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Emergent entropy production and hydrodynamics in quantum many-body systems
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We study the dynamics of a locally conserved energy in ergodic, local many-body quantum systems on
a lattice with no additional symmetry. The resulting dynamics is well approximated by a coarse grained,
classical linear functional diffusion equation for the probability of all spatial configurations of energy. This
is equivalent to nonlinear stochastic hydrodynamics, describing the diffusion of energy in physical spacetime.
We find the absence of nonhydrodynamic slow degrees of freedom, a nonlinear fluctuation-dissipation theorem,
and the emergence of a (weakly interacting) kinetic theory for hydrodynamic modes near thermal equilibrium.
The observable part of the microscopic entropy obeys the local second law of thermodynamics, and quantitatively
agrees with the phenomenological predictions of hydrodynamics. Our approach naturally generalizes to ergodic
systems with additional symmetries, may lead to numerical algorithms to calculate diffusion constants for lattice
models, and implies sufficiency conditions for a rigorous derivation of hydrodynamics in quantum systems.
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I. INTRODUCTION

Hydrodynamics is a universal description of the late time
dynamics of a thermalizing system, regardless of whether
the microscopic dynamics are classical or quantum. From
a phenomenological perspective, it is well understood how
to write down the hydrodynamic equations [1,2]: in the
simplest cases, they are simply the conservation laws for
conserved quantities in the system. Such conservation laws
follow from a quantum mechanical Ward identity and are
exact. However, these equations are also highly underdeter-
mined. To obtain solvable equations of motion, one must
relate the fluxes of conserved quantities to their densities.
This is done order by order in a derivative expansion, and
the regime of validity of hydrodynamics describes long wave-
length fluctuations relative to local thermalization length
scales (“mean free paths”). Two final phenomenological re-
quirements are then imposed. First, hydrodynamics must be
compatible with the local second law of thermodynamics;
i.e., the theory is dissipative. Second, the fluxes of conserved
quantities must have stochastic contributions, consistent with
the fluctuation-dissipation relation. We will quantify all of
these points later. For now, we simply stress that the algorithm
sketched above is, when working at the phenomenological
level, at least in principle extendible to arbitrary order in
derivatives.

Despite the fact that hydrodynamics is a foundational
component of statistical mechanics, there is still not a
generally agreed upon “derivation” of hydrodynamics from
the Schrödinger equation. Hydrodynamics is a dissipative
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classical theory for a few degrees of freedom, while the many-
body Schrödinger equation describes linear unitary time evo-
lution on an exponentially large Hilbert space. Reconciling
these two pictures requires a quantitative understanding of
how reasonable observers see information loss in the quantum
system. Heuristically, it is well understood that dissipation
arises from “integrating out” the majority of (highly entan-
gled) states in the Hilbert space. Dephasing of “off-diagonal”
components of the density matrix (in the energy eigenbasis)
[3,4] and the exponentially long recurrence times at which
this dephasing is “undone” provide a microscopic picture
for thermalization. Yet this intuition has not yet been turned
into a quantitative algorithm for computing the hydrodynamic
properties of classical or quantum systems; previous attempts
include [5–8]. One could also argue for a quantum kinetic
limit [9], from which hydrodynamics straightforwardly fol-
lows. Yet these prior derivations of hydrodynamics often
assume a particular form of Hamiltonian, neglect thermal
stochastic effects, or are only valid at weak coupling.

Given these challenges, recent works [10–14] have devel-
oped a systematic effective field theory for hydrodynamics.
These recent developments are profound but, in our view,
do not replace a microscopic derivation of hydrodynamics.
First, the action is a theory of spontaneously broken space-
time translation symmetry on the Schwinger-Keldysh con-
tour; these Goldstone degrees of freedom contain the usual
hydrodynamic degrees of freedom, but in a rather abstract
way. Second, the effective theories implicitly assume that the
only slow degrees of freedom are locally conserved densities
and Goldstone bosons, and—although universally believed to
be true—this assumption has never been formally justified
microscopically beyond kinetic theory [9] or gauge-gravity
duality [15]. Finally, these theories are developed in the
language of quantum field theory, yet it is unclear when (if
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ever) quantum fluctuations are relevant in hydrodynamics.1 A
new microscopic derivation of hydrodynamics may shed light
on these questions and provide an interesting perspective on
additional subtleties such as fluid frame choices within hydro-
dynamics, or constraints on higher derivative hydrodynamics
beyond the Landau paradigm.

One of the most subtle points in the effective theory for
hydrodynamics is the emergence of a thermodynamic entropy
which grows over time [16–18]. In fact, the question of how
to define a thermodynamic entropy operator in a many-body
quantum system has been debated for many years [19–22]. In
particular, why does the second law of thermodynamics make
sense given the unitarity of quantum mechanics? Any sensible
microscopic derivation of hydrodynamics must resolve such
puzzles, as a key part of hydrodynamic phenomenology is
compatibility with the local second law.

Beyond such formalities, a better microscopic understand-
ing of the origin of hydrodynamics will be useful in the
development of unbiased numerical algorithms to compute the
hydrodynamic coefficients (especially diffusion constants) in
microscopic lattice models. To date, there is no such algorithm
that exists; see [23,24] for heuristic ideas for one dimen-
sional systems. Because diffusion constants are equivalent to
transport coefficients such as electrical conductivity, up to
thermodynamic prefactors [2], and thermodynamic prefactors
are computable numerically [25], an algorithm to compute
these diffusion constants is incredibly valuable and could
immediately shed light on some of the most challenging
problems in condensed matter physics, such as the transport
properties of non-Fermi liquids [26,27].

The purpose of this paper is to start with the many-body
Schrödinger equation and derive, in an unbiased way, the
hydrodynamic theory of energy diffusion, to leading order
in the gradient expansion. More precisely, we will isolate
a suitable part of the many-body density matrix: a coarse-
grained classical probability distribution for simultaneous
measurements of the energy density in every region of space.
We then argue that this classical probability distribution
evolves according to a classical Markov process, explicitly
identifying the single assumption in the calculation which
introduces dissipation—and from which the entire theory of
hydrodynamics follows. We show that the resulting Markov
process is equivalent to nonlinear stochastic hydrodynamics
and recover all expected phenomenology, including hydro-
dynamic cluster decomposition in correlation functions, the
fluctuation-dissipation theorem, and the absence of nonhydro-
dynamic slow degrees of freedom. Furthermore, we show how
the thermodynamic entropy proposed in [22] quantitatively
agrees with the phenomenological hydrodynamic theory of
entropy production. Hence we obtain a more microscopic
understanding of the emergence of a local second law of
thermodynamics. We stress that all of these results follow

1It is clear that quantized “hydrodynamic” fluctuations like
phonons can be a crucial part of physics at very low temperatures.
Here our focus is on the theory of hydrodynamics as a description of
relaxation to thermal equilibrium. This theory makes sense in highly
excited eigenstates, where we will argue that quantum fluctuations
are negligible.

from one specific postulate about dissipation in a many-body
system.

The key feature of our framework is the identification of
two coarse graining scales, a length L and an energy window
δ. We consider models defined on a very general graph with
a well defined dimension d and short range interactions.
We take L larger than the range of interactions so that the
Hamiltonian can be written as

H =
∑

X

H (X ) +
∑
X∼Y

H (X,Y ). (1)

X is a set of topologically trivial regions, such that every
point on the graph belongs to exactly one X . X ∼ Y stands
for nearest neighbor regions.2 The Hamiltonians H (X ) all
commute with each other, and, in the absence of other symme-
tries besides time translation invariance, their joint eigenstates
form a complete nondegenerate basis for the Hilbert space.3

Typical eigenvalues of H (X ) and H (X,Y ) scale as

H (X ) ∼ Ld , (2a)

H (X,Y ) ∼ Ld−1, (2b)

in units of the fundamental energy scales. This enables us to
treat the interactions between regions as a small perturbation,
and forms the basis for our approximations to the full Heisen-
berg equations of motion.

The splittings between energy density [H (X )/Ld ] eigen-
values range from order 1 to order e−Ld

. We will argue that
the dynamics of energy density has a timescale of order L2.
Energy differences �L−2 will dephase rapidly over these
hydrodynamic timescales, and can be integrated out in a con-
ventional (Brillouin-Wigner-Wilson) manner. The tiny energy
differences associated with recurrence times are, on the other
hand, invisible on the hydrodynamic timescale. We coarse
grain energy density into bins of size δ. This produces a local
entropy density, which is the origin of the thermodynamic
entropy of the phenomenological theory. The details of this
construction will be provided in the next section.

II. SETUP

Consider a many-body quantum system defined on a d-
dimensional spatial lattice graph G = (V, E ); here V denotes
a vertex set, and E denotes the edge set. We divide up V into
N � 1 disjoint subsets X :

V =
⋃

X. (3)

We assume that the Hilbert space may be written as a tensor
product

H =
⊗

X

H(X ) (4)

2For simplicity we will take (1), which defines a well-posed lattice
model, to be exact. For interactions with range L0, one could imagine
corrections to (1) of order e−L/L0 , which are still negligible when
L � L0.

3We will comment below on other symmetries and on topological
defects, which can provide slow degrees of freedom in addition to
the energy density.
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FIG. 1. A sketch of a many-body quantum system with nearest neighbor interactions on a one dimensional lattice. We may write H in the
form (1) in different ways by choosing different disjoint unions of sets X and X ′, so long as (3) is obeyed. Couplings which are contained in
H (X ) are black; couplings which are contained in H (X,Y ) are orange.

and that dim[H(X )] < ∞. We assume that the Hamiltonian
takes the form (1), as sketched in Fig. 1. The regions X
each contain of order Ld points of the original vertex set,
and L � 1.

In generic quantum systems, the eigenvalue spectra obey
(2). The physics that we develop below is insensitive to the
precise choice of sets X in (3). We also encourage thinking of
X and Y as points in a “superlattice” of regions. We will often
consider a continuum limit of our equations, which should be
valid on length scales much larger than L. In the continuum
limit, H (X ) is analogous to the energy density operator (up to
a factor of volume).

We will consider the following basis for the Hilbert space
H. Let |α(X )〉 correspond to an eigenvector of H (X ) with
eigenvalue Eα (X ). (The subscript α is used to emphasize that
this is an individual eigenstate.) Then a complete basis of the
Hilbert space is

H = span

{⊗
X

|α(X )〉
}

≡ span{|α〉}. (5)

Here α denotes the collection of all possible eigenstates α(X ).
We will use boldface letters to denote functionals: objects that
depend on entire functions E (X ) on the superlattice.

We will assume that this basis is nondegenerate, which is
equivalent to assuming that there are no more quantities be-
sides energy density which have slow dynamics. Clearly, this
is not true if there are other continuous symmetries besides
time translation. We believe that there is a straightforward
generalization of our approach that would produce a coupled
set of hydrodynamic equations for all conserved currents.
These should be applicable even in phases where gapless
Goldstone excitations exist. Discrete and p-form symmetries
can introduce other excitations like domain walls and vortices,
that will have slow dynamics on the same timescale as the
hydrodynamic modes. We expect that our formalism may
be generalized to handle such cases, but will not do so in
this paper. Finally, many-body localized systems [28,29] can
have very different long time dynamics and so they require a
separate treatment. The careful reader will note that in one
spatial dimension Ld−1 is not a large number, so some of
the claims in the discussion below are not so well justified.
Perhaps this is connected to the fact that many-body localized
states and other integrable systems are far more frequent in
d = 1 than d > 1.

A standard approach to solving Heisenberg’s equations of
motion is to view them as the evolution of a vector |A) in the
real Hilbert space of Hermitian operators B. The Liouvillian

is the operation of commutation with the Hamiltonian:

L = i[H, ◦]. (6)

We define L(X ) = i[H (X ), ◦] and L(X,Y ) similarly. A basis
for B is

|αα) = |α〉〈α|, (7a)

|αα′)+ = |α〉〈α′| + |α′〉〈α|√
2

, (7b)

|αα′)− = i|α〉〈α′| − i|α′〉〈α|√
2

, (7c)

where α �= α′; i.e., there exists an X for which α(X ) �= α′(X ).
Using the trace norm as the inner product,

(A|B) = tr(AB), (8)

along with orthogonality of distinct eigenvectors of each
H (X ), we see that this is an orthonormal set of Hermitian
operators.

Our goal is now to separate out the eigenvalues of H (X )
into bins of size δ. We take δ to be a “small” number obeying
δ ∼ Ld−κ with 0 < κ < d , so that in the large L limit δ is
sufficiently small to probe a unique energy density, but δ−1

is also a very short timescale, shorter than the hydrodynamic
timescales to which our main equations refer. As mentioned in
the introduction, there are extremely tiny energy differences
in the spectrum of H (X ), which are impossible to resolve
over hydrodynamic timescales. States within a δ band are
essentially degenerate and define an energy dependent local
entropy within each block.

Now define a projection operator P(E) onto a given band
of eigenvalues in each X , which we will also write as |E):

|E) =
∑

α

�(Eα (X ) − E (X ))�(E (X ) + δ − Eα (X ))|αα).

(9)

The operators |E) are defined on a hypercubic lattice in N-
dimensional energy space; the spacing between each lattice
point is δ. All P(E) are diagonal in the same α basis. We also
define

�(E) =
∑

α

∏
X

�(Eα (X ) − E (X ))�(E (X ) + δ − Eα (X ))
δ

=
∏

X

ω(E (X ), X ) =
∏

X

eS(E (X ),X ), (10)
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which is related to the norm of |E):

(E|E′) = δ(E − E′) × δN�(E). (11)

Finally, we define the projector the subspace of operators that
are diagonal in the energy basis:

D =
∑

E

|E)(E|
δN�(E)

. (12)

With these notational conventions set, we can proceed to
analyze the large L limit of the equations for such diagonal
operators. We will find that, to leading order in L, the equa-
tions close.

III. EMERGENCE OF DISSIPATION

The question that we will address in this paper is the time
evolution of Dρ(t ) for generic interacting quantum systems
in highly excited states; here ρ(t ) is the time-evolved density
matrix. It is instructive to define

(E|ρ(t )) = δN p(E, t ), (13)

such that

D|ρ(t )) = δN
∑

E

p(E, t )|E). (14)

We can think of p(E) as a many-body probability distribution
function for simultaneous measurements of the local energy
density operators H (X ). It is a classical approximation to the
quantum mechanical state of the system. In the continuum
limit, this distribution should be thought of as a functional of
the energy density. p(E) contains exponentially many degrees
of freedom, but this number is also exponentially smaller than
the total number of eigenstates in the system. Dissipation
will arise from integrating out nearly all of the information
contained within the density matrix and the emergence of
simple Markovian dynamics for p(E). The main purpose of
this section is to derive this stochastic process, elucidating the
necessary assumptions as we go.

A. Memory matrix formalism

Our starting point is the microscopic many-body
Schrödinger equation

d

dt
|ρ(t )) = −L|ρ(t )). (15)

So far, the time evolution is unitary (i.e., L is a real antisym-
metric matrix); there is no dissipation. However, our goal is
not to compute the full |ρ(t )), as such a task is generically
not possible. Instead, our goal is to only compute the time
evolution of p(E, t ), the classical probability of finding the
system at a given energy (in every region X ).

This can be accomplished using the memory function
formalism [30–33]. The basic objective is to start from the
following matrix identity, with N = 1 − D:

De−LtD = D −
∫ t

0
dsDe−LN (t−s)LDe−LsD. (16)

This is the integrated form of the Schwinger-Karplus identity
for the derivative of an operator function.

We have used the fact that ND = 0 to simplify terms
above, together with the identity

DLD =
∑
E,E′

(E|L|E′)
|E)(E′|

δ2N�(E)�(E′)
= 0, (17)

which can be derived using the fact that

(E|L|E′) = tr{P(E)[H,P(E′)]} = tr{H[P(E′),P(E)]} = 0.

(18)

Let us choose an initial condition such that N |ρ(0)) = 0.
From (16) we obtain

d

dt
D|ρ(t )) =

∫ t

0
ds DLN e−iNLN sNLD|ρ(s))

≡ −
∫ t

0
ds M(t − s)D|ρ(s)). (19)

We have thus completely integrated out the degrees of free-
dom N |ρ(t )), which will become nontrivial for t > 0. The
price for this is the nonlocality of (19).

However, we are naturally interested in the limit where
each region X contains a reasonable number of degrees of
freedom. This leads to a number of important simplifications.
First, if each region X consists of L sites in each direc-
tion (and so contains ∼ Ld sites in total), then HI contains
exp[Ld ] eigenvalues which will generically be exponentially
close together (so long as we avoid the minimal or maximal
eigenvalue). Second, by construction

L(X )|E) =
∑

|α〉/∈ker[P(E)]

[Eα (X ) − Eα (X )]|αα) = 0. (20)

Therefore DLN and NLD receive contributions only from
L(X,Y ). In contrast,

L(X )|αα′)± = ±[Eα (X ) − E ′
α (X )]|αα′)∓ + · · · , (21)

where · · · denotes contributions which are subleading in L;
thus NLN can receive contributions from L(X ). Finally, (2)
suggests that L(X,Y ) contributes a small factor of L−1 and
can be ignored in NLN but not in DLN or NLD. In other
words, (19) describes the slow dynamics of |E) transitioning
among themselves. The dynamics is slow both because of the
overall prefactor of L−2, and because the transitions between
|E) arise through “fast modes” |αα′)± which we have inte-
grated out and that (relative to one another) dephase extremely
quickly.

To quantify how dephasing leads to dissipation, we explic-
itly evaluate (E|M(t )|E′) to leading order in L. We start from
NLD|E):

NLD|E) =
∑
X∼Y

|i[H (X,Y ),P(E)])

=
√

2
∑
X∼Y

∑
γ

∑
|α〉/∈ker[P(E)]

Re[〈γ|H (X,Y )|α〉]|αγ )−

+ Im[〈γ|H (X,Y )|α〉]|αγ )+. (22)

There are a number of important comments to make about
(22). (i) Using the same manipulation as (18) we can confirm
that (αα|L|E) = 0 for any E and α. (ii) In (22), α(Z ) =
γ (Z ) if and only if Z �= X,Y since H (X,Y ) does not act
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on HZ . (iii) We may restrict the sum on γ in (22) to
P(E)|γ〉 = 0, since [P(E), |α〉〈γ|] = 0 and so such terms
may be canceled in the first line of (22). Next, we observe
that (E|DLN = −[NLD|E)]T since L is antisymmetric. At
leading order in L (and δ), we saw in (21) that NLN is
diagonal. Hence we conclude that (E|M(t )|E′) �= 0 only
when NLD|E) and NLD|E′) contain identical operators

|αγ )±. From point (iii) above, we conclude that there are
only two possible contributions to (E|M(t )|E′). First, if
E = E′, then we sum over all possible transitions from any
|α〉 /∈ ker[P(E)] to any |γ〉 ∈ ker[P(E)]; if E �= E′, we sum
over all possible transitions from any |α〉 /∈ ker[P(E)] to
any |γ〉 /∈ ker[P(E′)]. This is neatly summarized in the final
result

(E|M(t )|E′) = −2
∑
X∼Y

∑
|α〉 /∈ ker[P(E)]

|γ〉 /∈ ker[P(E′ )]

|〈γ|H (X,Y )|α〉|2e−i(Eα (X )+Eα (Y )−Eγ (X )−Eγ (Y ))t , (E �= E′), (23a)

(E|M(t )|E) = 2
∑
E′ �=E

∑
X∼Y

∑
|α〉 /∈ ker[P(E)]

|γ〉 ∈ ker[P(E′ )]

|〈γ|H (X,Y )|α〉|2e−i(Eα (X )+Eα (Y )−Eγ (X )−Eγ (Y ))t . (23b)

The phase factor in the exponential comes from a simple application of (21).
Recall from (19) that our final formula for the rate of change of D|ρ(t )) depends on an integral over M for all times. Given

our choice of δ−1 vanishing with L, we approximate that on any finite, L-independent timescale,∫ t

0
ds e−i(Eα (X )+Eα (Y )−Eγ (X )−Eγ (Y ))t ≈ π δ(Eα (X ) + Eα (Y ) − Eγ (X ) − Eγ (Y )). (24)

Rapid dephasing will cancel all contributions in (23) unless we have local energy conservation. Combining (19), (23), and (24)
we obtain a classical Markov process which describes the spatial dynamics of energy including all statistical fluctuations:

δN∂t p(E, t ) = δ2N
∑
E′ �=E

W (E, E′)
(

p(E′, t )

�(E′)
− p(E, t )

�(E)

)
, (25)

where

W (E, E′) = 1

δ2N
× 2π

∑
X∼Y

∑
|α〉 /∈ ker[P(E)]
|γ〉 /∈ ker[P(E′ )]

|〈γ|H (X,Y )|α〉|2δ(Eα (X ) + Eα (Y ) − Eγ (X ) − Eγ (Y )). (26)

Note that W (E, E′) = W (E′, E), and that the factor of δ is
chosen so that W is invariant under rescalings of δ [when δ is
sufficiently small and the spectrum of H (X ) is continuous]. It
is now simple to take the continuum limit in energy space:

∂t p(E, t ) =
∫

dE′ W (E, E′)
(

p(E′, t )

�(E′)
− p(E, t )

�(E)

)
. (27)

This continuous time Markov process on a functional space is
our first key result.

There is an important subtlety in the above arguments.
There are slow, hydrodynamic modes with wavelengths ∼ 1

2 L
which we have implicitly ignored when we assumed NLN
was independent of L(X,Y ). These modes lead to corrections
to the Markov process above. We will address this issue in
a more quantitative way in Sec. V C, and show that such
corrections matter only on the shortest timescales accessible
in (27).

As our primary interest in (27) is on the late time limit
of the dynamics, we will assume the Markov equation from
here on. There are two immediate physical observations that
we can make. First, the transition rates W (E, E′) are those
predicted by Fermi’s golden rule. So (27) admits a very
simple physical interpretation: a conserved energy [

∑
E (X )]

is exchanged between adjacent sites. The energy coming from

the boundary degrees of freedom is smaller by a power of L,
and so can be neglected to leading order in L. Furthermore,
as we will prove explicitly later, the only equilibria are of the
form

peq(E) = �(E)F
(∑

X

E (X )

)
. (28)

The dynamics relaxes to the microcanonical ensemble; the
function F is determined by the initial conditions in a straight-
forward way:

F (Etot ) =
∫

dE δ(Etot − ∑
X E (X ))p(E, 0)∫

dE δ(Etot − ∑
X E (X ))�(E)

. (29)

We expect that (24)—and thus (27)—is a sensible approx-
imation for generic many-body systems in a highly excited
state with finite (neither maximal or minimal) energy density.
However, we reiterate that there are a number of important
cases where this approximation will fail, which we list for
completeness. One possibility is that there are additional local
conservation laws, such as charge or spin. It is natural to
generalize the above formalism to account for such conserved
charges (so long as the number is finite) and we will not do so
explicitly in this paper. In integrable models the list of conser-
vation laws should be much larger, and it would be interesting

022105-5



TOM BANKS AND ANDREW LUCAS PHYSICAL REVIEW E 99, 022105 (2019)

to compare this formalism to “generalized hydrodynamics”
[34–36]. Topological defects such as vortices in a superfluid
can only decay by colliding with other defects, and so the
defect motion becomes an additional slow degree of freedom
[37].4 There are also defects associated with spontaneously
broken discrete symmetries whose motion we have not ac-
counted for. Finally, in a many-body localized (MBL) phase,
quantum ergodicity is simply broken; the emergent spectrum
of H (X ) should appear sufficiently discrete so as to destroy
the Markovian limit [28,29]. We expect that our formalism
could be generalized to study symmetry broken phases, but
not many-body localization. One way of understanding MBL
is that it occurs in systems that have an infinite number of
effectively local conservation laws [40]. Such conservation
laws are local in position, not momentum, space, in contrast
to integrable models such as free theories. We leave a more
quantitative understanding of defect motion and MBL phases
for future work. It would be interesting if (24) is equivalent
to the eigenstate thermalization hypothesis [3,4]: we are not
aware of any theory where one should hold without the other.

B. Functional Fokker-Planck equation

So far we have used the large L limit to simplify the
dynamics so as to see an emergent energy conservation.

However, the large L limit also guarantees that the resulting
dynamics is slow, and our next goal is to exploit the slow
dynamics in E space to simplify (27) to a high-dimensional
diffusion equation in E space: a functional Fokker-Planck
equation (FFPE).

The key observation is that for a local Hamiltonian,
H (X,Y )|α〉 leads to a superposition of states |γ〉 where
Eα (X ) − Eγ (Y ) ∼ Eγ (X ) − Eγ (Y ) ∼ L0. To see this, con-
sider the following manipulations:

〈α|[Ln
X H (X,Y )

]|γ〉 = [Eα (X ) − Eγ (X )]n〈α|H (X,Y )|γ〉
= 〈α|O(n)

Y (X )|γ〉 ∝ nLd−1. (30)

Here LX H (X,Y ) = [H (X ), H (X,Y )] and O(n)
Y (X ) denotes an

operator which acts in HX but has support within n sites of the
boundary with Y . Taking n ∼ L, (30) implies that in the large
L limit, Eα (X ) − Eγ (X ) ∝ L0. A heuristic understanding of
this fact follows from the observation that H (X,Y ) is a sum of
local operators. Each local operator can only shift the energy
by a constant because it only affects the wave function on a
small number of sites. Equation (30) makes this precise.

Now let us revisit (27), which describes a Markov process
with transitions between states of different energy. From (26),
we see that these transitions occur between states with very
similar energy. Therefore it is natural to expand (27) in the
small parameter ε = E′ − E. First, observe that

p(E′, t )

�(E′)
− p(E, t )

�(E)
= ε(X )∂E (X )

(
p(E)

�(E)

)
+ 1

2
ε(X )ε(Y )∂E (X )∂E (Y )

(
p(E)

�(E)

)
+ · · · , (31)

Second, it is useful to use the exact identity W (E, E′) = W (E′, E) to expand

W (E, E + ε) =
[

W (0)

(
E + ε

2

)
+

∑
X,Y

W (2)

(
E + ε

2
, X,Y

)
ε(X )ε(Y ) + · · ·

]
× g(ε), (32)

where g is a sharply peaked function near ε = 0 which is even in all ε(X ). Integrating over dE′ = dε in (27), and using (31),
the leading order contribution will be O(ε2) as ε → 0. Hence we find that (27) can be effectively approximated by a functional
Fokker-Planck equation (FFPE):

∂t p(E, t ) =
∑
X,Y

∂E (X )

(
(E, X,Y )∂E (Y )

(
p(E, t )

�(E)

))
+ · · · , (33)

where

(E, X,Y ) = 1

2

∫
dε ε(X )ε(Y )W (E, E + ε) = 1

2

∫
dε ε(X )ε(Y )g(ε)W (0)

(
E + ε

2

)
(34)

and the · · · in (33) denotes terms that are subleading in L:
since ε ∼ L0, only the lowest order term in E derivatives
contributes at leading order in L. For later convenience, we
will also define

D(E, X,Y ) = (E, X,Y )

�(E)
. (35)

4Actually, vortices are related to a topological two form current
[38] (an ordinary current for d = 2) and so are taken into account by
a hydrodynamics [39] including all the conserved quantities of the
theory.

Note that from (26), D(E, X,Y ) depends on only E (X ) and
E (Y ).

Let us now discuss the scaling of D with L. We start with
(26). Note that there exist (generic) transitions for which

〈γ|H (X,Y )|α〉 ∼ Ld−1; (36)

despite the fact that the energy exchange ε ∼ L0 between
|γ〉 and |α〉 is small, there are Ld−1 possible terms that can
exchange energy. The sum over states in (26) leads to an
overall factor of δ2N�(E); these factors are canceled by the
δ−2N prefactor in (26), and the �−1 prefactor in (35). Finally,
the δ function in (26) leads to a factor of L−d . This scaling
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is easiest to understand by interpreting (26) as an integral.
Putting all of this together, we conclude that

D ∼ Ld−2. (37)

As we will see, the scaling Ld−2 above will lead to a dynam-
ical time scale of L−2, the time scale over which diffusive
modes of wavelength L relax.

Equation (33) is our final and main result of this section. It
demonstrates that the energy dynamics in an arbitrary ergodic
many-body quantum system is effectively described by a
continuous diffusion equation on a high dimensional space.
Taking the continuum limit and thinking of E as parametrizing
smooth functions E (X ), we obtain a functional diffusion
equation.5

For simplicity, in the sections that follow, we will assume
discrete translation invariance: ω [defined in (10)] is

ω(E (X ), X ) = ω(E (X )). (38)

Using the textbook definition of inverse temperature β in the
microcanonical ensemble:

∂E ln ω(E ) = β(E ). (39)

We also assume that

D(E, X,Y ) = D(E (X ), E (Y ))�(X,Y ), (40)

where �(X,Y ) is the discretized Laplacian −∇2 on the “su-
perlattice” graph of regions X :

�(X,Y ) =
{∑

Z∼X 1, Y = X,

−1, X ∼ Y.
(41)

Observe that �(X,Y ) is, as a matrix, independent of the size
L of the unit cell of the superlattice. In terms of physical
coordinates, we conclude that the continuous space limit
of �(X,Y ) is −L2∇2δ(X − Y ). We take D(E (X ), E (Y )) =
D(E (Y ), E (X )). The resulting FFPE is invariant under dis-
crete translations and all inhomogeneity in the system is
encoded in the initial conditions p(E, 0). We emphasize that
our formalism can deal equally well with inhomogeneous
systems, but it is difficult to analyze all of the different forms
that inhomogeneity could take in a single discussion.

IV. HYDRODYNAMICS

One way to interpret (33) is simply to write the FFPE as
a nonlinear stochastic equation in the Stratonovich calculus
[42]. In this framework, one finds that the stochastic differen-
tial equation

∂t Aa(t ) = Fa(A(t )) + σaα (A)ξα (t ), (42)

where ξα (t ) is uncorrelated Gaussian white noise,

ξα (t )ξβ (s) = δαβδ(t − s), (43)

is equivalent to the Fokker-Planck equation

∂t p(A, t ) =
∑

a

∂

∂Aa

⎛
⎝−Fa(A)p(A, t ) + 1

2

∑
b,α

σαa(A)
∂

∂Ab
(σbα (A)p(A, t ))

⎞
⎠. (44)

Hence, we need to identify a sufficient number of independent Gaussian noise variables such that the FFPE (33) can be recast as
a stochastic partial differential equation.

In order to accomplish this, we first rewrite (33) in a slightly different form:

∂t p = −
∑

X

∂E (X )

((∑
Y

D(E, X,Y )∂E (Y ) ln ω(E (Y ))

)
p −

∑
Y

D(E, X,Y )∂E (Y ) p

)
. (45)

A natural choice is to put a noise variable on every edge
e = (X,Y ) (with X ∼ Y ) in the superlattice, and choose noise
strength

σ (E, Z, e) =

⎧⎪⎨
⎪⎩

0, Z �= X,Y,
√

2D(E, X,Y ), Z = X,

−√
2D(E, X,Y ), Z = X.

(46)

From (40) and (44), we conclude that∑
e

σ (E, X, e)σ (E,Y, e) = 2D(E, X,Y ). (47)

Consequently these noise variables will reproduce the second
derivative term in (33). To reproduce the first derivative term,

5Functional diffusion equations have been studied in a very differ-
ent context in the exact renormalization group [41].

observe that (if 〈· · · 〉 denotes averaging over noise)

∂t 〈E (X )〉 =
∑

Y

〈D(E, X,Y )β(E (Y ))

− (∂E (X ) − ∂E (Y ) )D(E, X,Y )
〉
. (48)

Due to the E derivatives, the latter term above is suppressed
by a factor of L−d .

We conclude that to leading order in L, (33) is
equivalent to

∂t E (X ) =
∑
X,Y

D(E, X,Y )β(E (Y, t )) + ξ (X, t ), (49)

where ξ (X, t ) is Gaussian white noise, with zero mean, and
variance

ξ (X, t )ξ (X ′, t ′) = 2D(E, X, X ′)δ(t − t ′). (50)
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This stochastic equation is interpreted in the Stratonovich
calculus. Equation (49) is stochastic nonlinear hydrodynam-
ics, describing the diffusion of energy across the lattice. Our
main result is the unambiguous derivation of (49) from the
microscopic Schrödinger equation together with the specific
Markov approximation (27) described above. As we now
show, this Markov approximation is sufficient to recover the
complete statistical mechanical theory of hydrodynamics with
classical noise.

Let us first begin by neglecting the noise ξ (X, t ) in (49).
Taking the continuum limit of the discrete Laplacian �(X,Y ),
we obtain

∂t E = −∇ · [D(E )L2∇β(E )], (51)

which is the nonlinear energy diffusion equation predicted
by hydrodynamics. As we will see in Sec. V C, the approach
developed in this paper is not sophisticated enough to quan-
titatively capture higher derivative corrections to (51), which
is why we have taken D(E ) = D(E (X ) = E , E (Y ) = E ) to
depend only a single energy variable.

Near equilibrium, we may approximate D ≈ D(E). Let
Ē (β ) be the inverse of the function β(E ), and recall that the
specific heat C = −β2∂β Ē . Using

∇β(E ) = −β2

C
∇E , (52)

we conclude that near equilibrium the average energy E obeys
a diffusion equation with diffusion constant

De = DL2β2

C
. (53)

From (37), along with thermodynamic extensivity (C ∼ Ld ),
we observe that De is independent of the artificial cutoff L.
De is the physical diffusion constant of energy at a given
temperature, and can be measured by two-point thermal
correlators [2].

Next let us address the presence of noise. Using (39), (50),
and (53), we conclude that near equilibrium, the noise strength
obeys the fluctuation-dissipation theorem:

2D(X,Y ) = −∇2δ(X − Y ) × 2C

β2

De

L2
. (54)

We emphasize that (49) is also valid beyond linear response
and determines the noise strength for arbitrarily large fluctua-
tions in E .

It has recently been emphasized in [12–14] that the formal
effective field theory approach to hydrodynamics can describe
fluids with non-Gaussian and non-Markovian noise spectra.
Our approach implies that non-Gaussian noise is not generic
in the long wavelength limit and is suppressed by powers
of L. This suggests that in the effective action formalism
for hydrodynamics, most nonlinearities involving noise are
irrelevant under renormalization group flow.

V. ANALYSIS OF THE FOKKER-PLANCK EQUATION

We have already seen that (49) is equivalent to (33). Our
analysis explains when and how hydrodynamics arises in a
quantum many-body system. The purpose of this section is
to clarify a number of further features of (49) which are

guaranteed in generic quantum systems. In particular, we
will elucidate the microscopic origins of the factorizability
of near-equilibrium correlation functions and explain why
local operators such as H (X )2, H (X )3, etc., are not additional
slow degrees of freedom. Along the way, we will observe an
analogy between perturbatively nonlinear hydrodynamics and
the Boltzmann theory of weakly interacting gases.

A. Hermite basis

We begin by describing how to solve (33) without invoking
stochastic calculus. Since (33) is linear, it is natural to look for
a convenient basis of functions in which to write the solution.
We will focus our discussion by thinking about the dynamics
close to global thermal equilibrium at temperature T = 1/β.
Observe that the canonical ensemble

peq(E) =
∏

X

ω(E (X ))e−βE (X )

Z (β )
, (55)

with Z (β ) the partition function in any given region, is an
exact solution to (27) and (33). To see this explicitly, observe
that ∑

Y

D�(X,Y )∂E (Y )

(
peq

�

)

∝
∑

Y :Y ∼X

D(E (X ), E (Y ))(∂E (X ) − ∂E (Y ) ) exp

×
[
−β

∑
X ′

E (X ′)

]
= 0. (56)

Equation (55) forms the starting point for a convenient ba-
sis set. First, we observe that ln ω(E ) ∝ Ld is an exponentially
large function when E ∝ Ld is extensive; this is the regime of
interest as it corresponds to finite temperature. Therefore, as
is well known from statistical physics,

ω(E )e−βE

Z (β )
≈ 1√

2πσ
exp

[
− [E − Ē (β )]2

2σ 2

]
, (57)

where

Ē (β ) = −∂ ln Z

∂β
, (58a)

σ 2 = −∂Ē

∂β
. (58b)

Note that Ē ∼ σ 2 ∼ Ld , and that σ 2 = T 2C is proportional
to the specific heat C of each region. Energy fluctuations are
extremely small in the large L limit. For future convenience
we define

η = E − Ē

σ
. (59)

We define the Hermite polynomials for non-negative
integers n:

Hn(x) = 1√
n!

ex2/2

(
− d

dx

)n

e−x2/2, (60)
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which form an orthonormal basis of polynomials:∫
dx Hn(x)Hm(x)

e−x2/2

√
2π

= δnm. (61)

Note that our normalizations are different from those in stan-
dard physics textbooks. For future convenience, we note the
following useful identities:

∂xHn(x) = √
nHn−1(x), (62a)

xHn(x) = √
n + 1Hn+1(x) + √

nHn−1(x). (62b)

Using these definitions and identities, we now expand
p(E, t ) in the following basis:

p(E, t ) = peq(E)
∑

n

c(n, t )
∏

X

Hn(X )(η(X )). (63)

Without loss of generality we may ignore the dynamics of the
0 mode, that we have already seen is a steady state solution. It
is convenient to view the probability distribution as a member
of a linear space of functionals, with a generic vector denoted
|f]. Define the inner product

[f |f ′] =
∫

dE peq(E) f (E) f ′(E), (64)

so that

[n|m] =
∏

X

δn(X ),m(X ). (65)

Defining

K (n, m) =
∑
X∼Y

[n|←−−
∂E (X )D(E, X,Y )

−−→
∂E (Y )|m], (66)

where D simply represents multiplication by the function D
[defined in (35)], we conclude that so long as we do not reach
values of n large enough for the Gaussian approximation (57)
to fail, the vector

|p(t )] =
∑

n

c(n, t )|n] (67)

evolves in time as

∂t |p(t )] = −K|p(t )]. (68)

We will discuss the regime of validity of this “Gaussian”
approximation in Sec. V F.

B. Diffusion near equilibrium

To proceed further, let us analyze (68) carefully when the
Gaussian approximation holds. Since E (X ) ≈ Ē (β ) for every
X , we can approximate

D(E, X,Y ) ≈ D0�(X,Y ) (69)

in (66); here D0 is a β-dependent constant. (We will relax this
assumption later in Sec. V F.) Using (41), (62), (66), and (69),
we find

K (n, m) = D0

σ 2

∑
X∼Y

⎛
⎝ ∏

Z �=X,Y

δn(Z ),m(Z )

⎞
⎠{[n(X ) + n(Y )]δn(X ),m(X )δn(Y ),m(Y )

−
√

m(Y )n(X )δn(X ),m(X )+1δn(Y ),m(Y )−1 −
√

n(Y )m(X )δn(X ),m(X )−1δn(Y ),m(Y )+1}. (70)

The key observation is that K (n, m) is block diagonal. Defin-
ing

|n| =
∑

X

n(X ), (71)

we see that K (n, m) �= 0 if and only if |n| = |m|.
The origin of this tower of “conservation laws” is the

fact that (27) admits steady state solutions for arbitrary su-
perpositions of microcanonical ensembles. Schematically, the
conservation of |n| in the dynamics simply follows from the
fact that F , defined in (29), is arbitrary. Each sector of |n|
probes an orthogonal component to the function F . Thus, each
of these conservation laws is the conservation of energy, but
on a different superposition of energy shells.

Let us first analyze |n| = 1. Here it is natural to refer to
basis vectors |n〉 by simply the site X on which n(X ) = 1: |X ].
From (70) we conclude that K (n, m) [which we will write as
K (X,Y ) in the |n| = 1 sector] can simply be written as

K (X,Y ) = D0

σ 2
�(X,Y ). (72)

Note that D0σ
−2 ∼ L−2.

Considering for the moment a system on a simple one
dimensional lattice with periodic boundary conditions, the

eigenvalues of �(X,Y ) are given by 2[1 − cos(kL)] where
k = nπ/L with n ∈ Z. So the spectrum of K (X,Y ) is
given by

K ∼ D0L2

σ 2
k2 (73)

at small k. This is precisely the hydrodynamic limit. The
coefficient of k2 in the eigenvalue spectrum is independent
of L in the large L limit, and corresponds to the physical
energy diffusion constant (53). As we argued previously, (53)
will also hold on a more generic lattice graph in any spatial
dimension whenever the graph is a suitable triangulation of
flat space. In the case of anisotropic lattice models, the low-
lying spectrum of �(X,Y ) will exhibit the proper anisotropy
and the diffusion constant De will become a second-rank
tensor.

To justify that (53) is the physical energy diffusion constant
in the Hermite basis, consider the system whose state is
described by the vector |p] consisting of only c(0, t ) = 1,
along with |n| = 1 modes. From (72),

∂t c(X, t ) = −
∑

Y

K (X,Y )c(Y, t ). (74)
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The probability of measuring energy E (Y ) when the system is
in |p(t )] is given by∫

dE E (Y )p(E, t ) = [0|E (Y )|p(t )] = Ē (β ) + σ [Y |p(t )]

= Ē (β ) + σc(Y, t ). (75)

Up to the overall factor of σ , c(Y ) is proportional to 〈E (Y )〉
and therefore 〈E (Y, t )〉 also obeys (74). Hence De is the
physical energy diffusion constant. Reverting to the definition
of the energy density as a quantum expectation value,

∂t 〈H (X )〉ne = De∇2
X 〈H (X )〉ne + · · · , (76)

where · · · denotes higher derivative, L-dependent corrections
to diffusion, and 〈· · · 〉ne denotes expectation values of opera-
tors in a nonequilibrium initial state obeying Nρ(0) = 0.

C. Higher derivative corrections

Although we do recover a sensible diffusive limit inde-
pendent of the cutoff choice L, at higher orders in wave
number k, the eigenvalue spectrum of K (X,Y ) will generally
depend on L. This is not surprising, since by construction
our approach only contains modes at wave numbers k � L−1.
If L is chosen sufficiently large, then our approach must
underestimate the decay times of hydrodynamic, diffusive
modes. A simple model to quantitatively understand this effect
consists of starting with our 1d chain model and “integrating
out” every other site. In this |n| = 1 sector, we can perform
this integrating out by writing basis vectors e(X ) (X ∈ Z) as

|X̃ ±] = |2X ] ± |2X + 1]√
2

(77)

[the factor of
√

2 will account for the σ dependence of (72)].
Defining the matrices

Ã±(X,Y ) =

⎧⎪⎨
⎪⎩

1, X = Y + 1,

±1, X = Y − 1,

0, otherwise,

(78)

we may write a 2 × 2 block matrix form for the effective
Laplacian:

�̃(X,Y ) = 1

2

(
2 − A+(X,Y ) A−(X,Y )

−A−(X,Y ) 6 + A+(X,Y )

)
. (79)

The top row corresponds to + modes, the bottom row to −
modes. Integrating out the − modes, we naively obtain a new
dispersion relation by simply truncating �̃(X,Y ) to the top
left column. As 2 − A+(X,Y ) = �(X,Y ) for the 1d lattice,

we appear to obtain precisely the same result as prior but
with the overall coefficient in the diffusion constant reduced
by a factor of 2. However, this is not correct; the prefactor
should be reduced by a factor of 4. We cannot neglect the
off-diagonal components in (79), which couple degrees of
freedom that we have integrated out and those we have kept.
To estimate the magnitude of this effect, we use the memory
matrix formalism again. The modes that we are integrating
out always have a larger decay rate than the modes that we
keep (in the absence of off-diagonal coupling). To leading
order in k, we may approximate the memory function as
time-independent (Markovian), at the cost of finding that

�̃eff (X,Y ) = 1

2

[
� + 1

8
(A−)2

]
(X,Y ). (80)

In the long wavelength limit, the eigenvalues of �̃eff (X,Y )
are of the form eikX , with �̃eff (k) ≈ 1

4 k2. Since �(k) ≈ k2 as
k → 0, we correctly recover the diffusive limit with the right
relative scaling.

There are two points worth noting. First, the matrix struc-
ture of �̃eff differs from nearest neighbor in this simple model.
Second, at higher orders in derivatives, corrections to the
Markovian assumption become necessary, even though the
decay rate of the + mode is still smaller than the − mode.
These facts can all be taken into account in the memory
function formalism. The key approximation which would
have to be relaxed is that NLN ≈ ∑

X L(X ). As our focus
here is on the universal hydrodynamic limit—the physics for
k ∼ L−1 is not universal and is sensitive to the cutoff—we will
not worry about these subtleties with the Markovian, nearest
neighbor approximations for the remainder of the paper.

D. Do nonhydrodynamic slow modes exist?

Next we turn to the |n| = 2 solutions to the near equilib-
rium FFPE. Here a useful basis choice is |XY ], which denotes
the vector where n(X ) = n(Y ) = 1 (if X �= Y ), and n(X ) = 2
(if X = Y ). |XY ] = |Y X ] are equivalent. We emphasize that
mode |XY ] is orthogonal to any of the energy fluctuations |X ]
in the |n| = 1 sector; an observer measuring local Hamiltoni-
ans H (X ) does not access fluctuations in the |n| = 2 sector.
Instead, what |XY ] corresponds to is a (possibly long-ranged)
correlation between two distinct fluctuations:

[XY |p] ∝ 〈[H (X ) − Ē ][H (Y ) − Ē ]〉ne. (81)

Let us first describe the transitions between these modes
when dist(Y, X ) > 1; here dist simply denotes the distance
between the two sites on graph G. Because (70) describes
the hopping of excitations between adjacent sites on the
superlattice G, when dist(Y, X ) > 1 the transition matrix K
can be thought of a sum of two transition matrices, one for
each “excitation.” In other words,

K (XY, X ′Y ′) = K (X, X ′) ⊗ δ(Y,Y ′) + δ(X, X ′) ⊗ K (Y,Y ′), [dist(Y, X ), dist(Y ′, X ′) > 1]. (82)

Transition rates between |XX ] and |XY ] in (70) contain additional factors of
√

2 and 2, but this can be removed by simply
rescaling the |XX ] basis vector by a factor of

√
2. In the rescaled basis, K (XY, X ′Y ′) is proportional to a graph Laplacian
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�(2)(XY, X ′Y ′) on a graph G(2) = (V (2), E (2) ) with

V (m) = V m/Sm, (83a)

E (m) =
⎛
⎝ m⋃

j=1

⋃
e=(u jw j )∈E,ui∈V

{(u1 · · · um, u1 · · · u j−1w ju j+1 · · · um)}
⎞
⎠/Sm. (83b)

In the above equation we take m = 2 for now. The group
action S2 swaps the two vertices between the copies of V ; we
identify the orbit of each element under the group action as
a unique element in either V (2) or E (2). For example, if G =
(V, E ) corresponds to a one dimensional lattice of N sites, then
G(2) is a two-dimensional simplex of N (N + 1)/2 sites; see
Fig. 2.

Because (82) is (away from the XX sites) a separable tran-
sition matrix, we can estimate the eigenvalue spectrum from
the eigenvalue spectrum of K (X, X ′). Since the eigenvalue
spectrum of K (X, X ′) is diffusive on long length scales, for
a quantum system in d dimensions, there are N (ω) ∼ ωd/2

eigenvalues � ω. The number of eigenvectors of K (XY, X ′Y ′)
can then be estimated as

Nm(ω) ≈ N (ω)m

m!
(84)

with m = 2. Justification for this claim follows from
plugging S2-invariant sums of tensor products of eigen-
vectors into the variational principle applied to the
real symmetric matrix K ; the vectors |XX ] lead to
O(N−1) corrections. Thus the vast majority of G(2) is
described by separable dynamics where the two excita-
tions effectively undergo independent, simultaneous random
walks.

In more physical terms, what we have found is that
the correlators of the energy density factorize. This is a
well-known property of finite temperature correlation func-
tions. We emphasize that in our formalism we did not
assume this property upfront. Instead, factorization is a
consequence of our earlier Markovian assumption (27).
To be explicit, in the continuum limit, (76) generalizes
to

∂t 〈H (X, t )H (Y, t )〉ne = De
(∇2

X + ∇2
Y

)〈H (X, t )H (Y, t )〉ne + · · · . (85)

Using standard linear response theory, a common way of weakly perturbing thermal equilibrium to obtain a nonequilibrium state
is simply to act with an operator such as H (X ′)H (Y ′) on the thermal density matrix at time t = 0. For such a nonequilibrium
initial condition (85) will explicitly factorize, so long as X and Y are reasonably well separated:

∂t 〈H (X, t )H (Y, t )H (X ′, 0)H (Y ′, 0)〉β = De
(∇2

X + ∇2
Y

)〈H (X, t )H (Y, t )H (X ′, 0)H (Y ′, 0)〉β + · · · . (86)

Here 〈· · · 〉β denotes the standard thermal average. The above
identities are a fingerprint of hydrodynamics in a thermalizing
quantum many-body system. Equation (85) makes clear that
the slow degrees of freedom in the |n| = 2 sector simply cor-
respond to two hydrodynamic excitations which have almost
completely decoupled. Hence the slow dynamics in the |n| =
2 sector should not be thought of as new physical degrees
of freedom, even though they probe a part of the probability
distribution |p] that is invisible to the energy fluctuations

G G(2)

FIG. 2. At higher |n|, the FFPE reduces to a discrete Markovian
diffusion problem on a higher dimensional analog of the graph G, as
described in (83). Except near the diagonal boundary in G(2) above,
the transition rates for the Markov process are separable in each of |n|
“dimensions.” The physics of the |n| = 1 sector thus largely controls
higher |n| sectors as well (for finite |n|).

in the |n| = 1 sector. Also observe that at late times, to
very good approximation (85) is true even if the diffusive
“clouds” overlap (i.e., [XX |p] �= 0). So the factorization (85),
which follows directly from the Markovian assumption (and
locality), is slightly stronger than simply an assumption that
thermal correlation functions factorize on large length scales.

From a mathematical perspective, the separability of K
along with the trivial eigenvalue spectrum (84) is analogous to
the mathematical origin of the truncation of the Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy in kinetic
theory which reduces the Liouville equation for N particles to
the Boltzmann equation for a single particle. While a generic
N-particle distribution function evolves in a very complicated
manner, the physical content of the BBGKY hierarchy is
that a special initial condition in which cumulants of simple
quantities vanish will not lead to the development of large
cumulants on late time or length scales [43]. In our simpli-
fied limit of near-equilibrium fluctuations, this is precisely
guaranteed by the decoupling of sectors at different |n|. If all
cumulants (81) vanish at t = 0, they will vanish for all times
t . As in kinetic theory, the truncation of the hierarchy is rather
trivial at this point, but will become less so when we relax
(69) in Sec. V F. We also strongly emphasize the conceptual
differences between kinetic theory and our formalism. In
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kinetic theory, the factorization analogous to (85) arises from
the integrability of noninteracting Hamiltonians; in our ap-
proach this factorizability is instead derived from the chaotic
microscopic dynamics and the emergence of dissipation, as
described in Sec. III.

A final interesting point about the dynamics in the |n| = 2
sector is that an observer who can only measure the operators
〈H (X, t )2〉 will see an “intermediate” dynamics which is
neither hydrodynamic nor decaying exponentially to its steady
state value. In the |n| = 2 sector, such measurements amount
to the weight of the distribution on |XX ] sites, which will
decay algebraically with time as the weight diffuses into the
“bulk” of the graph G(2). Since H (X, t )2 is simply the product
of two hydrodynamic operators, the origin of this algebraic
decay is intimately related to the hydrodynamic character of
the slow dynamics in the |n| = 2 sector. In fact, the algebraic
decay in 〈H (X, t )2〉ne can be thought of as an avatar of long-
time tails [44], that arise when nonhydrodynamic operators
nonlinearly couple to hydrodynamic operators and therefore
decay algebraically instead of exponentially. As we will see
in Sec. V F, the origin of perturbative nonlinearity in the
diffusion equation is the coupling of sectors at different |n|,
that has so far been neglected due to the approximation (69).

Finally, we turn to the case of |n| = m. As the calculation
proceeds analogously to the case |n| = 2 we simply summa-
rize the result. When m � √

N , nearly every point at fixed
|n| = m has m distinct values, as can be seen from the simple
combinatoric estimate(

N
m

)
(

N + m − 1
m

) ≈ exp

[
−2m2

N

]
. (87)

(The numerator corresponds to the number of points with m
distinct vertices; the denominator is the number of vertices
in V (m).) Whenever this ratio is very close to 1, the late time
dynamics in the m sector is (away from the boundary) gener-
ated by the graph Laplacian on the graph G(m) = (V (m), E (m) )
defined in (83). The steady state solution is then uniform
(at least away from the boundary). We are overwhelmingly
likely to find that a single excitation is present on m distinct
sites. Following the logic above, we conclude that for all such
states, the m-point generalization of (85) holds. Although the
number of slow degrees of freedom is given by the extremely
large number (84), these slow degrees of freedom do not
correspond to physically distinct modes; they are (mostly)
decoupled hydrodynamic excitations evolving independently.
Therefore there are no slow degrees of freedom beyond the
hydrodynamic modes.

E. Coherent basis

When |n| ∼ N , the analysis in a sector of fixed |n| is no
longer convenient. Just as we passed from the microcanonical
ensemble to the canonical ensemble to evaluate the FFPE,
it is natural to pass to a “canonical ensemble” for the n
basis. In other words, we will study a basis of “coherent
states” (named by their obvious analogy to coherent states
of the quantum harmonic oscillator) in our linear space of

probability functionals:

|a] =
∑

n

∏
X

a(X )n(X )

√
n(X )!

|n]. (88)

Note that since [0|a] = 1, every single coherent state de-
scribes a normalized probability distribution. These coherent
states admit a very simple interpretation: using (57) and (60)
we obtain that |a] corresponds to the probability distribution
pa given by

pa =
∏

X

∞∑
n(X )=0

[−a(X )∂η(X )]n

n!

e−η(X )2/2

√
2πσ

=
∏

X

e−[η(X )−a(X )]2/2

√
2πσ

. (89)

When a(X ) is sufficiently small, we can interpret a(X ) as a
shift in the local inverse temperature:

a(X ) = 〈H (X )〉 − Ē (β )

σ
. (90)

The regime a(X ) ∼ 1 for every X is the regime in which the
model of independent hydrodynamic excitations fails.

These coherent states are elegant because even if a(X ) �
1, their time evolution is still simple. To show this explicitly,
we consider a state which is a superposition of coherent states:

|p(t )] =
∫

da P(a, t )|a]. (91)

Note that the requirement that 1 = [0|p(0)] implies that
P(a, 0) can be interpreted as a new probability distribution
over the space of all a. Because |a] is an overcomplete basis
set, we may write (91) for all t and replace the evolution
equation (68) for |p(t )] with a new equation of motion for
P(a, t ). To compute ∂t P(a, t ), note the following identities for
a single box X :

η|a] = (a + ∂a)|a], (92a)
←−
∂η |a] = a|a], (92b)
−→
∂η |a] = ∂a|a]. (92c)

These identities may be derived by left multiplying by [n| and
observing that the set of n(X ) form a complete basis. Using
(66) we thus find

∂t |p] = −
∫

da P(a)K|a]

=
∫

da
∑
X∼Y

D0

σ 2
(∂a(X ) − ∂a(Y ) ){[a(X ) − a(Y )]P(a)}|a].

(93)

In the second equation above, we have integrated by parts.
This suggests that we interpret

∂t P =
∑
X∼Y

D0

σ 2
(∂a(X ) − ∂a(Y ) ){[a(X ) − a(Y )]P}

=
∑
X,Y

K (X,Y )∂a(X )(a(Y )P), (94)
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which we recognize as a simple transport equation. Whenever
P(a, 0) = δ(a − a(0)),

∂t a(X ) = −
∑
X,Y

K (X,Y )a(Y ). (95)

A few more comments on (95) are in order. First, near equi-
librium at fixed inverse temperature β, the deterministic equa-
tion (95) is equivalent to the linearized stochastic equation
(49) for certain Gaussian initial conditions where P(a, 0) =
δ(a − a(0)). This is analogous to the entirely classical motion
of coherent states of the quantum harmonic oscillator. In this
case, the fluctuations are thermal and not quantum mechani-
cal; within linear response the fluctuations remain stationary
for all time. For these special initial conditions, in the long
wavelength limit, the many-body dynamics of the quantum
system has truly reduced to a classical deterministic diffusion
equation.

F. Nonlinearity in the coherent basis

The coherent state model, as we have introduced it above,
becomes formally inaccurate when a(X ) ∼ Ld/2. In this

regime, the effective value of β changes by a large O(1) factor,
and D(E, X,Y ) along with σ can no longer be approximated
by their near equilibrium values.

In order to get some understanding for what happens in this
limit, let us first continue to assume that a(X ) is sufficiently
small so that the width of the Gaussian is unchanged, but relax
the assumption that D can be approximated as (69). We now
consider

D(E, X,Y ) ≈ D∗

(
E (X ) + E (Y )

2
− Ē (β )

)
�(X,Y ), (96)

where Ē(β ) = (Ē (β ), · · · , Ē (β )). As stated in Sec. IV, we
need not consider gradient corrections to D because there are
other gradient corrections our approach has already missed.

We now compute the corrections to ∂t P(a, t ). Using (66)
and (92), we find

←−−
∂η(X )D(E − Ē (β ))

−−→
∂η(Y )|a]

= a(X )D(σa + σ∂a, X,Y )∂a(Y )|a]. (97)

Therefore,

∂t P =
∑
X,Y

�(X,Y )

σ 2
∂a(X )

(
a(Y )D

(
σ

a(X ) + a(Y )

2
− σ

∂a(X ) + ∂a(Y )

2
, X,Y

)
P

)
. (98)

Unlike (33), this does not resemble a conventional stochastic
equation. For example, expanding D to just linear order, it is
generally not the case that the second derivative contributions
have positive-definite weight. However since the equation is
mathematically equivalent (by changing variables to go back
to the E basis) to (49), it is a stochastic equation in disguise.

The function D(E − Ēβ, X,Y ) = D(σa, X,Y ) varies over
the scale E (X ) − Ē (β ) ∼ Ld , or a ∼ Ld/2. Now suppose that
we rescale a = Lκ ã with 0 < κ � d

2 ; then the derivative terms
inside of D in (98) are suppressed by additional factors of L.
Thus, to leading order in the large L limit, we can neglect
derivatives inside of D, so long as P(a) is a nonsingular
function of ã in the large L limit. Returning to the a variables,
we conclude that (98) is well approximated by a transport
equation whenever P is a sufficiently smooth function. The
resulting transport equation can be recast as a nonstochastic
differential equation for a(X ):

∂t a(X ) = −
∑

Y

D
(

σ
a(X ) + a(Y )

2

)
�(X,Y )a(Y ). (99)

When a � Ld/2, the effective temperature change between
different regions X can be very large, and σ is no longer
constant. A natural generalization of (91) is

p(E, t ) =
∫

dβ P(β, t )
∏

X

ω(E (X ))e−β(X,t )E (X )

Z (β(X, t ))
. (100)

Whenever β(X, t ) is a slowly varying function of X , and
P(β, t ) is a smooth function on the scale b ∼ L−d/2, we

generalize (99) to

∂tβ(X, t ) = −
∑

Y

D
(

Ē (β(X )) + Ē (β(Y ))
2

)

× β(X )2�(X,Y )

C(β(X ))
β(Y ), (101)

where D( 1
2 [E (X ) + E (Y )])�(X,Y ) = D(E, X,Y ). For sim-

plicity we have simply written the average 〈β〉 as β. The
factor of β2/C(β ) is the generalization of 1/σ 2; this factor
depends on the point X at which we are evaluating ∂tβ. In the
continuum limit, this becomes

∂tβ(X, t ) = ∇ · [De(β(X, t ))∇β(X, t )] (102)

with

De(β ) = D(E (β ))L2β2

C(β )
(103)

as the energy diffusion constant defined at the local inverse
temperature.

Let us emphasize once more that the deterministic hydro-
dynamics (101) should only be understood as holding over
smooth distributions of P(β, t ), where the local temperature
is only defined precisely at O(L0). The reason the stochastic
effects have been neglected is simply that stochastic fluctua-
tions in β are only relevant at subleading order in L. Unlike
in a theory with multiple conserved charges [45,46], there are
no long-time tails or other stochastic corrections to De beyond
the “tree level” result.
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VI. ENTROPY PRODUCTION

In this section, we discuss the irreversible and dissipative
dynamics studied previously in the language of entropy pro-
duction [19–22]. We will see that the second law of thermody-
namics is natural in our framework. More importantly, we will
discuss the extent to which entropy production is universal in
the hydrodynamic limit and confirm that the hydrodynamic
prediction for entropy production out of equilibrium is repro-
duced in our more microscopic formalism.

A. Thermodynamic entropy

The von Neumann entropy of a many-body quantum sys-
tem is

SvN = −tr(ρ ln ρ) (104)

and is invariant under time evolution. It was suggested in
[22] that the thermodynamic entropy in a many-body quantum
system should be taken to be

Stot = −tr(ρD ln ρ). (105)

Taking this definition, we find that

Stot = SS + ST (106)

where SS denotes a classical Shannon entropy, and ST denotes
the conventional thermodynamic entropy:

SS = −
∑

E

δN p(E) ln p(E) = −
∫

dE p(E) ln p(E),

(107a)

ST = −
∑

E

δN p(E) ln �(E) =
∑

X

∫
dE p(E)S(E (X )).

(107b)

Recall the definition of S in (10).
Since p(E) evolves under a reversible Markov process,

the second law of thermodynamics follows [47]. We now
explicitly demonstrate this, working for simplicity with the
FFPE (33):

∂t Stot = −
∫

dE (∂t p) ln
p

�
=

∑
X,Y

∫
dE

(E, X,Y )�(E)

p(E)

×
(

∂E (X )
p(E)

�(E)

)(
∂E (Y )

p(E)

�(E)

)
� 0. (108)

The inequality above is only saturated when

p(E)

�(E)
= F

(∑
X

E (X )

)
, (109)

as (E, X,Y ) has a null vector corresponding to global energy
conservation. If (109) is not obeyed, then ∂t S > 0. Since S is
a function of p, we have proven that the only stationary states
of our Markov process are (109), as previously advertised.

In our procedure, we have traced out information on length
scales shorter than L. Since

∫
dE p(E) = 1, and the spectrum

of E (X ) is ∝Ld , we conclude that

p(E) ∼ 1

LdN
. (110)

This implies that

SS ∼ ln L, (111a)

ST ∼ Ld . (111b)

Therefore, the Shannon entropy is subleading; to leading
order in the gradient expansion we may exclusively focus on
ST. In d > 1, SS is also subleading to quantum entanglement
entropy [33], which was explicitly ignored in (14), and scales
as SE � Ld−1 ln L in a gapless theory. For the remainder of
this section we will approximate Stot ≈ ST unless otherwise
stated.

B. Hydrodynamic entropy production

As we saw in Sec. V F, to leading order in L, it is sensible
to approximate the nonlinear stochastic equation (49) with the
deterministic equation (101), so long as the local inverse tem-
perature β(X, t ) is understood to only be defined to extensive
order L0. In this regime,

ST =
∑

X

∫
dE dβ S(E (X ))P(Lκ (β − 〈β〉))

×
∏

Y

ω(Y )e−β(Y )Y

Z (β(Y ))
, (112)

where P(Lκ (β − 〈β〉)) denotes a sufficiently clustered proba-
bility distribution around 〈β〉. Performing the integrals over E
and β, we obtain

ST =
∑

X

S(β(X )) + · · · , (113)

where · · · denotes subleading orders in L. As before, we will
drop the angle brackets on β(X ) for convenience; we also
define S(E (β )) = S(β ). As expected, the entropy is a local
thermodynamic function.

The rate of change of the entropy is given by

∂t ST =
∑

X

∂βS(β(X ))∂tβ(X ). (114)

Using the thermodynamic identity

∂T E = C = T ∂T S (115)

with T = 1/β, we find that

∂t ST =
∑
X,Y

D
(

β(X ) + β(Y )

2

)
�(X,Y )β(X )β(Y ). (116)

In the continuum limit, (116) becomes

∂t ST =
∫

dd X L2D(∇β )2 =
∫

dd X β( − ∇ · (D∇β )).

(117)

Entropy production is non-negative and local, in accordance
with the local second law of thermodynamics.

Using the first law of thermodynamics

dS(X ) = β(X )dE (X ), (118)
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(117) is equivalent to the nonlinear hydrodynamic equation
(51). The key observation is that ST was computed micro-
scopically, and is in complete quantitative agreement with the
phenomenology of hydrodynamics. In fact, as in conventional
hydrodynamics, we can interpret (117) as the statement that
an entropy current with non-negative divergence exists. The
entropy current defined along each edge of the superlattice
X ∼ Y is

JS(X → Y ) = β(X )D
(

β(X ) + β(Y )

2

)
[β(X ) − β(Y )].

(119)

The rate of change of the local entropy can be derived analo-
gously to (116):

∂t S(b(X, t )) =
∑
Y ∼X

JS(X → Y ). (120)

The local second law of thermodynamics is the inequality

JS(X → Y ) + JS(Y → X ) � 0. (121)

The observable part of the von Neumann entropy, introduced
in [22], obeys the local second law of thermodynamics. More
importantly, the actual flow of this observable entropy be-
tween regions X is exactly equal to the phenomenological
entropy current introduced in Landau’s formulation of hydro-
dynamics [1].

VII. OUTLOOK

In this paper we have presented a complete and unambigu-
ous derivation of the nonlinear stochastic hydrodynamics for
energy diffusion in a quantum many-body system on a lattice,
to first order in the gradient expansion. Our derivation solves
or clarifies a number of longstanding issues in the literature;
in particular, we have recovered (not imposed) the fluctuation-
dissipation theorem, demonstrated the equivalence of a cer-
tain microscopic entropy flow to Landau’s phenomenological
entropy current, and provided an explicit (although abstract)
formula for the energy diffusion constant.

Although we have relied on “old-fashioned” methods,
our formalism may be useful for addressing a number of
modern challenges in physics. First and foremost, as stated
in the introduction, it is a completely open question how
to compute diffusion constants in lattice models using an
unbiased algorithm. Our approach provides an algorithm. To
be explicit, consider a nonintegrable one dimensional lattice
model of spin- 1

2 degrees of freedom. Dividing up the lattice
into regions with L � 14 sites, we may exactly diagonalize
H (X ) within each region on a modern laptop computer. Since

transitions between eigenstates induced by H (X,Y ) only ex-
change a small amount of energy, we expect it is possible to
numerically compute W (E, E′) with good accuracy. Varying
the value of L allows the numericist to estimate finite size
effects. Keeping in mind the caveats about our approach for
one-dimensional models, we hope that our formalism can
help solve the longstanding problem of computing diffusion
constants in one dimensional lattice models. Alternatively,
our approach may also help to justify recently proposed
algorithms [23,24] to compute diffusion constants in d = 1.
Even in d = 2, such an algorithm may prove immensely
valuable, especially in the presence of an additional discrete
or continuous symmetry.

Our approach is “backwards” from the usual effective
field theory. We have started from microscopic dynamics
and argued what the emergent dynamics is. In particular,
we have justified the statement that there are generically no
degrees of freedom beyond the expected hydrodynamic ones.
Perhaps our approach will also be useful in providing intuitive
understandings for the exotic thermal supersymmetry algebras
and “world volume” approaches to hydrodynamics advocated
in [12–14].

While this paper deals with quantum models on a lattice,
there appears to be no physical obstruction to studying field
theories in the continuum, which will also have a conserved
momentum if translation invariant. How to generalize our
formalism to translation invariant continuum field theory is
an interesting open question, especially as our division of the
Hilbert space into spatial blocks explicitly breaks translation
invariance.

Finally, it may be interesting to compare our formalism
to the theory of random unitary circuits (RUCs) [48–52].
RUCs are equivalent to a discrete time Markov chain, and
could provide a useful check of when our Markov process
(27) breaks down in quantum systems. For example, there
are localized and diffusive “bound states” in a certain one
dimensional RUC [53] that describe short distance physics
beyond (27). Beyond such short distance effects, we anticipate
that our approach is consistent with RUC physics, and may
also shed light on the possibility of emergent thermodynamics
in RUCs with conservation laws.
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[40] M. Serbyn, Z. Papić, and D. A. Abanin, Local Conservation
Laws and the Structure of the Many-Body Localized States,
Phys. Rev. Lett. 111, 127201 (2013).

[41] J. Polchinski, Renormalization and effective Lagrangians, Nucl.
Phys. B 231, 269 (1984).

[42] C. Gardiner, Stochastic Methods, 4th ed. (Springer, New York,
NY, 2009).

[43] R. Illner and M. Pulvirenti, Global validity of the Boltzmann
equation for a two-dimensional rare gas in vacuum, Commun.
Math. Phys. 105, 189 (1986).

[44] B. J. Alder and T. E. Wainwright, Decay of the velocity auto-
correlation function, Phys. Rev. A 1, 18 (1970).

[45] S. Mukerjee, V. Oganesyan, and D. Huse, Statistical theory of
transport by strongly interacting lattice fermions, Phys. Rev. B
73, 035113 (2006).

[46] P. Kovtun, Fluctuation bounds on charge and diffusion, J. Phys.
A 48, 265002 (2015).

[47] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and
Mixing Times (AMS, Providence, RI, 2009).

[48] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Quantum Entan-
glement Growth under Random Unitary Dynamics, Phys. Rev.
X 7, 031016 (2017).

[49] A. Nahum, S. Vijay, and J. Haah, Operator Spreading
in Random Unitary Circuits, Phys. Rev. X 8, 021014
(2018).

[50] C. W. von Keyserlingk, T. Rakovsky, F. Pollmann, and S. L.
Sondhi, Operator Hydrodynamics, OTOCs, and Entanglement

022105-16

https://doi.org/10.1103/PhysRevA.8.2048
https://doi.org/10.1103/PhysRevA.8.2048
https://doi.org/10.1103/PhysRevA.8.2048
https://doi.org/10.1103/PhysRevA.8.2048
https://doi.org/10.1016/0378-4371(93)90109-H
https://doi.org/10.1016/0378-4371(93)90109-H
https://doi.org/10.1016/0378-4371(93)90109-H
https://doi.org/10.1016/0378-4371(93)90109-H
https://doi.org/10.1103/PhysRevLett.112.100602
https://doi.org/10.1103/PhysRevLett.112.100602
https://doi.org/10.1103/PhysRevLett.112.100602
https://doi.org/10.1103/PhysRevLett.112.100602
https://doi.org/10.1103/PhysRevD.91.105031
https://doi.org/10.1103/PhysRevD.91.105031
https://doi.org/10.1103/PhysRevD.91.105031
https://doi.org/10.1103/PhysRevD.91.105031
https://doi.org/10.1007/JHEP07(2014)123
https://doi.org/10.1007/JHEP07(2014)123
https://doi.org/10.1007/JHEP07(2014)123
https://doi.org/10.1007/JHEP07(2014)123
https://doi.org/10.1007/JHEP01(2016)184
https://doi.org/10.1007/JHEP01(2016)184
https://doi.org/10.1007/JHEP01(2016)184
https://doi.org/10.1007/JHEP01(2016)184
https://doi.org/10.1007/JHEP09(2017)095
https://doi.org/10.1007/JHEP09(2017)095
https://doi.org/10.1007/JHEP09(2017)095
https://doi.org/10.1007/JHEP09(2017)095
https://doi.org/10.1007/JHEP09(2018)127
https://doi.org/10.1007/JHEP09(2018)127
https://doi.org/10.1007/JHEP09(2018)127
https://doi.org/10.1007/JHEP09(2018)127
https://doi.org/10.1088/1126-6708/2008/02/045
https://doi.org/10.1088/1126-6708/2008/02/045
https://doi.org/10.1088/1126-6708/2008/02/045
https://doi.org/10.1088/1126-6708/2008/02/045
http://arxiv.org/abs/arXiv:1612.07705
https://doi.org/10.1007/JHEP10(2018)194
https://doi.org/10.1007/JHEP10(2018)194
https://doi.org/10.1007/JHEP10(2018)194
https://doi.org/10.1007/JHEP10(2018)194
https://doi.org/10.21468/SciPostPhys.5.5.053
https://doi.org/10.21468/SciPostPhys.5.5.053
https://doi.org/10.21468/SciPostPhys.5.5.053
https://doi.org/10.21468/SciPostPhys.5.5.053
https://doi.org/10.1103/PhysRev.144.151
https://doi.org/10.1103/PhysRev.144.151
https://doi.org/10.1103/PhysRev.144.151
https://doi.org/10.1103/PhysRev.144.151
https://doi.org/10.1002/prop.19700180302
https://doi.org/10.1002/prop.19700180302
https://doi.org/10.1002/prop.19700180302
https://doi.org/10.1002/prop.19700180302
https://doi.org/10.1016/j.aop.2015.01.003
https://doi.org/10.1016/j.aop.2015.01.003
https://doi.org/10.1016/j.aop.2015.01.003
https://doi.org/10.1016/j.aop.2015.01.003
https://doi.org/10.1103/PhysRevB.93.224305
https://doi.org/10.1103/PhysRevB.93.224305
https://doi.org/10.1103/PhysRevB.93.224305
https://doi.org/10.1103/PhysRevB.93.224305
http://arxiv.org/abs/arXiv:1702.08894
http://arxiv.org/abs/arXiv:1808.08977
http://arxiv.org/abs/arXiv:1804.01988
https://doi.org/10.1038/nature01978
https://doi.org/10.1038/nature01978
https://doi.org/10.1038/nature01978
https://doi.org/10.1038/nature01978
https://doi.org/10.1126/science.1165015
https://doi.org/10.1126/science.1165015
https://doi.org/10.1126/science.1165015
https://doi.org/10.1126/science.1165015
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1063/1.1731409
https://doi.org/10.1063/1.1731409
https://doi.org/10.1063/1.1731409
https://doi.org/10.1063/1.1731409
https://doi.org/10.1143/PTP.34.399
https://doi.org/10.1143/PTP.34.399
https://doi.org/10.1143/PTP.34.399
https://doi.org/10.1143/PTP.34.399
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevLett.119.220604
https://doi.org/10.1103/PhysRevLett.119.220604
https://doi.org/10.1103/PhysRevLett.119.220604
https://doi.org/10.1103/PhysRevLett.119.220604
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1103/PhysRevLett.40.783
https://doi.org/10.1103/PhysRevLett.40.783
https://doi.org/10.1103/PhysRevLett.40.783
https://doi.org/10.1103/PhysRevLett.40.783
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1103/PhysRevD.95.096003
https://doi.org/10.1103/PhysRevD.95.096003
https://doi.org/10.1103/PhysRevD.95.096003
https://doi.org/10.1103/PhysRevD.95.096003
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1016/0550-3213(84)90287-6
https://doi.org/10.1016/0550-3213(84)90287-6
https://doi.org/10.1016/0550-3213(84)90287-6
https://doi.org/10.1016/0550-3213(84)90287-6
https://doi.org/10.1007/BF01211098
https://doi.org/10.1007/BF01211098
https://doi.org/10.1007/BF01211098
https://doi.org/10.1007/BF01211098
https://doi.org/10.1103/PhysRevA.1.18
https://doi.org/10.1103/PhysRevA.1.18
https://doi.org/10.1103/PhysRevA.1.18
https://doi.org/10.1103/PhysRevA.1.18
https://doi.org/10.1103/PhysRevB.73.035113
https://doi.org/10.1103/PhysRevB.73.035113
https://doi.org/10.1103/PhysRevB.73.035113
https://doi.org/10.1103/PhysRevB.73.035113
https://doi.org/10.1088/1751-8113/48/26/265002
https://doi.org/10.1088/1751-8113/48/26/265002
https://doi.org/10.1088/1751-8113/48/26/265002
https://doi.org/10.1088/1751-8113/48/26/265002
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014


EMERGENT ENTROPY PRODUCTION AND HYDRODYNAMICS … PHYSICAL REVIEW E 99, 022105 (2019)

Growth in Systems without Conservation Laws, Phys. Rev. X
8, 021013 (2018).

[51] V. Khemani, A. Vishwanath, and D. A. Huse, Operator Spread-
ing and the Emergence of Dissipative Hydrodynamics under
Unitary Evolution with Conservation Laws, Phys. Rev. X 8,
031057 (2018).

[52] T. Rakovsky, F. Pollmann, and C. W. von Keyserlingk, Diffu-
sive Hydrodynamics of Out-of-Time-Ordered Correlators with
Charge Conservation, Phys. Rev. X 8, 031058 (2018).

[53] H. Gharibyan, M. Hanada, S. H. Shenker, and M. Tezuka, Onset
of random matrix behavior in scrambling systems, J. High
Energy Phys. 07 (2018) 124.

022105-17

https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1007/JHEP07(2018)124
https://doi.org/10.1007/JHEP07(2018)124
https://doi.org/10.1007/JHEP07(2018)124
https://doi.org/10.1007/JHEP07(2018)124



