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Theory of rotational columnar structures of soft spheres
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There is a growing interest in cylindrical structures of hard and soft particles. A promising new method to
assemble such structures has recently been introduced by Lee et al. [Lee, Gizynski, and Grzybowski, Adv.
Mater. 29, 1704274 (2017)]. They used rapid rotations around a central axis to drive spheres of lower density
than the surrounding fluid towards the axis. This resulted in different structures as the number of spheres is
varied. Here, we present comprehensive analytic energy calculations for such self-assembled structures, based
on a generic soft sphere model, from which we obtain a phase diagram. It displays interesting features, including
peritectoid points. These analytic calculations are complemented by preliminary numerical simulations for finite
sample sizes with soft spheres. A similar analytic approach could be used to study packings of spheres inside
cylinders of fixed dimensions, but with a variation in the number of spheres.
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Columnar crystals appear both in nature and in man-made
objects and include biological systems such as viruses, flag-
ella or microtubules [1–4], and nanotubes [5–7]. A more re-
mote but stimulating context for this research is the discovery
of “tubular crystals” in simulations; these consist of various
columnar structures interwoven in three dimensions [8].

Bubbles, emulsion droplets, hydrogel, or plastic spheres
are common constituents of such structures in laboratory
experiments. They can crystallize spontaneously when con-
fined in cylindrical tubes [9–11]. For hard spheres the densest
arrangement depends critically on the ratio of D, the cylinder
diameter, to d , the sphere diameter, as was found in computer
simulations [12–17]. Such simulations have also been carried
out for the packings of soft spheres [18–20].

Recently, the subject has been given a new twist by the
development of a novel experimental method, in which the
rapid spinning of a liquid-filled column containing spheres of
lower density than the surrounding fluid drives these toward
the central axis [21]. Most of the data presented by Lee
et al. [21] are for effectively hard spheres. This results in
the familiar sequence of columnar hard sphere packings, but
without the intervening “line slips,” by which such structures
are accommodated in response to the change in diameter D of
a densely packed cylinder [19]. Numerical simulations have
been performed to reproduce these observations, with some
success [21].

Here, we adopt a different approach using analytical meth-
ods to obtain a comprehensive phase diagram for such rotating
columnar structures. In practical terms, the two axes of such a
phase diagram correspond to a variation of the linear number
density ρ (number of spheres per unit length), which can be
varied in an experiment, and the squared rotational frequency
ω2. These are appropriately rescaled to be represented by
dimensionless quantities, as indicated below.

We first investigate the hard sphere limit (corresponding to
ω → 0 in an experiment). We then perform analytic energy

calculations for a system of soft spheres, where the total
energy of the system is the sum of the rotational energy and
an overlap energy (representing the elastic energy stored in
the system due to contacts between adjacent spheres). Finally,
we compare our analytic results with computer simulations of
soft spheres, where finite sample size introduces modifications
to the analytical phase diagram.

Hard spheres. Mughal et al. [12–15] have computed the
maximal-density columnar structures of hard spheres inside
a cylinder. While there is no mathematical proof of these
results, they have been corroborated by others [16,17] and are
in little doubt. The packing fraction � of the densest structures
was computed as a function of the ratio D/d of cylinder to
sphere diameters (Fig. 3 of Ref. [13]). Up to D/d ≈ 2.7 these
structures include only spheres in contact with the confining
cylinder, so that all spheres are of the same distance R from
the central axis. All of the homogeneous structures considered
here are of this type.

The densest hard sphere packings can be classified as
either homogeneous (previously called symmetric structure of
single phase [13,19,20]) packings or line-slip arrangements;
examples of both are shown in the inset of Fig. 1. For a homo-
geneous arrangement each sphere is in the same relation to six
neighboring spheres. Such structures can be classified using
the phyllotactic notation, i.e., a triplet of positive integers
(l = m + n, m, n) with m � n. The point pattern formed by
the sphere-cylinder contact features three families of spirals;
l , m, and n count the number of spirals in each direction until
the spirals repeat [15].

Intervening between these homogeneous packings, which
are found at particular values of D/d , are line-slip structures
in which contacts are lost along a line separating two spiral
chains of the homogeneous structures [19].

We can transform known hard sphere packing results to
give us the lowest (rotational) energy per sphere (that is, the
minimal R) as a function of the dimensionless inverse number
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FIG. 1. Minimal rotational energy Erot as a function of dimen-
sionless inverse number density (ρd )−1 for hard sphere packings.
The energy of the line-slip packings is given by the solid red line.
Vertical black lines indicate the location of homogeneous structures,
identified by indices (l, m, n). The straight solid lines (green line)
between adjacent homogeneous structures indicates that binary mix-
tures have a lower energy compared to line-slip packings. The shaded
area is the region of all possible hard sphere packings which have
a single value of distance R from the central axis; by definition,
this precludes binary mixtures. The inset shows examples of a
homogeneous and a line-slip structure. See text for an interpretation
of the two red arrows.

density (ρd )−1 (see Fig. 1). If the rotational velocity is ω, then
by the parallel axis theorem the rotational energy per sphere is
Erot = 1

2ω2(I0 + MR2), where I0 = Md2/10 is the moment of
inertia of a sphere with mass M. Since the moment of inertia of
a sphere is independent of R, we will omit this term in the cal-
culations below. For hard sphere packings the sphere centers
are located at a distance R = (D − d )/2 from the cylindrical
axis, thus the rotational energy for hard sphere packings is
given by EH

rot = 1
8ω2M(D − d )2. The dimensionless inverse

number density (ρd )−1 can be computed from the diameter
ratio and the packing fraction � as (ρd )−1 = 2

3 ( d
D )2�−1.

Figure 1 implies that the homogeneous structures, which
occur for special values of (ρd )−1, minimize the rotational
energy per sphere and we expect to observe a single-phase
structure at these values of (ρd )−1. In the intervening ranges,
however, binary mixtures (consisting of two-phase structures)
of the adjacent homogeneous structures are expected because
the energies of these structures, dictated by the usual Maxwell
(common tangent) construction, lie below the line-slip ener-
gies in Fig. 1.

Note that the hard sphere limit may be approached in two
ways, as indicated by the red arrows in Fig. 1—horizontally,
as in the packing simulations of Refs. [19,20], or vertically, as
in the present Rapid Communication.

The resultant structure sequence is in accord with the
findings of Lee et al. [21]. In the following we address its
modification in the case of soft spheres and finite columns.

Soft spheres: Analytical results. The effect of moving away
from the hard sphere limit is to widen the range in which
the homogeneous (l, m, n) structures are found. This can be
quantified and understood in terms of a transparent analytical
description, illustrated by Fig. 2 and described below.
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FIG. 2. Minimal energy per sphere for all homogeneous struc-
tures as a function of dimensionless inverse number density (ρd )−1

for the case of soft spheres, with harmonic interactions (see text).
The main figure shows the result for ω2M/k = 0.55. The inset shows
the energies for ω2M/k = 0.10, which is close to the hard sphere
limit. Common tangents between adjacent homogeneous structures
are shown by the black lines and tangent points are shown by black
dots. The range over which homogeneous structures are expected are
highlighted by shaded strips (colored according to the appropriate
homogeneous structure—see key). Outside these ranges the common
tangents have a lower energy and binary mixtures are expected.

For a rotating column of soft spheres the energy per sphere
is given by ES

rot = Erot + Eo, where the second term is due to
their interaction. The interaction energy associated with two
contacting spheres i and j is given by Ei j = 1

2 kδ2
i j . It is zero

if their centers are more than d apart. Here, k is the spring
constant and the overlap δi j = |ri − r j | − d depends on the
sphere positions ri and r j . The overlap energy per sphere Eo =
1
2 k〈δ2

i j〉 is obtained by summing over all pairwise interactions
and dividing by the total number of spheres in the structure.
Thus the energy per sphere is given by

ES
rot

Mω2d2
= 1

2

R2

d2
+ 1

2

k

Mω2

〈(
δi j

d

)2
〉

.

Homogeneous structures are comprised of packings for
which each sphere is in an identical relationship to every other
sphere in the packing. Each sphere is at a distance R from the
central axis and is in contact with six neighboring spheres.
From these constraints it follows that for a given number
density ρ the energy of a homogeneous structure can be varied
only by a uniform radial compression or expansion or twist,
if it is to remain homogeneous (as we assume here). Thus
the energy per sphere for all homogeneous structures is an
analytic expression to be minimized with respect to only two
variables: R and a twist angle α [13]. In the case of achiral
structures this twist angle is zero due to symmetry, and only
one free variable remains.

020602-2



THEORY OF ROTATIONAL COLUMNAR STRUCTURES OF … PHYSICAL REVIEW E 99, 020602(R) (2019)

0.2 0.3 0.4 0.5 0.6

inverse number density (ρd)−1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ω
2
M

/k

(2, 1, 1)(2, 2, 0)(3, 2, 1)
(3, 3, 0)

(4, 2, 2)(4, 3, 1)

(4, 4, 0)

(5, 3, 2)

(5, 4, 1)
(5, 5, 0)

new binary
mixture

homo-
geneous
structure

b
in

ar
y

m
ix

tu
re

b
in

ary

m
ixtu

re

FIG. 3. Calculated phase diagram of homogeneous structures
(colored, labeled regions) and their binary mixtures of adjacent ho-
mogeneous structures (intervening white space). Most homogeneous
regions expand with increasing ω2M/k (i.e., rotation frequency) but
the achiral (3, 3, 0) and (4, 4, 0) structures vanish in peritectoid
points (see the inset). In the case of the (5,5,0) phase only the right-
hand boundary can be shown, since it is the last structure without
inner spheres. The (ρd )−1 values for the homogeneous structures are
in good agreement with simulation results from Ref. [21], indicated
by points with dashed horizontal error bars in the hard sphere limit.

The minimized energies of all homogeneous structures as a
function of the inverse number density (ρd )−1 are shown for
two different values of ω2M/k in Fig. 2. These calculations
are based on the full harmonic interactions between neighbors
(see below for justification). The common tangents between
adjacent curves are shown by the black lines and the point
of contact between the tangent and the curve by black dots.
Where the common tangents are below the energy curves of
the homogeneous structures, the binary mixtures are more
stable. For the other values of (ρd )−1, highlighted by the
shaded strips, a homogeneous phase is predicted. Low values
of ω2M/k correspond to the hard sphere limit (see the inset of
Fig. 2); with increasing ω2M/k the overlap between spheres
increases, resulting in a broadening of the range over which
homogeneous structures are observed.

There is no loss of contacts in the range in which homoge-
neous structures are predicted. This justifies the simplification
that resulted from not taking loss of contacts into account, i.e.,
using the full harmonic approximation of interactions.

The corresponding analytically calculated phase diagram
is shown in Fig. 3. In the hard sphere limit (ω2M/k → 0),
the values of (ρd )−1 for the homogeneous structures are
consistent with those from the simulations of Lee et al. [Fig.
3(b) in Ref. [21]] which we have indicated by points with
dashed horizontal error bars. Lee’s experimental data are
shifted toward higher values of (ρd )−1. This is possibly due
to vibrations, keeping the hard spheres slightly apart, which
gives them an effective diameter larger than their actual size.
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FIG. 4. The red dots show the energy per sphere from finite-size
simulations, for ω2M/k = 0.2 and N = 24 spheres. Brown and blue
solid lines show the previously analytically calculated energies for
the homogeneous (2, 2, 0) and (3, 2, 1) structures, and the common
tangents (black solid lines) represent the binary mixture of the
adjacent structures. At the vertical dashed blue line the homoge-
neous structure transforms into a binary mixture, whose energy is
higher than that of the common tangent (due to finite-size effects).
Within the vertical dashed red and brown line line-slip structures are
observed.

With increasing ω2M/k the ranges of homogeneous struc-
tures expand, as expected. The upper part of the phase diagram
is, however, much richer in detail than anticipated. Of special
interest is the vanishing of the homogeneous achiral structures
(3, 3, 0) and (4, 4, 0) at a rotational velocity of ω2M/k ≈ 0.5.
For high ω2M/k the achiral structures cannot compete with
chiral structures: The latter can deform by twisting, while the
former cannot.

At the values of ω2M/k where these achiral structures
disappear, there are peritectoid points (see the inset of Fig. 3).
The homogeneous structures vanish in a point and also their
adjacent binary mixtures disappear. The phase boundaries of
the adjacent homogeneous structures show a change in slope
where the new mixed structures appear. This is due to the
change of the common tangent, now to be taken between the
second-nearest homogeneous structures.

Numerical optimization. The soft sphere model can be used
in more general numerical simulations for a finite system of
N spheres which can occupy any position in a simulation
cell of length L. In doing so, we have again applied twisted
boundary conditions [13]. Values of N which are multiples
of 12 are compatible with the homogeneous phases (2, 1, 1),
(2, 2, 0), and (3, 2, 1) and their correspondibg line slips. In
the simulations presented here we have used N = 24. We use
the Basin-Hopping method [22] to search for the structure
of minimum energy for particular values of number density
ρ = N/L and ω2M/k.

An example of our numerical results for a low rotational
velocity (i.e., ω2M/k = 0.2) is shown in Fig. 4. Here,
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FIG. 5. Numerically computed phase diagram from the finite-
size simulation with N = 24 spheres. In addition to the expected
homogeneous structures and binary mixture of (2, 2, 0) and (2, 1, 1),
a line-slip arrangement, as well as its binary mixture with (3, 2, 1),
are found.

we explore the region between the (2, 2, 0) and (3, 2, 1)
homogeneous soft sphere structures. The blue and brown
solid curves are their analytically computed energies; the
solid black line is the common tangent between them. The
numerically computed energy, shown by the red dotted line,
closely matches the analytic theory within the ranges of the
homogeneous phases. However, a notable difference arises
for 0.3205 � (ρd )−1 � 0.3250. Here, the computed energy
is slightly higher than that of the common tangent (binary
mixture) due to finite-size effects. Between the dashed vertical
blue [(ρd )−1 = 0.3205] and red lines [(ρd )−1 = 0.3333] we
find a mixture of the (3, 2, 1) uniform structure and a line
slip. Between the dashed vertical red [(ρd )−1 = 0.3333] and
the brown lines [(ρd )−1 = 0.3520] we observe only the line
slip.

From our finite-size simulations we compute a limited
phase diagram, shown in Fig. 5, to be compared with Fig. 3.
In the case of the (2,1,1) and (2,2,0) structures the intervening
region is occupied as expected by the (2, 2, 0) − (2, 1, 1)

mixed phase structure. However, in the case of the (2,2,0)
and (3,2,1) structures, the intervening region is split into two
parts, featuring the line slip mentioned above for low values
of ω2M/k.

In part these results corroborate those of the ana-
lytic treatment—in particular, as regards the homogeneous
phases—but the intervention of the line slip was an unex-
pected effect of finite size. It is to be expected that line slips
will play a role in all the other parts of the phase diagram,
in finite simulations. It remains to explore this wide range
of possibilities, as well as the asymptotic trend as N goes
to infinity. Preliminary results for the case presented here,
using N = 48 and 96, indicate that the binary mixture of two
homogeneous structures is recovered in that limit. There also
remains the case of hard wall boundary conditions at both
ends of the tube in a finite sample, which is more directly
relevant to the present experiments.

Conclusion. The phase diagram presented in Fig. 3 pro-
vides an analytic guide to the expected occurrence of equi-
librium structures in long rotating columns on the basis of a
generic soft sphere model.

We have adduced results from more general simulations.
These introduce interesting features: They are attributed to
finite-size effects, which should be looked for in future ex-
periments. In any such experiments, one should also be aware
of the existence of metastability and hysteresis in macroscopic
systems, which we have recently explored in a related context
[19,20].

As noted by Lee et al. [21], this method of creating colum-
nar structures may offer practical applications, particularly if
structures can be solidified and continuously extracted, as in
the microfluidic experiments of Andrieux et al. [23].
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