated [8]. Here, however, we
follow a route based on the introduction of the short-range
correlations (SRCs) among nucleotides of the human DNA
sequence through an approach which provides a distribution
of length of the nucleotides. By taking into account a statis-
tical model which follows a universal optimization principle,
we use similar statistical arguments addressed in the calcu-
lation of the power-law distribution of molecular velocities
[34]; these correlations among nucleotides should be captured
addressing the distributions of length measured in base pairs
(bp). In order to test the viability of the model, we use data of
proteins compiled by the Ensembl Project [36]. It is possible
to show clearly that the distributions of length follow a power-
law instead of an exponential distribution. Therefore the SRCs
should be characterized by a power-law distribution being
more regulable with all the human chromosomes.
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FIG. 1. Cumulative distribution of sizes for proteins. The fit of the distribution using the Kaniadakis formalism is the red dashed line,
and the Gaussian distribution is represented by a blue dotted line. Panel (a) corresponds to the chromosome 01, panel (b) corresponds to
chromosome 02, and so on.

This paper is organized as follows. In the next section,
we will propose the analytical model which captures the
statistical correlations among the length distributions of DNA,
measured in base pairs (bp). In Sec. III, by using a catalog of
proteins collected from the Ensembl Project, we numerically
test the viability of the model showing that the SRCs are
well described through the κ power-law distribution instead
of an exponential one. The main conclusions are presented in
Sec. IV.

II. κ DISTRIBUTIONS OF LENGTH OF DNA
BASES: THE MODEL

We assume that in a volume V , each “protein” has a
length belonging to the interval [�l , �l + d�l]; therefore in our
approach we consider the probability that li lies on the interval
[li, li + dli], i = x, y, z. We also assume that the distribution
can be decomposed onto its Cartesian components, and the
distribution for each component is independent of the other
ones. Thus, we can write the length distribution as

F (l )d3l = f (lx ) f (ly) f (lz )dlxdlydlz (1)

with�l = lx î + ly ĵ + lzk̂ and l =
√

l2
x + l2

y + l2
z .

Consequently, by using the generalized formalisms of
Kaniadakis, we can write

F (l )d3l = expκ{lnκ [ f (lx )] + lnκ [ f (ly)]

+ lnκ [ f (lz )]}dlxdlydlz. (2)

Here, κ is the nonadditive parameter, and the generalized
exponential and logarithm functions expκ and lnκ are given by

expκ (x) = [
√

1 + (κx)2 + κx]
1
κ ,

lnκ (x) = xκ − x−κ

2κ
, (3)

for the Kaniadakis formalism [30–32]. The standard
expression (1) is recovered in the limit κ → 0, and for this
limit, the generalized logarithm and exponential functions are
also reduced to their standard forms.

In order to determine the distribution functions F and f ,
one must first apply the generalized logarithm on Eq. (2) and
derive it with respect to li:

∂ lnκ [F (l )]

∂li
= ∂ lnκ [ f (li)]

∂li
; (4)
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FIG. 2. Same as Fig. 1, but now for chromosomes 07 to 12.

as a consequence we obtain the relation

∂ lnκ [F (l )]

∂F (l )

dF (l )

dl

1

l
= 1

li

∂ lnκ [ f (li )]

∂li
. (5)

We notice that the left side of Eq. (5) is a constant, indepen-
dent of whichever index is used. So we can write

�κ (l ) = 1

l

∂ lnκ [F (l )]

∂F (l )

dF (l )

dl
. (6)

In this manner, we can match both Eqs. (6) and (5),

�κ (l ) = 1

li

∂ lnκ [ f (li)]

∂li
. (7)

Equation (7) can be satisfied if all its members are equal to
the same constant, and this equality does not depend on any
components of the vector�l .

Now we use the Kaniadakis formalism to obtain the dis-
tributions F and f . We can make �κ (l ) = − 2

σ 2
κ

, where the
minus sign provides the correct normalization, and the factor
2
σ 2

κ
is also introduced for mathematical convenience. Also, the

parameter σκ is the width of the distribution in the formalism

of Kaniadakis:

1

li

d lnκ [ f (li)]

dli
= − 2

σ 2
κ

, f (li ) = expκ

(
− l2

i

σ 2
κ

)
. (8)

Hence, it is straightforward to show that the distribution
F (l ) is given by

F (l ) = expκ

(
− l2

σ 2
κ

)
. (9)

The probability is found in the same manner as before, on the
interval [l, l + dl]:

F (l ) =
∫

f (l )d3l, (10)

where d3l = l2 sin(θ )dθdϕdl . We can write Eq. (10), for a
given l , as

Fκ (l ) =
∫∫ ⎧⎨

⎩
√

1 +
[
κ

(
l2

σ 2
κ

)]2

−κ
l2

σ 2
κ

⎫⎬
⎭

1
κ

l2 sin(θ )dθdϕ.

(11)
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FIG. 3. Left panels: Empirical cumulative distribution functions for chromosome data sample are represented by a dashed black line and
their respective best-fit curves are the continuous blue line. The best-fit parameters κ and σ are indicated. Right panels: The 68%, 95%,
and 99% confidence ellipses in addition the 1000 κ-σ values computed in bootstrap replications. The axes κ and σ were scaled from 0 to 1,
and the red line corresponds to κ = 0 on that scale. Panels (a), (b), (c), . . ., (l) correspond to chromosomes 01, 02, . . ., 12, respectively.

The result of the integration gives us

Fκ (l ) = 4π l2 expκ

(
− l2

σ 2
κ

)
. (12)

Now, we assume that the distribution (12) belongs to the
same universality class of some distributions investigated
previously in the same nonadditive context [34,35]. This
assumption is based on the universal optimization which
arises among these different complex systems, and it will be
confirmed through several statistical analyses performed in
the next section. So the length distribution of molecules in
the Kaniadakis formalism is then given by

φκ (l ) = l expκ

(
− l2

σ 2
κ

)
. (13)

In the next section, we are going to test the statistical
viability of the distribution of the length of proteins using the
catalog of proteins collected from the Ensembl Project [36].

III. NUMERICAL RESULTS AND ANALYSIS

We made our numerical investigation by using a catalog
of proteins collected from the Ensembl Project [36]. In our
analysis, we considered the coding bases (exons). On these bi-
ological databases, the size of a sequence of proteins is given
in terms of the number of base pairs (bp). However, there are
statistical fluctuations in the distribution of sizes of proteins;
thus we decided to analyze the cumulative distributions, so
the suppression of fluctuations was made possible, and we
compared it with the distribution functions of probabilities in
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FIG. 4. The same as Fig. 3, except that panels (a), (b), (c), . . ., (j) correspond to chromosomes 13, 14, . . ., 22, respectively. Panels (k) and
(l) correspond to chromosomes X and Y, respectively.

the κ Maxwellian, given by

φκ (x) = Aκ

∫ x

0
x

⎧⎪⎨
⎪⎩

√√√√1 +
[
κ

(
x

σκ

)2
]2

− κ

(
x

σκ

)2

⎫⎪⎬
⎪⎭

1
κ

dx.

(14)

As seen before, Aκ are normalization factors, and the deviation
(widths) of the distributions are given by σκ . By solving
Eq. (14) analytically the resulting normalized κ distribution
is given by

φκ (x) = 1 −
[

expκ

(
− x2

σ 2
κ

)(√
1 + κ2

x4

σ 4
κ

+ κ2 x2

σ 2
κ

)]
.

(15)

In Figs. 1 and 2, we show the cumulative distributions for
human chromosomes 01 to 12. The qualitative and quantita-
tive behaviors of the remaining chromosomes are quite analo-
gous, and we have left the detailed analysis to be depicted in
Figs. 3 and 4. The distribution function (13) was used to fit the
protein catalog from the database, in order to obtain the best
values for φκ (l ) and, consequently, the best-fitting values for
κ and σκ for the cumulative κ distribution. In Figs. 1 and 2, the
κ-Maxwellian distributions are displayed in red dashed lines.
For comparison, we decided to plot the Gaussian distribution
(in dotted blue), which was obtained by taking κ → 0, in
expression (13). Clearly, the κ-Maxwellian distribution fits
very well the whole range of base lengths (the statistical vari-
ations were also calculated). In contrast, the usual Gaussian
distribution has a poor fitting behavior, mainly in the region
where the curvature of the cumulative distribution changes.
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TABLE I. Main characteristics and best-fit parameters of the data set of chromosomes analyzed. The columns are identification of the
chromosome (1); sample size (2); first (3), second (4), and third (5) quartiles of the data set; best-fit parameters and their respective 95%
confidence intervals (6 and 7); residual standard error and the achieved convergence tolerance of the fit (8 and 9).

Crm(1) N (2)
bp Q1(3) Q2(4) Q3(5) κ (6) σ (7) RMSE(8) δ(9)

1 35504 96 144 246 0.636+0.002
−0.002 112.20+0.872

−0.782 0.014 0.002

2 28236 90 138 239 0.626+0.002
−0.002 109.80+0.716

−0.644 0.013 0.006

3 22819 92 141 244 0.636+0.002
−0.002 109.30+0.851

−0.801 0.014 0.008

4 14750 94 142 258 0.656+0.002
−0.002 107.20+0.911

−1.021 0.017 0.006

5 16632 94 142 257 0.656+0.002
−0.002 107.40+0.965

−0.867 0.017 0.002

6 17663 95 144 258 0.643+0.002
−0.002 111.50+0.902

−0.910 0.015 0.004

7 18265 92 140 244 0.633+0.002
−0.002 110.40+0.920

−0.857 0.015 0.009

8 13785 92 141 256 0.649+0.002
−0.002 107.40+0.866

−0.893 0.015 0.007

9 13584 94 141 239 0.640+0.003
−0.003 109.40+1.208

−1.032 0.019 0.002

10 14041 93 139 233 0.646+0.003
−0.002 105.50+1.032

−1.233 0.002 0.002

11 22584 94 144 268 0.638+0.001
−0.001 114.00+0.613

−0.588 0.011 0.009

12 21774 92 140 243 0.634+0.002
−0.002 109.80+0.716

−0.726 0.013 0.006

13 6275 92 137 240 0.646+0.004
−0.004 106.70+1.706

−1.501 0.025 0.003

14 12615 89 144 274 0.640+0.001
−0.001 111.80+0.583

−0.501 0.009 0.008

15 14484 91 138 234 0.631+0.002
−0.002 109.00+1.038

−0.992 0.018 0.002

16 18182 92 142 247 0.631+0.002
−0.002 112.20+0.791

−0.727 0.013 0.007

17 23728 91 141 249 0.631+0.001
−0.001 111.60+0.645

−0.679 0.012 0.005

18 6423 94 144 259 0.643+0.002
−0.003 111.50+1.191

−1.084 0.018 0.003

19 24261 87 139 263 0.641+0.001
−0.001 107.80+0.468

−0.548 0.009 0.005

20 8537 92 140 243 0.635+0.003
−0.003 109.80+1.283

−1.125 0.020 0.004

21 4019 92 144 242 0.618+0.004
−0.004 115.34+1.271

−1.399 0.020 0.007

22 8425 92 142 252 0.626+0.002
−0.003 113.60+1.035

−0.970 0.016 0.002

X 12558 92 138 249 0.659+0.002
−0.003 103.70+1.164

−1.106 0.019 0.009

Y 1779 89 120 190 0.525+0.012
−0.013 117.80+2.706

−2.502 0.035 0.000

This behavior was observed in all chromosomes. Indeed, in
Fig. 2 the curves related to the chromosomes 07 to 12 can be
observed. Here the κ distribution is also a remarkably good
fitting function for the experimental data, in opposition to the
Gaussian, blue dotted, curves.

Now we proceed to make a statistically detailed analysis.
The best-fit parameters κ and σ were estimated by using the
method described in Costa et al. [9] (see also Silva et al.
[37]) which comprises three steps. The first one consists
of computing the empirical cumulative distribution function
(ECDF), defined as

Fe(l ) = 1

n
, l ∈ {l1, l2, . . . , ln}, (16)

where a cumulative probability of an l value that repeats
k times is given by k/n [38,39]. In the second step the
theoretical cumulative distribution function, φκ (x) [Eq. (15)],
is fitted to the ECDF using a Gauss-Newton algorithm to
minimize the sum of squares of the residuals. The last step
is to estimate the 95% confidence intervals for the best-fit
parameters κ and σ by using bootstrap resampling. Table I
summarizes the main characteristics of the samples for each
chromosome and the respective estimated best-fit parameters.
In the table, the first column presents the chromosome data

set, Crm. The second column gives the length of the sample,
given in number of base pairs, Nbp. The columns indicate by
Q1, Q2, and Q3 the first, second, and third quartiles of the data
set. The best-fit parameters, κ and σ , are given in the sixth and
seventh columns, respectively. The eighth and ninth columns
display the residual standard error, RMSE, and the achieved
convergence tolerance, δ, in each fit.

The left panels of Figs. 3 and 4 show the best-fit curves (in
continuous blue) and corresponding ECDFs for the analyzed
chromosomes data samples. The panels to the left of Figs. 3
and 4 present the 68%, 95%, and 99% confidence ellipses on
the κ-σ computed for 1000 bootstrap replications of κ and σ

parameters for each chromosome. It should be noted that the
axes were scaled to range between 0 (minimum value of κ or
σ ) and 1 (maximum value of κ or σ ). In that scale, the line in
red corresponds to κ = 0.

IV. CONCLUSIONS

Although several statistical approaches have been used in
order to study the DNA molecules, mainly, taking into ac-
counts different statistical tools to investigate the correlations
[10–15], we have proposed a model based on the power-law
statistics which captures the SRCs. The model was based
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primarily on an extension of Maxwell’s deduction of the
molecular distribution. Indeed, the model captured the sta-
tistical correlations, where SRCs were associated with power
laws. Moreover, it was also shown that the exponential func-
tions were ruled out in order to capture the SRCs. The core of
our approach is related to the distributions of length measured
in base pairs (bp), being mathematically characterized by a
power law rather than exponential behavior. The viability of
the model was tested considering the data set of proteins
compiled by the Ensembl Project [36].

Specifically, the empirical cumulative distribution function
(ECDF), based on the method developed in Ref. [37], was
adapted to calculate the distribution length of proteins. By us-
ing the Homo sapiens DNA, we showed that the phenomena of
SRCs are statistically consistent with the power-law distribu-
tion of the model (κ-Maxwellian distributions), rather than the
exponential length distribution which fails for all the curves,
mainly when the inclination changes. The SRCs present on
Homo sapiens DNA can be statistically tested through the
power-law distribution with the value of κ ∼ 0.6 for almost
all chromosomes, except the Y with κ ∼ 0.5. The exponential
distribution, on the other hand, should be statistically ruled out
in order to capture the SRCs (it is visually shown in Figs. 1 and
2 and considering κ = 0 in Fig. 3). In particular, the values

of the entropic parameter κ found here are within the same
range found in Ref. [8]. It is worth mentioning that a similar
model, however being based on the Tsallis framework, has
been proposed in order to investigate the SRCs presenting in
human DNA [9]. From the statistical standpoint, at least in
the context of this analysis (the cumulative length distribution
of human DNA), it is not possible to know which model is
better. We, however, believe that a Bayesian analysis (which
can compare models) could be done, in order to answer this
question.

Finally, it is worth emphasizing that in order to obtain a
general approach based on the model proposed in this paper,
we need to include the noncoding DNA, which exhibits long-
range correlations (see, for instance, [21]). This issue will be
investigated in future work.
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