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In this study we used a nonequilibrium simulation method to investigate the temperature dependent divergence
of thermal conductivity in a one-dimensional momentum conserving system with an asymmetric double well
nearest-neighbor interaction potential. We show that across all temperatures thermal conductivity exhibits power-
law divergence with the chain length and the value of the divergence exponent (α) depends on the temperature
of the system. At low and high temperatures α reaches close to ∼0.5 and ∼0.33, respectively. Whereas in the
intermediate temperature the divergence of thermal conductivity with the chain length saturates with α ∼ 0.07.
Subsequent analysis showed that the estimated value of α in the intermediate temperature may not have reached
its thermodynamic limit. Further calculations of local α revealed that its approach towards the thermodynamic
limit is crucially dependent on the temperature of the system. At low and high temperatures local α reaches
its thermodynamic limits in shorter chain lengths. On the contrary, in the case of intermediate temperature its
progress towards the asymptotic limit is nonmonotonic.

DOI: 10.1103/PhysRevE.99.022103

I. INTRODUCTION

Understanding the heat conduction in finite dimensional
systems has been a longstanding and much debated problem
for some time. Particularly, a major focus has been establish-
ing Fourier’s law of heat conduction for low-dimensional sys-
tems. In Fourier’s law the heat flux (J) becomes proportional
to the temperature gradient (∇T ) with thermal conductivity
(κ) as the proportionality constant, J = −κ∇T . In pursuit of
finding out the microscopic basis of the macroscopic law of
heat conduction, lattice models of a one-dimensional (1D)
chain of particles connected by nonlinear interaction poten-
tials have been investigated [1,2]. These investigations con-
cluded that in 1D momentum conserving nonlinear lattices,
the heat flux follows a power-law scaling with the system size
(N), J ∼ Nα−1 [3], which is a deviation from Fourier’s law
that dictates J ∼ N−1. Therefore in the thermodynamic limit
of large N , the thermal conductivity diverges with the system
size and it scales as κ ∼ Nα . Both theoretical calculations
[1,4–15] and numerical simulations [2–4,7,16–20] of lattice
models with various variants of the Fermi-Pasta-Ulam (FPU)
interaction potential predicted the anomalous nature of κ

in 1D momentum conserving systems. Specific values of α

varied from one calculation to other [2]. However in all cases
the exponent lies in the range of 0 � α � 1. The specific value
of α was found to depend on the nature of nonlinearity in
the interaction potential. However, generally three different
values α = 2/5 [4,21], α = 1/3 [6,7,11,18,19], and α = 1/2
[8,10,12,13] have been obtained in different calculations.
Further momentum conserving chains with asymmetric po-
tentials that allow bond dissociation (e.g., Lennard-Jones or
Morse potential) were predicted to show convergent thermal
conductivity [25,26].
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However, there has been report of finite thermal conduc-
tivity in momentum conserving systems with an asymmetric
interaction potential [22]. This result was in contradiction with
theoretical and numerical results in 1D momentum conserving
systems that was predicted to have divergent conductivity. The
prediction of normal thermal conductivity for asymmetric lat-
tice in 1D at low temperature was debated and the possibility
of strong low-temperature finite-size effects were discussed
by Das et al. [23]. Further, using the equilibrium Green-
Kubo method of heat current autocorrelation, Wang et al. [24]
predicted the length scale (N) dependence of the divergence
exponent (α) for single-well asymmetric FPU-αβ and LWAII
[22] 1D lattices. They concluded that α reaches its asymptotic
thermodynamic limit at a much longer chain length in asym-
metric LWAII lattice as compared to asymmetric FPU-αβ

lattice. Therefore at shorter length scale α becomes a function
of N . However N dependence of α may further be affected
by parameters in the potential and more importantly the
average temperature of a heat bath. Temperature dependent
divergence was reported in the symmetric double well (DW)
potential where κ diverged with α = 0.33 at high temperature
and at low temperature it showed weak divergence [19]. A
similar conclusion was also made for the FPU-αβ lattice
with α = 0.4 at high temperature and weak divergence at low
temperature [25]. Thus temperature dependent divergence in
an asymmetric momentum conserving lattice needed further
systematic investigations.

In this paper we addressed the problem of temperature
dependent divergence of thermal conductivity in 1D nonlin-
ear lattice with an asymmetric nearest-neighbor interaction
potential. We used an asymmetric DW potential for nearest-
neighbor interaction among the particles in the lattice. We var-
ied the heat bath temperatures and, using the nonequilibrium
simulation method, we calculated κ for the lattice of various
sizes with different degrees of asymmetry in the interaction
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potential to investigate the temperature dependence of the
divergence of κ .

II. MODEL AND RESULTS

We have considered a one-dimensional lattice model with
a nearest-neighbor interaction potential. The classical Hamil-
tonian for the model can be represented as

H =
N∑

i=1

p2
i

2m
+

N−1∑

i=1

V (xi − xi−1), (1)

where xi and pi are the displacement from equilibrium posi-
tion and momentum of the ith particle, respectively. The mass
and the total number of particles on the chain are given by m
and N , respectively. The nearest-neighbor interaction poten-
tial between the particle i and i − 1 is given by V (xi − xi−1).
As we have not considered any external potential, our lattice
model becomes a momentum conserving chain. We fixed
m = 1 for our calculations throughout. We have chosen the
asymmetric double well nearest-neighbor interaction potential
of the form given by

V (x) = − 1
2 k2x2 + 1

3 k3x3 + 1
4 k4x4, (2)

where k2, k3, and k4 are three positive constants. This potential
belongs to the general class of the FPU-αβ potential and due
to the cubic nonlinearity the potential becomes asymmetric
[V (x) �= V (−x)]. In Fig. 1 we present the asymmetric nature
of the double well potential for two different values of cubic
nonlinear parameter k3 that determines the degree of asym-
metry of the potential. With an increase in the value of k3 the
asymmetric nature of the potential increases.

In order to study the thermal conduction through the
nonlinear chain using the nonequilibrium simulation method,
both ends of the lattice are connected to Langevin heat baths
having different temperatures. The equation of motion of the
ith particle in the chain is given by

ẍi = k2(2xi − xi+1 − xi−1) − k3[(xi − xi−1)2 − (xi+1 − xi )
2]

− k4[(xi − xi−1)3 − (xi+1 − xi )
3] − γiẋi + ηi, (3)
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FIG. 1. Schematic representation of the double-well (DW)
nearest-neighbor interaction potential, V (x), with different values of
asymmetric parameter k3. k2 = 0.1 and k4 = 0.002.

where the fluctuation (ηi) and dissipation (γi) terms are de-
fined as ηi = ηLδi,1 + ηRδi,N and γi = γ (δi,1 + δi,N ), respec-
tively. The heat baths are characterized by the fluctuation-
dissipation relations followed by the two Markovian heat
baths, 〈ηL(t )ηL(t ′)〉 = 2γ kBTLδ(t − t ′) and 〈ηR(t )ηR(t ′)〉 =
2γ kBTRδ(t − t ′). The γ , kB, TL, and TR are the dissipation
constant, Boltzmann constant, temperatures of left and right
heat baths, respectively. The values of Boltzmann constant
(kB) and the dissipation constant (γ ) were chosen to be
unity throughout. We varied the left and right bath temper-
atures (TL and TR) to investigate the effect of temperature
on the divergence behavior of thermal conductivity. In this
context we defined two relevant quantities: the tempera-
ture difference, �T = TL − TR, and the average temperature,
T = (TL + TR)/2.

The instantaneous local heat current between ith and
(i + 1)th is defined by

ji = 1

2
(ẋi + ẋi+1)

∂H

∂xi
. (4)

Defining the time-averaged local heat current as Ji =
limt→∞ 1

t

∫ t
0 ji(τ )dτ , that reaches a nonequilibrium stationary

state across the lattice after a long time, the global heat current
in the lattice is given by

J =
N−1∑

i=1

Ji

N − 1
. (5)

The thermal conductivity is related to the steady state
global heat current as

κ = JN

�T
. (6)

If the global heat current follows J ∼ N−1 scaling then the
thermal conductivity becomes convergent in the thermody-
namic limit (large N). However in 1D momentum conserving
systems, J has been predicted to scale as J ∼ Nα−1. Thus
κ becomes divergent with a power-law scaling relation as
κ ∼ Nα .

In order to numerically integrate the dynamical equations
(3), we used the fourth order Runge-Kutta method. We chose
to use fourth order Runge-Kutta method to achieve higher
accuracy in our calculations although it leads to a consider-
able increase in simulation time. We typically ran 2–5×1010

iterations in numerical integrations with an integration step
length of 0.01. In the DW potential (2) we fixed k2 = 0.1,
k4 = 0.002, and varied k3 (0.003 or 0.006) in order to explore
the effect of asymmetry on the nature of divergence in κ . Fur-
ther to investigate the temperature dependence of divergence
we chose various combinations of T and �T (T,�T ). We
used a fixed boundary condition (BC), x0 = xN+1 = 0, in our
calculations. Previous works highlighted the importance of
boundary conditions in the heat conduction in lattice models
[23,27].

In Fig. 2(a) we show the divergence of thermal conduc-
tivity for the asymmetric potential (k3 = 0.003) with varying
average heat bath temperatures keeping the �T fixed. The
chosen (T , �T ) pairs were (9.5, 1.0); (4.5, 1.0); (1.5, 1.0).
For these three different values of T the system exhibits
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FIG. 2. Divergence of thermal conductivity, κ , as a function of
chain length, N . Different colored symbols represent simulations
with different average bath temperatures with fixed temperature
difference, (T , �T ); circle: (1.5,1), triangle: (4.5,1), square: (9.5,1),
and star: (3.0,4). Solid lines are from power-law fitting (κ ∼ Nα).
The values of α are indicated inside the plots for (a) k3 = 0.003 and
(b) k3 = 0.006.

power-law divergence of thermal conductivity with α ranging
between 0.31–0.35. These α values are similar to the
predicted α = 1/3 by renormalization group theory,
mode coupling theory, and many numerical simulations
[6,7,10,11,18,19]. We found a similar divergence of κ for
the same system with higher asymmetry (k3 = 0.006) in the
interaction potential [Fig. 2(b)]. One important aspect of
these divergence behaviors is that the average temperature of
the system is large. Therefore at the high temperature limit
the asymmetric-DW-momentum-conserving system behaves
similar to the symmetric-FPU-αβ-momentum-conserving
system.

We next investigated the divergence behavior of thermal
conductivity for a range of average temperature values in the
intermediate to low T limits again by varying the heat bath
temperatures TL and TR. Particularly we aimed to determine
the nature of divergence in the intermediate and low tempera-
ture regimes. In Fig. 3 we show the divergence of κ in different
average temperatures of the system with k3 = 0.003. Figure 3
indicates that the qualitative nature of divergence changes
depending on the average temperature of the heat bath. The
conductivity diverged sharply with α = 0.49 at very low
temperature (T = 0.075). With an increase of temperature
(T = 0.15) the divergence becomes shallow with α = 0.18
and at T = 0.3, the thermal conductivity appears to saturate
with α = 0.07. At high temperature (T = 1.5) κ shows its
usual divergence behavior with α = 0.31. The striking feature
of the temperature dependent thermal conductivity here is that
two different types of scaling behaviors of κ at very low
(α = 0.49) and very high (α = 0.31) temperatures. Further,
the very weak divergence of thermal conductivity (or satura-
tion of κ with N) in the intermediate T poses a possibility of
validity of Fourier’s law. In addition, consistent with previous
observations [23,25], we also find the weak divergence with
the fixed BC even though fixed BC does not allow a thermal
expansion that was known to provide additional avenue of
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(0.3, 0.2), 0.07±0.01
(1.5, 1.0),
0.31±0.01

(0.15, 0.1), 0.18±0.01

FIG. 3. Divergence of κ as a function of N for different average
T and �T ; circle: (1.5,1), triangle: (0.3,0.2), square: (0.15,0.1), and
diamond: (0.075,0.05). The asymmetric parameter k3 was 0.003. The
α values are indicated inside the plot.

phonon scatterings leading to normal conductivity. Similar
saturation of κ with N was first reported in an asymmetric
lattice by Zhong et al. [22] and it was proposed by them that
the system follows Fourier’s law. However in an asymmetric
FPU-αβ potential whether the saturation was indeed due to
the asymmetric nature of the interaction potential or not was
discussed later [23,24]. Repeating calculations with higher
asymmetry of the potential (k3 = 0.006) also resulted similar
observations as in k3 = 0.003 (Fig. 4). Thus our simulation
results indicate that the values of α depend on the tem-
perature of the system in the asymmetric DW interaction
potential.

To determine the temperature dependence of α, we plotted
the α as a function of T for two different values of asymmetric
parameter k3 (Fig. 5). With an increase in T , α decreases
sharply and, passing through a minimum, it increases to
saturate with α = 0.35 at high T . The weakest divergence
of κ occurs at the intermediate T both for low and high
asymmetries of the potential. This type of turnover behavior
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(0.15, 0.1), 0.22±0.01

(0.3, 0.2), 0.07±0.01

(1.5, 1.0), 0.32±0.01

FIG. 4. Divergence of κ with N at different temperatures with
asymmetric parameter k3 = 0.006. (T , �T ) pairs are: circle (1.5,1),
triangle (0.3,0.2), square (0.15,0.1).
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FIG. 5. Temperature dependence of α for two different values of
asymmetric parameters k3. The sizes of error bars on α are nearly the
same as the sizes of the markers.

has been reported in the recent past [28,29] in the case of the
1D anharmonic chain. The comparison of α vs. T for low
and high k3 indicates that the divergence behaviors of thermal
conductivity for different asymmetry values are identical. If
the saturation of κ in this system was an asymmetry induced
effect then there must have been a shift in α vs. T plots for the
two different values of k3. However the two curves overlap
with each other. Further for the same reason, expectedly
higher asymmetry would have resulted saturation of κ at lower
N as compared to lower asymmetry [23]. The comparison of
κ vs. N profiles for higher and lower asymmetry at different
T (Fig. 6) do not indicate any such asymmetry induced early
saturation of κ . These results and analyses point out that the
saturation of κ may be a finite length effect occurring only at
intermediate T . However our results does point out that the
nature of divergence is indeed temperature dependent.

In order to determine the finite-size effect on α we calcu-
lated the local divergence coefficient, αN , by determining the
local slope in κ vs. N line. In Fig. 7 we present the αN as a
function of N estimated at various T for two different values
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T=0.15
T=0.3
T=1.5

FIG. 6. Comparison of the divergence of κ with N for different
values of asymmetric parameter k3 at various average bath tempera-
tures, T . Solid line: T = 1.5, dotted line: T = 0.3, and dashed line:
T = 0.15.
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FIG. 7. Plot of local divergence coefficient αN with N for dif-
ferent values of asymmetric parameter k3 and at different average
bath temperature, T . The αN was estimated by calculating the local
slope of κ vs. N plots given in Figs. 3 and 4. Solid line: T = 1.5,
dotted line: T = 0.3, dashed line: T = 0.15, and dashed-dot line:
T = 0.075. The horizontal dashed line represents α = 0.33.

of asymmetry parameter. At high T (T = 1.5) the well-known
thermodynamic limit of 0.33 is achieved at the shorter length
of the chain and αN settles nearly with that value for a large
range of N . On the other hand, at very low T (T = 0.075), αN

appeared to settle at α ∼ 0.5 value, indicating the different
scaling behavior of the system depending on the temperature
of the system. However at the intermediate T (T = 0.3) with
increasing N , αN decreases below the thermodynamic limit
(α = 0.33, dashed line in Fig. 7) and, passing through a
minimum, it shows an increasing trend for both values of
asymmetry parameters. A similar trend was seen for T = 0.15
although without the minimum as probably the minimum is
located at larger N . As at these two temperatures the local
α does not settle to a particular value, it may be concluded
that the values of α at the intermediate T are not from the
thermodynamic limit of the system.

The presence of two wells separated by a barrier in the
DW interaction potential makes the lattice system somewhat
different as compared to a usual FPU class of single-well
interaction potentials. At the high temperature regime, due to
the increased thermal noise from the heat baths the system
will be able to transition between the two wells. However,
at the low temperature regime the system will be trapped in
one of the wells depending on the initial state of the system.
In order to assess the temperature dependent dynamic nature
of the system, we calculated 1

N−1

∑N−1
i=1 |〈xi+1 − xi〉|, an order

parameter [29], at various temperatures for two different val-
ues of asymmetry parameter k3 [Fig. 8(a)]. This order param-
eter essentially reflects the equilibrium average of absolute
displacement from the adjacent particle. We find that the value
of the order parameter saturates to two distinct regimes at low
and high temperatures indicating the temperature dependent
disparate nature of the system. The two different types of
divergence exponents of thermal conductivity (α ∼ 0.5 and
α ∼ 0.33) in the low and high T thus correlate with the order
parameter of the system. The qualitative nature of the order
parameter does not depend on the asymmetry parameter k3.
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FIG. 8. (a) Temperature dependence of the order parameter for
a chain with N = 500. The average displacement from the adjacent
particle along the chain at T = 2.0 (b) and T = 0.07 (c).

Further we plotted the ensemble averaged displacement with
the adjacent particle, 〈xi+1 − xi〉, of a chain with N = 500 at
high [Fig. 8(b)] and low [Fig. 8(c)] temperatures and these
two plots suggest the dichotomous dynamical behavior of the
lattice with DW potential. Particularly the confinement of the
system in the two wells is evident at low T . Whereas at high T
the fluctuations are more or less homogeneous. Therefore our
estimated temperature dependent divergence characteristics of
thermal conductivity is due to the distinct qualitative nature of
the system at low and high T .

In the previous studies of the thermal conductivity of
nonlinear lattice with DW or FPU-αβ potential, the values
of the coefficients, k2, k3, and k4 in the potential (2) were
chosen to be in the range of 1–2 [19,23–25,29]. However
in our calculations we have chosen a different set of values
for these coefficients and particularly the values (k2 = 0.1,
k3 = 0.003/0.006, k4 = 0.002) are much smaller than previ-
ously used values. In order to ensure that the contributions
from the cubic and quartic terms in the potential are not neg-
ligible, we calculated the ensemble average of second, third,
and fourth order terms in the potential (Fig. 9) at different
temperatures. Our calculations indicate that the contributions
from the cubic and the quartic terms are not negligible as
compared to the quadratic term. Further the values of these
terms show a non-monotonous temperature dependence that is
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FIG. 9. Absolute average contributions of second, third, and
fourth order terms in the potential for a chain with N = 1000 and
k3 = 0.003. The values of temperature are indicated at the top of the
figure. The system behaves similarly with k3 = 0.006 as well.

consistent with the temperature dependent scaling of thermal
conductivity. Based on the used values k2, k3, and k4, the ab-
solute values of the coefficients in the DW potential (2) were
0.05, 0.001/0.002, and 0.0005. The progressively decreasing
values of these coefficients further justifies the truncation of
the polynomial beyond fourth order in Taylor expansion [30].

III. CONCLUSION

Understanding the divergent nature of thermal conductivity
in low-dimensional systems has been a longstanding problem.
A large number of theoretical and numerical calculations on
1D momentum conserving systems concluded power-law di-
vergence of thermal conductivity with the length of the lattice
[1,2]. In this study we used the nonequilibrium simulation
method to show that the divergent nature of κ in 1D asym-
metric lattice depends on the temperature of the heat baths.
In the thermodynamic limit, the system exhibits α ∼ 0.5 and
α ∼ 0.33 at low and high T , respectively. Therefore our cal-
culations point out two different scaling behaviors of the same
system depending on the temperature of the system. At low T
our estimated value of α (∼ 0.5) becomes the same as given
previously by mode coupling theory [8,10,12,13]. Whereas at
high T our calculation leads to an α (∼ 0.33) as predicted
previously by renormalization group analysis [6,11]. Further
at the intermediate T , κ appears to saturate against N with
a very small value (α = 0.07). A similar weak divergence
of κ has been reported before in the case of 1D asymmetric
momentum conserving lattice [22] and it was characterized
as the validity of Fourier’s law by the asymmetric system.
However later it was determined that the behavior may not be
associated with the true thermodynamic limit of the system
[23,24]. In order to probe the weak divergence of κ in the
intermediate T , we calculated local divergence exponent, αN ,
and showed that in intermediate T , αN does not saturate to
a fixed value in the length scale of our simulations. Here
αN decreases with N and while passing through a minima it
showed a tendency to increase again. Had the system reached
its thermodynamic limit, there should not have any further
increase of the local α. On the contrary in the low and high
temperatures αN decrease with N and saturate to its respective
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thermodynamic limits independent of the extent of asymmetry
in the interaction potential. Therefore our calculations indi-
cate that the approach to the thermodynamic limit of α is
indeed temperature dependent in the case of the asymmetric
interaction potential. We emphasize that our finding of the
temperature dependent divergence of thermal conductivity in
an asymmetric double well interaction potential may as well
be obtained in the case of symmetric double well potential

as there is no significant dependence of asymmetry on the
divergence behavior.
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