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Nonlinear resonances generate large-scale convection cells in phase space
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It is well known that resonance phenomena can destroy adiabatic invariance and cause chaos and mixing.
In the present Rapid Communication, we show that a nonlinear wave-particle resonant interaction may do
the opposite—generate large-scale coherent structures in phase space. The combined action of the drift due to
nonlinear scattering on resonance and trapping (capture) into resonance creates a convection cell-like structure,
where the areas of particle acceleration and deceleration are macroscopically separated. At the same time,
nonlinear scattering also creates a diffusion that cause mixing on and between the energy levels.
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Convection cells and large-scale coherent structures are
common in the physical space of fluid systems. However, sim-
ilar structures in the phase space of Hamiltonian systems are
much more rare [1–3]. In the present Rapid Communication
we introduce a simple system of charged particles moving in a
nonuniform magnetic field in the presence of an electrostatic
wave. In many plasma systems, charged particle resonant in-
teractions with electromagnetic waves represent the only way
for an efficient energy exchange between particle populations.
For coherent resonant interactions, particles can spend a long
time within the resonance and their dynamics becomes much
more complicated than just a diffusion in phase space. The
first study of mixing and chaos due to resonances was done by
Feingold and co-workers [4–6], who recognized that mixing is
caused by the breakdown of adiabatic invariance near surfaces
where the frequency of the perturbation is in resonance with
the frequency of the unperturbed flow. Many examples of
chaotic advection and mixing in fluids in the presence of
resonances can be found in Ref. [7]. Recently, the nonlinear
wave-particle interaction became one of the main approaches
to the quantitative description of plasma processes in magne-
tospheres [8–12]. Our analysis is based on modeling charged
particle motion in an effective potential generated by a combi-
nation of Lorentz forces from the background magnetic field
and wave electromagnetic field. We show that particles inter-
acting with such potentials may form large-scale convection
cells in phase space. The internal structure of these cells and
their evolution due to a particle exchange between trapped and
nontrapped (transient) populations determine the wave dump-
ing and growth, particle acceleration and deceleration, and
many other important wave characteristics. In a classical prob-
lem of nonlinear Landau damping, the trapped phase-space
region is assumed to be uniformly filled, and thus the events of
particle trapping and escape can influence the wave dynamics
[13,14]. In many systems, effects related to the formation and
evolution of large-scale structures control the primary wave
dynamics and secondary wave formation [15–18].

Here, we present a simple setting where nonlinear reso-
nance phenomena create a phase-space convection cell. We
start with the main equations of the wave-particle system and
introduce the separation of timescales. Then we define the
resonance and describe scattering at resonance and trapping
(capture) into resonance at a single crossing. After that we
describe the structure of the convection cell, and estimate the
timescale of mixing and the period of the convection cell.
Finally, we propose a kinetic Fokker-Plank-type equation that
describes the leaking of particles from the cell.

A dimensionless Hamiltonian of a charged particle moving
in a double-well potential in the presence of a fast wave is

H = 1
2 p2

y + U (y) + β sin χϕ,

U (y) = (α2y2 − 1)2/8α2, ϕ = y − ut . (1)

Here, χ , u, and β are the wave number, phase speed, and
amplitude of the wave, respectively. We assume that the wave
is short, χ = 30 � 1, and weak, β = 0.1 � 1. The other
parameters are α = 0.1 and u = 1. The minimum possible
value of energy, Hmin = 0, is at the bottom of either of the two
potential wells; HC = 1/(8α2) = 12.5 is the value of energy
at the potential barrier at y = 0. The unperturbed system is
illustrated in Fig. 1. The separatrix S separates the motion
inside one of the two wells from the motion in the top domain.

The smallness of 1/χ � 1 introduces a separation of
timescales: ϕ is fast, while (y, py) and H are slow. In the
first approximation, we can average Hamiltonian (1) over
the fast phase, which is effectively equivalent to omitting
the term β sin(χϕ) in (1): Hav = p2

y/2 + (α2y2 − 1)2
/8α2.

As Hav does not depend explicitly on time, it is an integral
of the averaged system. In exact system (1), the value of H
is approximately conserved (with the accuracy of order β)
everywhere, where the separation of timescales is valid and
the method of averaging works. The averaging fails when the
rate of change of ϕ vanishes on the line called a resonance:

2470-0045/2019/99(2)/020201(5) 020201-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.020201&domain=pdf&date_stamp=2019-02-05
https://doi.org/10.1103/PhysRevE.99.020201


FAN WU, DMITRI VAINCHTEIN, AND ANTON ARTEMYEV PHYSICAL REVIEW E 99, 020201(R) (2019)

-8

-6

-4

-2

0

2

4

6

8

-15 -10 -5 0 5 10 15-15 -10 -5 0 5 10 15

R
S

(b)

Coordinate, yCoordinate, y

M
om

en
tu

m
, p

0

4

8

12

16

20

Po
te

nt
ia

l e
ne

rg
y,

 U
(y

) (a)

FIG. 1. The unperturbed system: (a) Profile of the potential energy. (b) Phase portrait.

dϕ/dt = py − u = 0 [dashed line R in Fig. 1(b)]. The
dynamics of particles that intersect the resonance is drastically
different from that of the particles that do not intersect it.
Most particles cross the resonance twice on each period of
the fast motion. There are two kinds of exceptions. Particles
near the bottom of the two wells (H < Hmin = 0.5) do not
cross the resonance at all [two smallest circles in Fig. 1(b)];
those just above the separatrix S cross the resonance four
times. Every time a particle crosses a resonance, the value of
energy H changes. There are two main resonance phenomena:
capture (trapping) into resonance and scattering on resonance
(see, e.g., Ref. [12] and references therein).

During most of the resonance crossings, the energy of a
particle changes only slightly. This process is called scattering
on resonance. It follows from, e.g., Refs. [12,19] and refer-
ences therein, that the change of the energy is

�H (ξ, H ) = −u
√

β
√

2a
∫ ϕ̃∗

−∞

cos ϕ̃ dϕ̃√
2πξ + ϕ̃ − a sin ϕ̃

, (2)

where ϕ̃ = χϕ, a = βχ/A, and A = A(H ) = ∂U/∂y =
yR(α2y2

R − 1)/2. The value of A is computed at the resonance
crossing: H = u2/2 + (α2y2

R − 1)2
/8α2. In (2), ϕ̃∗ is the value

of ϕ̃ at the resonance crossing, and 2πξ = ϕ̃∗ − a sin ϕ̃∗. The
value of ξ is a very sensitive function of the initial conditions:
Even small, order β, changes in the initial conditions result
in significant changes in ξ (see, e.g., Ref. [12] and refer-
ences therein). For multiple consecutive scatterings, ξ can be
treated as a random variable uniformly distributed on (0,1)
(see a numerical verification of this assumption in Ref. [20]).
Correspondingly, �H becomes a random variable as well.

The statistical properties of �H depend on the value of a.
The average value and the second moment of �H are

〈�H〉(H ) =
∫ 1

0
�H (ξ, H )dξ,

〈(�H )2〉(H ) =
∫ 2π

0
[�H (ξ, H ) − 〈�H〉]2dξ . (3)

It was shown in Ref. [21] that when a > 1, 〈�H〉 is finite, and
when a < 1, 〈�H〉 = 0; 〈(�H )2〉 is always finite.

Besides scattering, particles may be trapped (captured)
into resonance. Trapping is possible if a > 1 and da/dt > 0
along the trajectory. In the current system, particles can be
captured on the left walls in both wells. It was shown in, e.g.,

Refs. [12,22,23] that trapping can be considered as a random
process. While for every given particle approaching the res-
onance it can be predicted whether or not it will be trapped
(provided trapping is possible), this trapped-or-not-trapped
transition is very sensitive to initial conditions. Thus, for
multiple particles and multiple passages through resonance,
it is reasonable to consider trapping as a probabilistic process.
The method of computing the probability of trapping 
(H )
is presented in several papers (see, e.g., Refs. [12,24] and
references therein).

Once a particle is trapped into resonance, its dynamics is
integrable and predictable. The trapped particles move for a
while with the wave: They are transported along the resonance
and then are released from resonance on the right walls. The
value of the energy at the release from resonance can be
computed explicitly [25]. The energy input-output function is
presented in Fig. 2, where we used H sgn(y) instead of H to
distinguish between the left and right wells. In the left well,
for −H < −Hlr ≈ −2, particles are transported to the right
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FIG. 2. Trapping (capture) into resonance: input-output function.
Horizontal axis: H sgn(y) at the trapping; vertical axis: H sgn(y)
at the release. Note that the energy H is multiplied by sgn(y).
Thus the left and the right wells corresponds to H sgn(y) < 0, and
H sgn(y) > 0, respectively.
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FIG. 3. Trapping (capture) into resonance. (a) Phase portrait. (b) Energy evolution.

wall of the right well (L-R capture). From the symmetry of
the potential well with respect to the axis x = 0, in this case
the energy does not change. This trapping corresponds to the
red, top left, line in Fig. 2. For 0 < Htr < Hlr , particles are
transported to the right wall of the left well (L-L capture).
In this case, the energy grows (the blue, bottom left, line in
Fig. 2). In the right well, all the particles captured at the left
wall are transported to the right wall. The energy decays (the
black, top right, line in Fig. 2).

An interval of the phase trajectory containing all three
types of trapping is presented in Fig. 3. First, the particle
is trapped [at t ≈ 170 in Fig. 3(b), the outer spiral in the
left well in the left panel in Fig. 3(a)] in the left well and
released in the left well (point A in Fig. 2). The second time
the trapping occurs at a higher value of the energy [at t ≈ 245
in Fig. 3(b), the long spiral in Fig. 3(a)], and the particle is
transported to the right well (point B in Fig. 2). The third
trapping [at t ≈ 320 in Fig. 3(b), the outer spiral in the right
well in Fig. 3(a)] moves the particles from the left wall of the
right well to the right wall (point C in Fig. 2).

The medium-time behavior of any given particle consists
of successive motion in three distinct domains: the right
well, the left well, and the top domain (above the barrier). A
characteristic dynamics is illustrated in Fig. 4(a). In the right

well, the value of energy grows on average, resulting in an
upward advection in phase space. Then the particle enters the
top domain (t ≈ 120) where there is no drift, just a diffusion.
In terms of energy, particles can go up—there is no upper
bound—or down. Most of the particles spend some time in
the top domain (t ≈ 120–400). If they go down to the right
well (e.g., t ≈ 200), advection kicks them back immediately
to the top domain. However, if a particle goes down the left
well (t ≈ 400), advection takes it down (t ≈ 400–900). Near
the bottom, trapping into resonance becomes possible. While
the energy is not too small, above Hlr , trapping takes the
particle from the left well to the right well: the L-R trapping.
Once below Hlr , trapping keeps the particle inside the left
well: the L-L trapping. However, the energy at the release
from the L-L trapping is larger than Hlr . Therefore, the L-R
trapping becomes possible again. The particle oscillates near
the bottom of the left well undergoing the downward drift
and the upward L-L trappings (t ≈ 900–1900) until finally
the L-R trapping occurs (t ≈ 1900). After that the particle is
transported to the right well and the whole process repeats
again.

The structure of the resulting convection cell is illustrated
in Fig. 4(b). Different colors correspond to the average value
of the change of energy on a given energy level due to
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FIG. 4. Medium-time evolution. (a) Trajectory of a single particle: From the right well, up to the top well, down the left well, and transfer
by capture into resonance to the right well, and starting up again. (b) The average change of energy.
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FIG. 5. Evolution of a particle ensemble. (a) Histograms of the PDF for different values of time. From the initial distribution in the right
well (black curve), over the top, to the left well. Note that the axis is the energy H multiplied by sgn(y). At t ≈ 100, the particles are in the
right well; at t ≈ 250, particles fill the right well and start coming into the left well; at t ≈ 500, particles fill the left well; at t ≈ 1000, particles
essentially uniformly fill both bottom wells. (b) The percentage of particles in the upper domain above H = 15. The red curve is obtained by
solving PDE (5) for the PDF, and the blue curve is the aggregation of explicit simulation of 20 000 particles governed by (1).

scattering. The average change is positive in the right well,
and negative in the left well. In the upper domain the average
energy change is zero. There are also regular domains at the
very center of the two bottom cells, where particles do not
intersect the resonance at all.

To describe mixing between the wells and the evolution
of the ensemble of particles, we introduced a probability
distribution function (PDF). We performed a set of numerical
simulations of 20 000 particles that were originally localized
at H = 1 in the right well [Fig. 5(a)]. Particles start as a
relatively narrow distribution in the right well (black curve).
Scattering on resonances causes the maximum of the curve
to move to the right, while the distributions become wider.
When particles arrive at the top of the hill between the wells
(red curve), they immediately start dropping into the left
well. After a characteristic time of one full slow period, the
distribution becomes essentially uniform in the two bottom
wells. There are two characteristic times of the system: the
period of the cell TC and the characteristic time of mixing
TM . Period TC is defined by the rate of drift 〈�H〉 and the
probability of trapping, 
(H ) computed at H = Hlr . The rate
of mixing TM is defined by the second moment of 〈�H〉,

TC ≈ 2
∫ HC

Hmin

T (H )
dH

〈�H〉 + 1


(H = Hlr )

∫ Hlr

Hmin

T (H )
dH

〈�H〉 ,

TM ≈ 2T (H )
(HC − Hmin)2

〈(�H )2〉 , (4)

where T (H ) is the period of motion on the (y, p) phase plane.
The first term in TC (approximately equal to 850) is a time
over which the drift takes a particle from the bottom of the
right well to the bottom of the left well. The second term
(approximately equal to 1000) is defined as the time a particle
spends near the bottom of the left well before it gets into the
L-R trapping.

The drift and diffusive spreading described above create an
essentially uniform mixing in the two bottom wells. Beyond
that, over a significantly longer timescale, more and more par-
ticles diffuse higher into the upper domain, farther away from

the separatrix. As a result, they stay there longer, creating a
significant population. To estimate the rate of transfer into the
upper well, we can use the diffusion-type evolution equation
for �(H, t ). Numerical simulations indicate that the charac-
teristic timescales of the diffusion into the upper domain are
much longer than the timescales of the uniformization in the
bottom wells. Thus we can assume that particles are uni-
formly distributed over the two bottom wells. Trapping into
resonance does not occur in the upper domain, and dynamics
is determined entirely by scattering on resonance. Scattering
on resonance cause a random walk in terms of H . In the
upper domain, 〈�H〉 = 0. For any random walk, the diffusion
coefficient is equal to one half of the second moment of the
corresponding distribution of the magnitude of a single step.
On each period, there are two resonance crossings with the
same statistical properties. We obtain D(H ) = 〈(�H )2〉, and
the evolution of �(H, t ) can be described by a diffusion-type
partial differential equation (PDE),

∂�

∂t
T (H ) = ∂

∂H

(
D(H )

∂�

∂H

)
. (5)

The values of D = D(H ) are much larger for HC < H <

HC + u2/2 = 13, where trajectories intersect the resonance
four times on a period (including two crossings near
y = 0), than for H > HC + u2/2 (two resonance crossings,
away from y = 0) [see Fig. 1(b)]. Essentially, we can set
D(H < HC + u2/2) = ∞ (uniform mixing) and explicitly
study the domain H > HC + u2/2 only. We compared the
predictions of (5) with results of the explicit simulation of
20 000 particles governed by (1). Figure 5(b) presents the
amount of particles in the upper domain above H = 15. One
can see that the PDF-based description describes the leaking
of particles into the upper domain.

In conclusion, we considered a motion of charged plasma
particles in a nonuniform background magnetic field in the
presence of an electrostatic wave. We proposed a setting
where the nonlinear resonance creates a large-scale convec-
tion cell in phase space. We showed that a combination of
the energy drift due to scattering at resonance and trapping
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(capture) at resonance creates a regular energy drift, while
scattering at resonance creates energy diffusion and mixing.
We estimated a characteristic period of the cell and character-
istic time of mixing.
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