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The concept of hyperuniformity has been a useful tool in the study of density fluctuations at large length scales
in systems ranging across the natural and mathematical sciences. One can rank a large class of hyperuniform
systems by their ability to suppress long-range density fluctuations through the use of a hyperuniformity order
metric �̄. We apply this order metric to the Barlow packings, which are the infinitely degenerate densest packings
of identical rigid spheres that are distinguished by their stacking geometries and include the commonly known fcc
lattice and hcp crystal. The “stealthy stacking” theorem implies that these packings are all stealthy hyperuniform,
a strong type of hyperuniformity, which involves the suppression of scattering up to a wave vector K . We describe
the geometry of three classes of Barlow packings, two disordered classes and small-period packings. In addition,
we compute a lower bound on K for all Barlow packings. We compute �̄ for the aforementioned three classes
of Barlow packings and find that, to a very good approximation, it is linear in the fraction of fcc-like clusters,
taking values between those of least-ordered hcp and most-ordered fcc. This implies that the value of �̄ of all
Barlow packings is primarily controlled by the local cluster geometry. These results highlight the special nature
of anisotropic stacking disorder, which provides impetus for future research on the development of anisotropic
order metrics and hyperuniformity properties.
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I. INTRODUCTION

Continuing research into methods of characterizing density
fluctuations has yielded many fundamental insights in science
and mathematics [1–5]. Hyperuniformity has proven to be
a useful framework for the investigation of the large-scale
density fluctuations and structure of point patterns that arise
in the physical, mathematical, and biological sciences [6,7].
It generalizes a less visible property of long-range crystalline
or quasicrystalline order, which is the suppression of density
fluctuations at large length scales [6]. For a point pattern in
d-dimensional Euclidean space Rd , these fluctuations can be
understood by computing the variance σ 2

N (R) of the number
of points inside a spherical window of radius R as the window
center is averaged over space [6]. While the variance of a
Poisson or liquid-like point pattern grows as the window
volume (i.e., Rd ), that of a crystal grows as the surface
area of the window (i.e., Rd−1) [6]. Torquato and Stillinger
[6] generalized the difference in these cases by defining a
hyperuniform point pattern as one in which

lim
R→∞

σ 2
N (R)

v1(R)
= 0, (1)

where v1(R) is the volume of a window of radius R. The
hyperuniformity condition for a spherical window can be
restated in Fourier space as the requirement that the structure
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factor S(k), which is the elastic single scattering intensity of
the point pattern, obey [6]

lim
|k|→0

S(k) = 0. (2)

In addition to point patterns, hyperuniformity has been gener-
alized to describe other important physical systems, including
two-phase materials [8,9] and scalar and vector fields [9,10].

Importantly, hyperuniformity does not necessarily pose
restrictions on the short-range order of the systems. Indeed,
some of the most interesting hyperuniform systems have rela-
tively low short-range order, such as the perfect glass, which
is a hyperuniform, geometrically disordered, unique ground
state of certain intrinsic two-, three-, and four-body interac-
tions [11]. Thus, hyperuniformity can often be described as a
type of hidden order [12]. Hyperuniformity arises in a variety
of systems across multiple disciplines, including in the early
density fluctuations of the universe [4,5,13,14], classical dis-
ordered ground states [12,15–24], maximally random jammed
packings [25–30], models of plasmas [7,31–33], patterning
of avian photoreceptor cells [34], quasicrystals [8,35,36], and
the spatial distribution of prime numbers [37,38]. In addition,
investigators have used the hyperuniformity concept as a tool
to help design novel material properties such as isotropic
photonic band gaps [39–41], transparent dense disordered
materials [42], desirable transport properties [43,44], and mul-
tifunctional materials [45,46]. See Ref. [7] for a recent review
of the basic theory and applications of hyperuniformity.

One interesting example of a class of hyperuniform sys-
tems are the close-packed rigid sphere packings in R3. These
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FIG. 1. A small fcc (a) and hcp (b) stacking. Notice how the red
(dark gray) spheres in the fcc stacking rises in a straight line, while
the hcp stacking has bends.

packings, known as the Barlow packings [47–50] (or stacking
variants in the physics literature), have the maximal packing
fraction φ = π/

√
18 by the Kepler conjecture, which was

proved by Hales [51]. The most commonly known examples
of Barlow packings are the fcc lattice and the hcp crystal,
shown in Fig. 1. All of the Barlow packings are strictly
jammed [52,53]. A strictly jammed packing prohibits the
simultaneous displacement of any subset of the spheres such
that they lose contact with each other and the remaining
spheres, as well as all volume-nonincreasing, uniform strains
of the boundary of the packing [52,53]. In addition to being
the maximally dense packings, when one removes spheres
from them in specific ways, one can construct tunneled stack-
ing variants that remain strictly jammed with a density of
φ = π

√
2/9 = 0.49365 . . . [54]. These tunneled packings are

believed to be the least dense strictly jammed packings [54].
The Barlow packings have a variety of interesting physical

properties. As one compresses an equilibrium hard-sphere
system along the stable crystal branch, it must end in one of
the strictly jammed Barlow packings [55]. It is known from
computer simulations that as the jammed state is approached,
fcc wins over hcp [56] by a relative free energy difference of

order 10−3 [56,57]. One can also consider a different type of
ground state problem, where one wants to know the minimizer
of a soft potential. In the space of lattices, fcc is a local
minimizer of the inverse power-law potential [7,58,59]

�(r) = 1

rs
, s > 3. (3)

Remarkably, this last statement is closely related to hyper-
uniformity properties [6,7]. To understand this point, consider
the following large-R asymptotic expansion of the variance
for a certain class of hyperuniform point patterns introduced
by Torquato and Stillinger [6]:

σ 2
N (R) = �(R)

(
R

D

)d−1

+ o

(
R

D

)d−1

, (4)

where �(R) is generally a fluctuating function that must
increase more slowly than linear in R, on average, and D is
a characteristic microscopic length scale. For a large class of
systems, known as Class I hyperuniform systems, �(R) is a
bounded function that fluctuates about some average constant
value [7,8]. Class I hyperuniform systems include all perfect
crystals [6], many quasicrystals [8,35,36], and exotic disor-
dered point patterns [6,11,12,14–17,31–33]. One can rank
such systems according to their ability to suppress large-scale
density fluctuations using the hyperuniformity order metric [6]

�̄ = lim
L→∞

1

L

∫ L

0
�(R) dR. (5)

Since �̄ is the coefficient of fluctuation growth, we say
that a system is more ordered with respect to large-scale
density fluctuations if it has a lower �̄. To avoid problems
inherent in comparing systems of different densities, we report
all values of �̄ for systems setting D = 1 and rescaling to
have number density ρ = √

2, which is a natural choice for
describing the systems that are considered later in the article.
The problem of minimizing �̄ can be viewed as a ground-state
optimization problem [6], and the global minimum for �̄ in
three dimensions is currently believed to be achieved by the
bcc lattice, with �̄ = 1.01881 [6,7]. However, the dual lattice
of the minimizer of �̄ restricted to lattices is the minimizer
of an inverse power-law potential in reciprocal space [6,7].
Thus, the fact that fcc is the local minimizer of the potential
given by Eq. (3) is related to the fact that bcc is apparently the
minimizer of �̄ [6,7]. It is known that �̄ favors fcc over hcp,
with Refs. [6,7] giving �̄fcc = 1.01944 and �̄hcp = 1.01957
[6,7]. The difference may seem small, but consider that this
difference is only an order of magnitude smaller than the
difference between the free energies separating fcc from hcp
as one approaches jamming in equilibrium [56,57].

In this article, we describe how �̄ ranks several larger
classes of Barlow packings. In order to do this, we need to
first describe how to differentiate the Barlow packings. The
origin of the differences in the Barlow packings lies in their
stacking geometries, which can be encoded as stacking codes
[49,50,60–66]. These will be described in more detail later in
the article, but it is useful to note here how the red (dark gray)
spheres in the fcc packing in Fig. 1 rise in a straight line, while
the red (dark gray) spheres in the hcp packing rise in a zig-zag
stacking. While fcc and hcp are the simplest stacking codes,
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TABLE I. Examples of metals [63,64,66,67], metal compounds
[64], and colloidal [68,69] systems that exhibit complex or disor-
dered stacking codes. For the case of the metal compounds, the
anions are arranged in a Barlow packing, with the cations occupying
the holes of this packing [64].

Stacking code Systems Refs.

ABAC La, Pr, Nd, Am, Ce, HgBr2, [63,64]
HgI2, Ti2S3, Cd(OH)Cl

ABABCBCAC Sm, Mo2S3, Li (T = 4.2 K) [63,64]
ABABCBABAC Ti4S5 [64]
ABCBCABABCAC Fe3S4, Ti5S8 [64]
“Disordered variants” Co, silica colloids [66–69]

nature is known to use more complicated periodic Barlow
structures, such as in the crystal structures of various metals
and metal compounds [63,64]. A few examples have been
listed in Table I. These stacking codes not only allow us to
consider different periodic close-packed structures, but also
allow us to introduce disorder in a very controlled manner by
allowing the layers to be stacked probabilistically. There are
also metallic and colloidal examples of stacking disordered
Barlow packings [66–69], some of which are listed in Table I.
While the space of Barlow packings is too large to be de-
scribed exhaustively, we consider three specific classes with
relatively simple parametrizations of the stacking geometry.

In order to compute �̄, we must know that Barlow packings
are Class I. This is guaranteed by a stronger condition [12],
known as stealthy hyperuniformity, which requires [12]

S(k) = 0, 0 � |k| < K, (6)

for some finite K . This condition holds trivially for any peri-
odic structure with a finite basis, since the first feature in the
spectrum is the first Bragg peak. When considering disordered
systems, it is a general principle that any disordered system
can be approximated by a large enough periodic system, even
as the basis of the disordered system becomes infinitely large.
However, the usual case for a nonstealthy disordered system is
that when one tries to get progressively better approximations
with larger periodic systems, the value of K drops towards
zero. Surprisingly, stealthy hyperuniformity holds rigorously
for all Barlow packings, including the infinite stacking disor-
dered ones with probabilistic codes. Furthermore, all Barlow
packings share a common lower bound for K . This is a
nontrivial statement that will be elaborated in Sec. IV.

Confident in the validity of extending �̄ computations to
our three classes of Barlow packings, we can determine the
ordering of Barlow packings with respect to the suppression
of long-range fluctuations. While one might expect pack-
ings with a degree of disorder to possess larger long-range
fluctuations, we show, counterintuitively, that these Barlow
packings lie “between” the fcc and hcp values, depending
on the distribution of nearest-neighbor geometries, or cluster
geometries. For the case of the Barlow packings, the rigid
nature of the stacking geometry permits essentially two type
of clusters, which are fcc-like and hcp-like [49,50,62,65,66].
More specifically, we show that �̄ depends nearly linearly
on the fraction of fcc-like clusters in the packing. Thus,

�̄ is relatively insensitive to large-distance developments in
stacking complexity, and instead appears to rely more heavily
on the geometry of local clusters. One can contrast this with
the general development of hyperuniformity itself, which is an
intrinsically long-range phenomenon, and cannot necessarily
be predicted using local considerations.

This article is organized as follows. Section II covers
mathematical preliminaries such as stacking codes and the
theory of hyperuniformity needed to understand the results of
the article. Section III introduces the three classes of Barlow
packings that we will use in our explicit computations: a
stacking disordered system first described in Ref. [66], a class
of ordered-disordered stacking mixtures, and the periodic
codes with nine or fewer letters [60]. Section IV applies the
stealthy stacking theorem [20] to derive a lower bound on K
for all Barlow packings, and comments on the realizability
of these types of bounds. Section V reports computations of
�̄ for the three classes of Barlow packings considered in this
paper. In Sec. VI we summarize our findings and discuss their
implications.

II. MATHEMATICAL PRELIMINARIES

In this section, we introduce a variety of mathematical
concepts needed to understand the calculations in the latter
part of the article.

A. Packings, lattices, and crystals

A sphere packing is a collection of nonoverlapping spheres
in Rd . In this article, we consider only identical spheres of
diameter D in R3 and set D = 1 without loss of generality.
One important characteristic of a sphere packing is its packing
fraction φ, which is the fraction of space covered by the
spheres. The maximal packing fraction φmax in R3 is π/

√
18,

as proven by Hales [51]. Sphere-packing models are useful
for describing properties of dense many-body systems [70]
and probing certain mathematical problems [62] in which
exclusion-volume effects play a dominant role. Examples
include coding problems in signals theory [62], the study
of equilibrium phase transitions [55–57], and the study of
jamming [25–30,52,53,55–57].

A lattice is a special periodic point configuration in d-
dimensional Euclidean space Rd . In a d-dimensional lattice,
the positions of the points are given by the integer sum of d
linearly independent vectors

r =
d∑

i=1

nivi, ni ∈ Z. (7)

Common examples of lattices include the simple cubic lattice,
the fcc lattice, and the body-centered cubic (bcc) lattice.
Lattices play an essential role in number theory, where they
are related to the study of quadratic forms [62]. For a review
of the mathematical study of lattices and sphere packings, see
Ref. [62]. Note that in the general physics literature, what we
call a lattice is often known as a Bravais lattice.

There is also the concept of a more general periodic point
pattern, known as a crystal. A crystal consists of the funda-
mental cell of a lattice �, into which a finite number N � 1
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FIG. 2. We can construct a Barlow packing by repeatedly stack-
ing close packed layers. After putting down a layer of type A, there
are two choices, B and C, for the next layer. The illustration is
derived from public domain content hosted at Ref. [71]. The subtle
differences in gray are a projection from a colored version into
grayscale.

of points are placed. This fixed configuration is then repeated
over space by translating the fundamental cell by the lattice
vectors of �. One way of representing a crystal formulaically
is to add to the integer sum (7) an extra vector bn:

rn =
d∑

i=1

nivi + bn, (8)

which represents the locations of the “basis” particles. A
crystal is then the union of the sets {rn} for all bn, which are
the spheres in the fundamental cell.

B. Stacking codes

The densest sphere packings in three dimensions are the
infinitely degenerate Barlow packings. More precisely, the
Barlow packings are the saturated (i.e., space does not exist to
add any sphere without introducing overlap), strictly jammed
densest packings [53]. However, even within such constraints,
there is still freedom in stacking. This freedom is shown in
Fig. 2. One begins by laying down a single two-dimensional
close-packed layer, which we denote as type A. Then one can
lay a second two-dimensional close-packed layer in one of
two sets of “pockets,” which we denote as type B or C. The
displacement of a type B layer from the origin in the plane
is RB = (1/2, 1/2

√
3) and is labeled in Fig. 2 (RC = −RB).

One can then continue this code to get a Barlow packing,
subject to the constraint that there are no consecutive repeated
letters. For example, the fcc lattice is given by the repeating
code ABC, while the hcp crystal is given by the repeating
code AB. These sequences can be infinite, leading to the
conclusion that there are an uncountably infinite number of
Barlow packings [50,62]. For the remainder of the article,
we will also view any finite sequence as periodic, imposing
an additional requirement that the last letter of the sequence
is different from the first. We can also allow for the use of
probabilistic codes, which is useful for defining ensemble
averages over the Barlow packings.

Although we can enumerate all of the Barlow packings in
this way, the codes generated are not unique, in the sense
that multiple codes can refer to the same Barlow packing
[60,61,65]. We consider two packings to be the same if
they are related by a simple translation or rotation. Previous
investigators have developed an understanding of the codes
that describe distinct Barlow packings [60,61], but for the
purpose of this article it is sufficient to note that translation
along the vector RB allows us to begin all of our sequences
with A.

The space of all Barlow packings is large, and we will not
be able to exhaustively discuss it in this article. As such, we
will focus on three specific subclasses of Barlow packings:
an infinite packing composed of uncorrelated fcc and hcp
clusters, a class of order-disorder mixture packings, and the
periodic Barlow packings of code length up to nine. The
geometry of these specific packings is discussed in Sec. III.

C. Theta series and lattice sums

A fundamental geometric quantity of interest in this article
is the ensemble-averaged pair correlation function in the
infinite system limit:

g2(r) = 1

ρ

∑
i �=0

Piδ(r − ri ), (9)

where Pi is the probability that we find a particle at ri given
that the origin is taken as random particle in the packing,
ρ is the number density, and the sum runs over all possible
sites except for the origin. While we do consider unique
periodic point configurations in this article, one can still use an
ensemble average formulation of the pair statistics by defining
the ensemble average to be taken over the particles in the
fundamental cell with equal weight.

As a practical matter, descriptors derived from this quantity
can be computed by lattice sums. A lattice sum is simply
the process of evaluating a sum by explicitly enumerating
over points in the lattice and adding the contributions to the
desired function. Most often, we do this numerically. There
is, however, a closely related computational tool from the
mathematical theory of lattices, known as a theta series.
The theta series of a lattice � can be defined as [62]

θ� (q) =
∞∑
j=0

Zjq
r2

j , (10)

where Zj is the coordination number of shell j around the
particle at the origin. We also need the analogous concept
of a theta series around an arbitrary point with respect to the
lattice [62], which just involves computing Zj and r j from the
perspective of an arbitrary point.

One can easily generalize the theta series of a lattice in the
following manner. If we take an angular average of g2, we can
write it in the form [7]

g2(r) = 1

4πρ

∞∑
j=1

Zj

r2
j

δ(r − r j ), (11)

where j runs over all possible coordination shells, beginning
at the nearest neighbor, and Zj is the expected coordination
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number in that shell [7]. We then can associate the Zj of
Eq. (11) with that of Eq. (10) to get the average theta series
of a packing (setting Z0 = 1) [62]. We can also define the
concept of a theta series for a periodic packing around an
arbitrary point in the fundamental cell, which just involves
computing Zj from the perspective of an arbitrary point with-
out averaging.

Many interesting identities have been derived for series of
this type [62,72]. As a concrete example of one way in which
these functions can be manipulated, consider the problem of
obtaining the theta series of a lattice �′ dilated from a lattice
� by a factor λ, given the original theta series θ� . The new
theta series is then

θ�′ (q) = θ�

(
qλ2)

. (12)

We will use similar observations to derive an expression
for the theta series of certain classes of Barlow packings in
Sec. III.

D. Hyperuniformity order metric

As stated in Sec. I, it is possible to define a hyperuni-
formity order metric �̄ for Class I hyperuniform systems in
terms of an asymptotic expansion of the number variance
(4). This hyperuniformity order metric rank orders systems
by their ability to suppress long-range fluctuations and can
be thought of as the average rate of long-range fluctuation
growth for these systems. In this section, we present the
derivation of an explicit formula for the constant �̄ in terms of
the ensemble-averaged pair correlation function g2(r), which
can be computed through methods presented in the previous
section.

We begin with the definition of the number variance in
terms of the number of points N (R) contained inside a hy-
perspherical window of radius R:

σ 2
N (R) = 〈N2(R)〉 − 〈N (R)〉2. (13)

For a statistically homogeneous system [73], one can show
that these ensemble averages can be written as [6,7]

σ 2
N (R) = ρv1(R)

[
1 + ρ

∫
h(r)α2(r; R) dr

]
, (14)

where we have introduced the total correlation function
h(r) = g2(r) − 1 and the scaled intersection volume α2(r; R),
which is the intersection volume of two spheres of radius R
separated by a displacement vector r normalized by v1(R). To
obtain an asymptotic expansion of this expression, Torquato
and Stillinger [74] showed that the scaled intersection volume
for r � 2R can be written in a series:

α2(r; R) = 1 − c(d )x + c(d )
∞∑

n=2

(−1)n

× (d − 1)(d − 3) · · · (d − 2n + 3)

(2n − 1)[2 · 4 · 6 · · · (2n − 2)]
x2n−1, (15)

where x = r/2R and

c(d ) = 2�(1 + d/2)

π1/2�[(d + 1)/2]
. (16)

This series is truncated for odd dimensions, but is an infinite
series for even dimensions [7]. Insertion of Eq. (15) into
Eq. (14) gives the expansion in Eq. (4), with [7]

�(R) = − 2dφ2c(d )

2Dv1(D/2)

∫
r�2R

h(r)|r| dr. (17)

Finally, assuming Class I hyperuniformity and the existence
of the limit of �(R) as R → ∞, one can take the average in
Eq. (5) simply by taking a limit to get [7]

�̄ = − 2dφ2c(d )

2Dv1(D/2)

∫
h(r)|r| dr. (18)

However, if we insert the expansion (11) into this expression,
we do not obtain individually convergent terms. One can
produce a convergent expression by introducing a Gaussian
factor and taking the limit as the Gaussian approaches a
uniform function, and arrive at the sum [6,7]

�̄ = lim
β→0+

2d−1φd

D�(1/2)

×
⎡
⎣ φπd/2

v1(D/2)β
d+1

2

− �(d/2)

�
(

d+1
2

) ∞∑
j=1

Zjr je
−βr2

j

⎤
⎦. (19)

This equation can be used to estimate �̄ by extrapolating
computations done with finite β to β = 0. One can also use
an expression obtained by substituting Eq. (17) into Eq. (5)
without the assumption that �(R) has a limit as R → ∞.
Reference [75] discusses one approach to understanding the
difference between these two methods. We will use Eq. (19)
exclusively in this article.

It is worth noting that one can instead do computations for
�̄ in Fourier space using the structure factor

S(k) = 1 + ρh̃(k), (20)

where h̃(k) is the Fourier transform of h(r). One can use
Parseval’s theorem to rewrite Eq. (14) [7]:

σ 2
N (R) = ρv1(R)

[
1

(2π )d

∫
S(k)α̃2(k; R) dk

]
, (21)

where α̃2(k; R) is the Fourier transform of the scaled intersec-
tion volume. Taking an asymptotic expansion of this function
and averaging, we obtain [7]

�̄ = ρ�(1 + d/2)v1(1)D2d

π1+d/2

∫
S(k)

(kD)d+1
dk. (22)

This formula can be interpreted as an energy evaluation
associated to a pair correlation function in a power-law po-
tential, provided that S(k) can itself be interpreted as a pair
correlation function for some point process [76–78]. While
this realizability condition does not hold generally, it is true
for certain configurations, including lattices and some crystals
[76–78]. Furthermore, this point process can be interpreted as
the dual configuration to the original point process whenever
the underlying number density has equal intensity peaks.

III. THREE CLASSES OF BARLOW PACKINGS

In this section we begin by introducing a local cluster
statistic, and then use this cluster statistic to define a class of
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FIG. 3. The four types of local clusters. Panel (a) is fcc, panel
(b) is reverse fcc, panel (c) is hcp, and panel (d) is reverse hcp. The
subtle differences in gray are a projection from a colored version into
grayscale.

disordered Barlow packings previously used in Refs. [65,66].
This class of packings essentially consists of uncorrelated fcc
and hcp layers. We also introduce a class of order-disorder
mixture packings consisting of random choices of stacking
between fixed A layers. We then discuss some of the properties
of small code length periodic Barlow packings. We will take
all packings to have particle diameter D = 1.

A. Local clusters

Figure 3 depicts the four cluster types that can arise in
an arbitrary Barlow packing. They are the ABC (fcc), CBA
(reverse fcc), ABA (hcp), and ACA (reverse hcp) clusters.
The ABC and CBA clusters are related by a mirror plane,
while the ABA and ACA clusters are related by an inversion.
Since we can swap all forward and reverse clusters in a
packing by a rotation, all physically relevant properties may
at most rotate under such a swap. All of the quantities we
will consider in this article have the even stronger property of
complete insensitivity to the difference between forward and
reverse clusters, so we will ignore the difference and denote
the fraction of fcc-type clusters as α. In this way, the fcc and
hcp packings can be seen as the two extremes of the Barlow
packings, with respect to local cluster statistics. However, this
fraction cannot completely parametrize the Barlow packings.
As an example, consider that the periodic codes ABABAC and
ABCBCACAB both have α = 1/3.

B. Uncorrelated FCC and HCP clusters

We can use the local cluster statistic α of the previous sec-
tion to define a simple class of infinite Barlow packings, which
are composed of uncorrelated fcc- and hcp-like clusters. This
construction first appeared in Ref. [66], where it was used to
help model the structure of cobalt.

0 2 4 6 8 10 12m
0

0.2

0.4

0.6

0.8

1

P A
(m

,α
)

α = 0.25
α = 0.5
α = 0.75

FIG. 4. Plot of the function PA(m, α) for α = 0.25, 0.5, and 0.75.
Notice how the correlations are smaller for α = 0.5, reflecting a more
disordered stacking.

The strategy is to take an ensemble approach to define
this packing, and so we seek to compute PA(m, α), which is
the probability that a layer m spaces away from our arbitrary
starting layer is type A given a fcc fraction of α. We can
always choose the starting layer as type A, so PA(0, α) = 1.
Then, the next layer will always be B or C, so PA(1, α) = 0.
Afterwards, the layer probabilities will follow the recursion
relation [65,66]

PA(m, α) = α[1 − PA(m − 1, α) − PA(m − 2, α)]

+ (1 − α)PA(m − 2, α),
(23)

since if the cluster is fcc-like, the layer will be type A if and
only if both layers before are not A, and if the cluster is hcp-
like, the layer will be type A if and only if the layer 2 spaces
before is A. Since each cluster is independent of the one before
it, we call this the uncorrelated cluster class of infinite Barlow
packings.

To solve the above recursion relation, one uses an ansatz
PA(m, α) = Axm + Bym + C [65,66,79] and the observation
that one can extend the solution to negative m on physical
grounds by requiring symmetry about m = 0 [65,66]. The
solution is [66,79]

PA(m, α) = 1

3
+

(
1 − α + √

4 − 8α + α2

3
√

4 − 8α + α2

)

×
[
−1

2

(
α +

√
4 − 8α + α2

)]|m|

+
(

−1 + α + √
4 − 8α + α2

3
√

4 − 8α + α2

)

×
[

1

2

( − α +
√

4 − 8α + α2
)]|m|

. (24)

Note that a limiting procedure needs to be used at some values
of α and m, but this is easy to overcome in practice, as it occurs
at relatively isolated points. This probability function can be
used to compute an average theta series or carry out a lattice
sum, which is sufficient to evaluate the descriptors used in this
article. For visual reference, this function has been plotted for
three values of α in Fig. 4.

This construction is completely symmetric under the ex-
change of layers B and C. In general, packings such as the
fcc packing rotate under exchange of B and C, but this poses
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no problems for the types of geometric descriptors we seek to
compute. The α = 0 limit is the average of the AB and AC hcp
packing, while the α = 1 limit is the average of the forward
and reverse fcc packing. These are the exchange-invariant
combinations, but they can still be thought of as the pure
fcc and hcp packings for the purposes of this article. The
α = 1/2 limit is also noteworthy, as we consider this the
“most disordered” Barlow packing, giving a precise definition
to the notion introduced in Ref. [53] and making contact with
the discussion in Ref. [65].

One can build the theta series of the uncorrelated cluster
class from known theta series for two-dimensional lattices
through addition and shift operations, a general strategy taken
from Refs. [62,72]. If one knows that the desired g2 of packing
� is composed of the weighted sum of the local density of
(possibly translated) lattices {�i}, then one has that [62,72]

θ� (q) =
∑

i

wiθ�i (q). (25)

If one translates a two-dimensional lattice � in a direction
orthogonal to the extent of the lattice (we take this as the z
direction), the theta series of the translated lattice �′ around
the same origin is

θ�′ (q) = qz2
θ� (q). (26)

These two observations can be combined to give a formula for
the theta series (θα) of the uncorrelated cluster class in terms
of PA(m, α), the theta series for a triangular lattice viewed
from a lattice point (θpoint) and central hole (θhole) [80]:

θα (q) =
∞∑

m=−∞
q2m2/3{PA(m, α)θpoint(q)

+ [1 − PA(m, α)]θhole(q)}. (27)

There is a nontrivial leftover explicit sum in the theta series,
which we could not express in terms of relatively simple theta
functions. It is possible to express it as a function known in
the mathematical literature as a partial theta series [81], but
doing so seems to offer no computational benefit.

As a concrete example of this theta series, the first few
terms for α = 1/2 are

θ1/2(q) = 1 + 12q + 6q2 + q8/3 + 21q3 + · · · , (28)

which one can compare with the known theta series for the
hcp crystal (α = 0) [54,62]

θ0(q) = 1 + 12q + 6q2 + 2q8/3 + 18q3 + · · · (29)

and the fcc lattice (α = 1) [54,62]

θ1(q) = 1 + 12q + 6q2 + 24q3 + · · · . (30)

This theta series has been used to carry out the numerical
uncorrelated cluster family computations described in Sec. V.
The general strategy is to use Mathematica to obtain partially
substituted symbolic expressions for coefficients up to q5625,
and then to numerically evaluate those expressions with Math-
ematica.

C. Another disordered class

We also consider another type of disordered packing,
which introduces long-range stacking order while still keeping
a degree of stacking disorder. This packing consists of an
infinite array of A layers, placed one space apart. In between,
we place B and C layers randomly, with equal weight. We will
call this the hcp order-disorder mixture packing. This packing
has α = 1/4, and a theta series

θmhcp(q) = 3

4
θ0(q) + 1

4
θC (q), (31)

where θ0 is the hcp theta series and θC is the theta series of a
single layer of C in a packing consisting of otherwise As and
Bs, centered on a layer C particle. The first few terms of this
theta series are

θmhcp(q) = 1 + 12q + 6q2 + 3

2
q8/3 + 39

2
q3 + · · · . (32)

Note that this packing is “hcp-like” in the sense that the A
layers are always spaced one apart from each other. We can
also define an “fcc-like” equivalent, where there are an infinite
array of A layers, with two spaces in between. These spaces
can by randomly filled with BC and CB codes with equal
weight. For this packing, we find α = 5/6 and

θmfcc(q) = 1

2
θ1(q) + 1

3
θC (q) + 1

6
θdhex(q), (33)

where θdhex(q) is the theta series corresponding to a sequence
. . . AAABABAAA . . . (layers of A continuing before and after
the ellipses) centered on the A layer between the B layers.
This sequence retains the Barlow interlayer separation while
permitting sphere overlap. The first few terms of this series
are

θmfcc(q) = 1 + 12q + 6q2 + 1

3
q8/3 + 20q3 + · · · . (34)

We can also generalize these two packings to use unevenly
weighted distributions for the random layers.

D. Periodic packings

Finally, we will work with the set of all periodic Barlow
packings with codes up to nine letters long. Since stacking
codes are not unique, we will need to use a single representa-
tive per Barlow packing. A list of such representatives can be
found in Ref. [60], and we have reproduced the relevant part
of the list in Table II. Note that Table II contains some of the
periodic codes listed in Table I, the list of natural examples
of periodic Barlow packing. We work with periodic Barlow
packings in order to understand how �̄ is affected by grad-
ually increasing complexity, which is complementary to the
types of information learned by considering the uncorrelated
cluster and order-disorder mixture packings.

IV. STEALTHY HYPERUNIFORMITY
OF BARLOW PACKINGS

Reference [20] proves a result known as the “stealthy
stacking” theorem and uses it to imply that all Barlow pack-
ings are stealthy. In this section we briefly derive the resulting
common lower bound on K among all Barlow packings, and
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TABLE II. The unique periodic Barlow codes up to nine letters
long, along with their corresponding values of α, the fcc cluster
fraction. These sequences were compiled by extracting them from
the list in Ref. [60] and removing duplicates, such as ABAB.

Stacking code α Stacking code α

AB 0 ABABACBC 1/2
ABC 1 ABABCABC 3/4
ABAC 1/2 ABABCBAC 1/2
ABABC 3/5 ABACBABC 3/4
ABABAC 1/3 ABABABABC 1/3
ABACBC 2/3 ABABABCAC 1/3
ABABABC 3/7 ABABACABC 5/9
ABABCAC 3/7 ABABCABAC 5/9
ABACABC 5/7 ABABCACBC 5/9
ABABABAC 1/4 ABABCBCAC 1/3
ABABACAC 1/4 ABACBACBC 7/9

give further commentary on the realizability of these lower
bounds. Consider a (dP + dQ)-dimensional Euclidean space
E . The stealthy stacking theorem states that if one has a
stealthy point pattern P (up to KP) in a dP-dimensional sub-
space EP, and a set of stealthy point patterns {Q(p) : p ∈ P}
(with smallest stealthy limit KQ) of common density ρQ in
the dQ-dimensional orthogonal complement EQ, then the point
pattern in E given by

e = p + q, p ∈ P, q ∈ Q(p), (35)

is stealthy, and the smaller of KP and KQ is a lower bound
on K . This lower bound is not necessarily realized. This can
be seen by considering the hexagonal lattice with a nearest
neighbor distance of one (unit spacing), which is stealthy up to
K = 4π/

√
3, while the lower bound provided by the stealthy

stacking theorem by considering the integer lattice of spacing√
2/3 as P and the displaced integer lattices of unit spacing as

{Q} is 2π . However, the lower bound is realized if KP is the
lower bound.

For the case of the Barlow packings of unit spacing, one
can consider the integer lattice of spacing

√
2/3 in the stack-

ing direction to be P. This lattice is stealthy up to KP = √
6π .

Then there are three point patterns in the set {Q}, which are
all displaced hexagonal lattices of unit spacing. These point
patterns are all stealthy up to KQ = 4π/

√
3. Thus, all Barlow

packings are stealthy, with 4π/
√

3 as a lower bound on K .
This result can also be derived by directly computing S(k)

for an arbitrary Barlow packing. The interested reader can
refer to Refs. [65,66] for the basic strategy.

V. HYPERUNIFORMITY ORDER METRIC

We present the results of our calculations �̄ for the three
classes of Barlow packings introduced in Sec. III. The strat-
egy for computing �̄ for packings with stacking disorder is
to compute the coefficients of the theta series up to q5625

through the use of Mathematica. Once this is done, we can
estimate �̄ by using Eq. (19) with nonzero β and linearly
extrapolating to β = 0. We use a range of β from 0.01 to 0.05,
since the sum in Eq. (19) converges before using all of the
computed coefficients for those values of β. The typical set

0 0.2 0.4 0.6 0.8 1
α

1.01945

1.0195

1.01955

1.0196

Λ

Periodic
Eq. (36)

(a)

(b)

0 0.2 0.4 0.6 0.8 1
α

1.01945

1.0195

1.01955

1.0196

Λ

Uncorrelated Clusters
Hcp Order-disorder Mixture
Fcc Order-disorder Mixture
Eq. (36)

FIG. 5. Plot of the model (36) and the computed values of �̄.
(a) The stacking disordered data, with the uncorrelated cluster data
in blue circles, the hcp order-disorder mixture as a red square, and
the fcc order-disorder mixture as a black diamond. Note that the
linear model prediction of Eq. (36) (black line) is indistinguishable
from the uncorrelated cluster data (blue circles) on the scale of this
figure. (b) The periodic Barlow data. Note that there are actually 22
data points in panel (b), but the differences between some points are
indiscernibly small on the scale of the plot. The values of �̄ needed
for the model (36) are determined by the endpoints of each plot.

of data contains a slight degree of curvature such that a linear
extrapolation underestimates �̄ on the order of 10−5; see the
Appendix for analyses of the fit and residual errors. For the
order-disorder mixtures, we computed the contributions from
θ0, θ1, θC , and θdhex separately, and combined them with the
appropriate weights given in Eq. (31) and Eq. (33).

In contrast, we compute �̄ for the periodic packings with
codes up to nine letters long (Table II) through a lattice sum
procedure. Like the calculation for the stacking disordered
packings, we use Eq. (19) and linearly extrapolate to β = 0.
Since our implementation of this method of calculation is
faster than our implementation using a theta series, we can use
β = 0.0005–0.0025. This also requires the use of an arbitrary
precision numerical library, as we found that floating point
error with conventional 64-bit floating point numbers limited
the precision. We use rug, a Rust wrapper around MPFR, with
a mantissa of 128 bits. The fits are qualitatively similar to the
stacking disordered packing fits, but we are underestimating
only on the order of 10−7. Thus, we have improved on the
computations of Ref. [6], and find that �̄fcc = 1.0194587 and
�̄hcp = 1.0195978.

We plot the estimated value of �̄ against the fcc cluster
fraction α for both the stacking disordered and periodic pack-
ings in Fig. 5, which is well modeled by the following simple
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FIG. 6. A representative fit for the uncorrelated cluster data with
α = 0.5. Notice how in the residual errors of the fit, there is a
quadratic dependence. This implies that we underestimate the value
of �̄ with a linear fit.

linear weighted average:

�̄lin(α) = α�̄fcc + (1 − α)�̄hcp. (36)

Indeed, these deviations are on the order of 1000 times smaller
than the total variation along the interval; see the Appendix for
an analysis of the residual errors. Note that these data imply
that fcc and hcp have the extremal values of �̄ among the Bar-
low packings, at least among the three classes considered here.

VI. CONCLUSIONS AND DISCUSSION

We characterized the large-scale structure and hyperuni-
formity of Barlow packings. We demonstrated that all of the
Barlow packings, disordered or periodic, are stealthy with a
common lower bound for K of K = 4π/

√
3. This stealthiness

property implies that Barlow packings are Class I hyperuni-
form, meaning that they can be ranked by the hyperuniformity
order metric �̄. We applied this order metric to three classes
of Barlow packings, two of which possess certain degrees of
stacking disorder, while the third is the small-period Barlow
codes. For all of these classes, we found that the data are well
approximated by the simple model of Eq. (36).

There are several noteworthy findings. The first is the
computation of a lower bound on K for all Barlow packings,
regardless of the degree of stacking disorder. However, we
have not shown that this lower bound is necessarily realized.

Note that while the local density of the Barlow packings have
an intrinsic degree of long-range order in the form of an
underlying hexagonal lattice (triangular lattice layers stacked
vertically, with no offset), the existence of such an underlying
lattice in direct space is typically not sufficient to guarantee
that the structure factor has a gap in the vicinity of the origin.
Rather, the underlying lattice guarantees only periodicity of
the structure factor. Thus, the preconditions of the “stealthy
stacking” theorem are qualitatively distinct from the existence
of an underlying (Bravais) lattice. In addition, the stacking
geometry of the Barlow packings introduces an anisotropic
character, as is often the case for configurations that satisfy the
stealthy stacking theorem [20]. This anisotropy is a fundamen-
tal aspect of the geometry of the Barlow packings; however,
current research into order metrics such as �̄ has largely
focused on those which discard information about anisotropy.
It is an open problem to identify order metrics that leverage
the peculiar relations between direct space and Fourier space
in the case of stacking disorder. In addition, only a few studies
have been done on fundamental anisotropic characteristics of
hyperuniform systems [9,75].

Another striking finding is that the hyperuniformity order
metric �̄, a large-scale characteristic, is largely determined by
the linear model in Eq. (36). This model shows that α, which
is a local property, determines �̄, at least among the Barlow
packings. Thus, �̄ for a complex, large-period stacking can
be estimated by a statistic that involves only three layers. The
case of stacking disordered packings shows that we can expect
that the local character to remain for some types of disorder.
It is a topic for future research to determine the boundaries
of this local character, in particular, whether similar results
hold for systems without an underlying lattice. Considered
together, these findings raise fundamental questions about the
nature of anisotropic stacking disorder and provide a motiva-
tion for the creation of anisotropic order metrics and the study
of the hyperuniformity properties of anisotropic systems.
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APPENDIX: NUMERICAL ANALYSIS OF THE
COMPUTATION OF �̄

In this appendix, we analyze a representative extrapolation
of �̄ and the residual errors (i.e., the data minus the fitted
function evaluated at the corresponding domain point) of the
linear model (36). Figure 6 gives an example fit, which is
taken from the theta series calculations for the uncorrelated
cluster data with α = 0.5. The line in the figure is a linear
fit. Notice how the residual errors of this fit are quadratic,
implying that we are underestimating �̄. The true value will
be on order 10−5 higher for this example.

Figure 7 gives the residual errors to the model and data
plotted in Fig. 5. It is not clear whether the deviations shown
are a result of numerical errors in the computation, or whether
they represent the true deviations from linearity, but they are
on the order of 1000 times smaller than the total variation
in �̄. To test whether the finite value of β was likely to
play a role in the origin of these deviations, we ran the
calculations for the periodic Barlow codes up to six letters
long using a β = 0.01–0.05 extrapolation, but found nearly
the same errors. This suggests that the finite value of β

is not likely to be the cause of the deviation. However, it
should be noted that our estimated precision in �̄ is still
on the order of the deviations, meaning that further work is
needed to draw definitive conclusions on the true nature of the
deviations.
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