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Ab initio computational analysis of spectral properties of dielectric spheroidal resonators interacting
with a subwavelength nanoparticle
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An efficient numerical method for determining the spectral characteristics and spatial distribution of the
field of a spheroidal whispering-gallery-mode (WGM) resonator interacting with a dielectric nanoparticle is
presented. The developed approach is based on a combination of T-matrix formalism applied to a single resonator
with a dipole approximation for the field of the nanoparticle. The method is illustrated by computation of
the scattered field of the resonator-particle system illuminated by an incident field in the form of a single
WGM mode of TE or TM polarization mimicking the excitation of the resonances by a tapered fiber. Our
calculations show that even a very small (less than 0.1%) deviation of the resonator’s shape from an ideal sphere
renders spherical approximation invalid. They also confirm that analytical resonant approximation for spheroidal
resonators developed previously gives a reasonable qualitative description of the spectral characteristics of the
resonator-particle system. It was found, however, that corrections to the resonant approximation are significant
enough for realistic nominally spherical resonators to be taken into account for accurate analysis of the
experimental data.
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I. INTRODUCTION

The problem of interaction between whispering gallery
modes (WGMs) of dielectric optical resonators [1,2] and a
small subwavelength object placed in the vicinity of the res-
onator’s surface has recently attracted a great deal of attention
in a number of areas of fundamental and applied research.
More specifically, shifts and broadening of the frequencies
of WGMs due to such an interaction have been used to
develop novel optical sensors of chemical and biological
nano-objects [3–20] as well as to track the movement of indi-
vidual atoms in cavity quantum electrodynamics experiments
[21]. The nanoparticle-induced modification of the spatial
profile of the field of WGMs [22,23] has attracted interest
for such applications as WGM-based light sources [22,24,25],
optical antennas [26], optical manipulation [27–29], and
sensing [23].

These works need to be distinguished from another grow-
ing area, in which the main attention is being paid to op-
tical resonances of high refractive index dielectric particles
of nanometer size [30–35]. While these particles do exhibit
distinct resonances in their electrodipole and magnetodipole
responses, which present a great deal of interest, these reso-
nances are distinct from the whispering gallery modes studied
in this paper. The latter can only be realized in relatively
large (tens or hundreds of micrometers in size) dielectric
objects and correspond to Mie resonances of relatively high
order (typical values of the orbital momentum of these res-
onances can be anywhere between 20 and 400). In princi-
ple, it can be of interest in studying the optical interaction
between high-order whispering-gallery-mode resonances and
magnetodipole resonances of nanoparticles with high refrac-

tive index, but this study is outside of the scope of this
paper.1

Depending upon the relation between the strength of the
particle-WGM interaction and the spectral width of the cor-
responding resonance, the particle-related modification of the
resonance frequencies of the system can be described either as
splitting of the resonances [16,36–38], when a particle splits
a single WGM resonance into two spectrally well-separated
resonances, or as a frequency shift, when the experiment
reveals that the particle merely shifts a WGM from its original
position [12,14,15,39–41]. Theoretically, these effects have
been successfully described by two different heuristic models.
The splitting is explained by an interaction between two
degenerate counterpropagating modes of the resonator with
a polarizable dipole [38,42–45], while the shift is modeled
by a simple first-order perturbation theory–like expression
called the reactive sensing principle [39], which was derived
under the assumption that in the case of strongly overlapping
resonances their degenerate nature is not important.

Despite the success of these models, one would still want
to complement them with more rigorous theories based on
Maxwell equations. Such treatments have been developed for
a two-dimensional disk [22,46,47] and a three-dimensional
spherical resonator [48–50]. They revealed the polarization
dependence of the particle-induced spectral effects, provided
relations between phenomenological parameters of the heuris-
tic models and material characteristics of the resonators, and

1The study of this problem is currently under way and its results
will be reported in a separate publication.
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allowed the prediction of the spatial distribution of the elec-
tromagnetic field of the resonator-particle system.

The problem is, however, that even nominally spherical
resonators with deviations from spherical shape less than
3% are not spherical enough from the point of view of
interaction between WGMs and the nanoparticle. Two char-
acteristic energy scales determining a “sphericity” of the
resonator are the spectral distance between resonances split
due to the shape deformation, on one hand, and the particle-
induced modifications of the frequencies, on the other. In
a typical experiment with “spherical” resonators interacting
with a nanoparticle, the former scale significantly exceeds
the latter making the assumption of the spherical shape for
the resonators inapplicable. It should not come as a surprise,
therefore, that the theoretical predictions for the frequencies
of the particle-induced resonances obtained in Refs. [48,49]
deviate from the experimental data by orders of magnitude.2

To obtain a description of the WGM-nanoparticle inter-
action in realistic nominally spherical resonators one has to
take into account their actual shape. The simplest example
of such an “almost” spherical resonator would be a dielectric
spheroid. In addition to providing a microscopic theoretical
foundation for the phenomenological models of Refs. [38,40],
and uncovering previously unknown experimentally relevant
effects, a solution to this problem also presents significant
interest for theoretical and computational electrodynamics.
Indeed, a rigorous ab initio theoretical description and sim-
ulation of the spectral effects due to the WGM-nanoparticle
interaction in spheroidal resonators is rather challenging. First
of all, one should note that the WGMs with high enough Q
factors are characterized by significantly small, compared to
the characteristic size of the resonator, wavelength. Accord-
ingly, discretization procedures, which are central to standard
simulation tools such as the finite element (FEM) [51] and
finite difference time domain (FDTD) [52] methods, have to
introduce a very fine grid covering relatively large regions
of space. This circumstance, by itself, results in significantly
increased demands on the amount of memory required for
computation and on computational time, making solution of
full three-dimensional problems unrealistic [53]. While the
axial symmetry of an individual spheroid resonator allows
reducing dimensionality of the problem, which makes the
situation manageable, in the presence of a nanoparticle the
axial symmetry of the problem is destroyed. As a result, one is
left with a fully three-dimensional vectorial electrodynamics
problem for objects larger than the characteristic wavelengths,
which is not susceptible to traditional numerical methods. It is
not surprising, therefore, that there has been, to the best of our
knowledge, only a single attempt to model numerically the
effects of a nanoparticle on WGMs. The authors of Ref. [54]
used FEM to simulate the interaction of a nanoparticle with a
toroidal resonator, but, in order to make the problem tractable,
they had to introduce a simplifying assumption that the par-
ticle affects the field of the resonator only in its immediate
vicinity. While this computation provided some information

2The “reconciliation” of this approximation with experiments at-
tempted in Ref. [50] is based on unrealistic assumptions about the
exciting field and is, therefore, superficial.

on the perturbation of the field of the WGM by the nanopar-
ticle, this approach is not sufficient to study modifications of
the spectral properties of the resonator.

The objective of this paper is to present a computationally
efficient and accurate ab initio approach to computing reso-
nance frequencies and corresponding electric and magnetic
fields for spheroidal resonators interacting with a nanoparti-
cle, described as a polarizable dipole. We overcome the inher-
ent difficulties in simulating such systems by combining the
rigorous extended boundary condition method (EBCM), used
to study scattering of light from a single resonator [53,55–61],
with a dipole approximation (the only approximation used in
this approach) for the field scattered by the particle. The so-
lution of the single resonator scattering problem is presented
in the form of the so-called T matrix [62], which connects
expansion coefficients of the scattered field expanded in terms
of the vector spherical harmonics (VSH) with corresponding
coefficients of the incident field. While the method of the
T matrix had been widely used for scattering studies [58–
61,63,64], its application to the WGMs has been so far rather
limited. At the same time, the WGMs obviously emerge in
various characteristics of the scattered field as resonances
(sometimes, especially in the case of spherical scatterers,
called Mie resonances), whose position and width contain
all the necessary information about the WGMs. Moreover, in
many experimental situations, it is the scattering resonances
that are being observed and studied. The main concern with
applications of the T-matrix formalism to studying WGMs is
a poor convergence of this approach in the case of objects
much larger than the respective wavelength and/or deviating
strongly from the spherical shape [60]. Nevertheless, in the
case of scatterers whose shapes do not differ too much from
spherical (such as spheroids with an aspect ratio close to
unity), WGM resonances of relatively high order can be found
and studied using the T-matrix approach.

We show that by using elements of the T matrix as pre-
computed parameters and limiting the multipole expansion
for the field scattered by the particle to only dipole terms
we are able to effectively compute the field scattered by the
entire resonator-particle system. The spectral characteristics
of this system are studied by identifying resonances of the
scattered power in contrast with other approaches describing
the problem in terms of the eigenfrequencies and normal
modes of the resonator [38,65,66].

This work is an extension of our earlier efforts, where
we used a similar idea to obtain a semianalytical description
of the resonator-particle system in the so-called resonance
approximation, which takes into account the interaction of
the particle with only two remaining degenerate modes of
a spheroidal resonator [67,68]. Now we are going outside
of the resonant approximation and include in the consid-
eration all modes of the system until convergence of the
corresponding sums is achieved. This extension allows us
to consider resonators with both very small and relatively
large deviations from the spherical shape. One of the most
interesting results presented in this paper is the prediction
of a drastic (orders of magnitude) and sharp decrease of
the particle-induced spectral effects when the deviation from
sphericity exceeds some critical value. Our calculations also
revealed possible deviations from the resonant approximation
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due to spectral proximity of the nonresonant modes. Finally,
the approach developed in this work provides researchers
with a robust and efficient computational tool for studying
spectral and spatial properties of the resonator-dipole systems.
The approach developed here can be extended to include
the magnetodipole contribution to the particle field, which
might become important for nanoparticles with high enough
refractive index [30,69–71].

The structure of this paper is as follows. For the conve-
nience of the readers, we begin by describing the T-matrix
formalism for a single resonator and present the main prop-
erties of the T matrix in Sec. II A. In Sec. II B we introduce
the dipole approximation for the nanoparticle and derive
the main system of equations for the expansion coefficients
of the scattered field. Section III is devoted to the description
of the numerical procedure used to solve the system of equa-
tions derived in Sec. II B and to the results of the numerical
calculations.

II. INTERACTION BETWEEN WGMs OF A SPHEROIDAL
RESONATOR AND A SUBWAVELENGTH PARTICLE:

GENERAL THEORY

A. T-matrix formalism for a single spheroidal resonator

We consider a spheroidal resonator interacting with a sub-
wavelength particle positioned in its vicinity. The deviation
of the resonator’s shape from spherical is characterized by
the ellipticity parameter e = 1 − Rsm/Rr (see Fig. 1). The
field scattered by the resonator is found using the T-matrix
formalism, which has been successfully applied in the past to

FIG. 1. The resonator-particle system with all its geometric and
material parameters: refractive indices of the resonator nr , particle
np , and the surrounding medium n1; resonator’s equatorial radius
Rr , its smallest half axis Rsm, and particle’s radius Rp . Also shown
are four coordinate systems used in the paper: resonator-centered
and particle-centered resonator’s and particle’s systems. Resonator’s
systems are characterized by the polar (Z) axis directed parallel to
the axis of rotation of the resonator, while the particle’s systems have
their polar axes directed along a line connecting the centers of the
particle and the resonator.

the problem of the scattering of light from nonspherical par-
ticles [58–61,63,64]. This formalism is based on presenting
the field scattered by the resonator as a linear combination of
vector spherical harmonics (VSH) with asymptotic behavior
of outgoing spherical waves [62],

E(r )
sc =

∑
l>1

∑
|m|�l

[
cm,lM

(3)
m,l (k1rr , θr , ϕr )

+ gm,lN
(3)
m,l (k1rr , θr , ϕr )

]
, (1)

where M(3)
m,l (k1rr , θr , ϕr ) and N(3)

m,l (k1rr , θr , ϕr ) are vector
spherical harmonics of TE and TM polarizations, respectively,
with radial dependence characterized by outgoing spherical
Hankel functions h

(1)
l (k1rr ) of the first kind. The electric

field described by a TE polarized VSH and magnetic field
described by TM polarized VSH have zero radial components.
Modal indices m and l determine the angular behavior of
VSH defined in a spherical coordinate system with a particular
choice of its polar (Z) axis. We will refer to index l as to orbital
number, and, following Ref. [12], will call m, which takes on
values in the interval −l � m � l, the polar index. Arguments
rr , θr , ϕr are the radial, polar, and azimuthal coordinates of
the position vector r in a particular coordinate system, where
subscript r indicates that the origin of the coordinate system is
at the center of the resonator. Parameter k1 is the wave number
of light outside of the resonator and is defined as k1 = n1k,
where k = ω/c is the wave number of electromagnetic field
with frequency ω in vacuum; n1 is the refractive index of the
medium surrounding the resonator; and c, as usual, represents
the speed of light in vacuum.

Strictly speaking, representation of the scattered field in the
form of Eq. (1) is valid only outside of the sphere completely
circumscribing the resonator but keeping the particle outside.
Assumption that the same expansion is also valid in the
immediate vicinity of the scattering object is known as the
Rayleigh hypothesis [72,73]. While this hypothesis has been
studied for a number of scatterers and surfaces [59,74–79], its
general validity has not yet been established. However, in the
case of a weakly spheroidal resonator, which is a convex body,
there are no physical reasons to expect that the scattered field
would contain an admixture of VSH with radial dependence
of incoming spherical waves. Therefore, we will extend the
representation of the scattered field in the form of Eq. (1)
throughout the entire exterior of the resonator.

Expansion coefficients cm,l and gm,l in Eq. (1) can be
related to the expansion coefficients of the incident field
presented as

E(r )
inc =

∑
l>1

∑
|m|�l

[
am,lM

(1)
m,l (k1rr , θr , ϕr )

+ bm,lN
(1)
m,l (k1rr , θr , ϕr )

]
, (2)

where superscript (1) signifies that the radial dependence of
the respective VSHs is given by spherical Bessel functions
that are regular at the origin. Obviously, the relation between
coefficients cm,l, gm,l and am,l, bm,l is linear and can be
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presented in the form

cm,l =
∑
ν�1

∑
|μ|�ν

[
T

(1,1)
m,l;μ,νaμ,ν + T

(1,2)
m,l;μ,νbμ,ν

]
,

(3)
gm,l =

∑
ν�1

∑
|μ|�ν

[
T

(2,1)
m,l;μ,νaμ,ν + T

(2,2)
m,l;μ,νbμ,ν

]
,

where coefficients T
(σ,σ ′ )
m,l;μ,ν form what is called the T matrix.

Superscripts σ, σ ′ refer to the contribution of VSH of different
(TM and TE) polarizations with σ = 1 corresponding to TE,
and σ = 2, to TM polarization. Subscripts correspond to
two different sets of orbital (l, ν) and polar (m, μ) indices
characterizing individual VSHs.

For a spherical resonator, the T matrix becomes diagonal in
all its indices and loses its dependence on the polar numbers
m, μ:

T
(σ,σ ′ )
m,l;μ,ν = α

(σ )
l (x)δl,νδm,μδσ,σ ′ . (4)

Here α
(σ )
l (x) are the standard Lorenz-Mie coefficients

expressed as functions of the dimensionless size parameter
x = kRr , which has the meaning of the number of the vacuum
wavelengths per circumference of the sphere with radius Rr .
The Lorenz-Mie coefficients can be written down as

α
(σ )
l (x) = − ς

(σ )
l (x)

ς
(σ )
l (x) + iβ

(σ )
l (x)

, (5)

where functions β
(σ )
l (x) and ς

(σ )
l (x) are defined in

Appendix A. The frequencies of WGM resonances in spheri-
cal resonators are found from equations β

(σ )
l (x) = 0 for both

TE and TM polarizations. Solutions of these equations, x
(σ )
l,s ,

are characterized by two (in addition to the polarization) in-
dices: polar index l, and radial index s distinguishing between
resonances with different radial dependences of their respec-
tive modes. Resonances are also characterized by their widths,
γ

(σ )
l,s , determined by the behavior of functions β

(σ )
l , ς

(σ )
l in the

vicinity of the respective resonance frequency x
(σ )
l,s . Frequency

x
(σ )
l,s and width γ

(σ )
l,s define the position of the complex pole

x
(σ )
l,s − iγ

(σ )
l,s in the lower half plane of the complex plane of x,

which can be found by direct solution of equation ς
(σ )
l (x) +

iβ
(σ )
l (x) = 0. It should be noted that due to complete spherical

symmetry Mie coefficients defined by Eq. (5) do not depend
on the modal number m and, as a result, all resonances
of spherical resonators are 2l + 1 degenerate. At the reso-
nance x = x

(σ )
l,s , the Lorenz-Mie coefficients take the value

α
(σ )
l [x (σ )

l,s ] = −1, which means that WGM resonances are of
pure Breit-Wigner type and that in a vicinity of the resonance
frequency the Lorenz-Mie coefficients can be approximated as

α
(σ )
l ≈ − iγ

(σ )
l,s

x − x
(σ )
l,s + iγ

(σ )
l,s

. (6)

When the shape of a resonator is distorted from spherical
to spheroidal, the complete spherical symmetry is replaced
with axial symmetry with respect to rotations around the
axis of rotation of the spheroid. As a result, the T matrix
acquires nondiagonal elements with respect to all its indices.
However, if the VSHs in Eqs. (1) and (2) are written in terms
of spherical coordinates defined in a coordinate system with
polar axes along the axes of rotation (we shall call it the
resonator’s coordinate system), the T matrix remains diagonal
with respect to the modal number m:

T̃
(σ,σ ′ )
m,l;μ,ν = T̃

(σ,σ ′ )
m,l;m,νδm,μ. (7)

(In what follows, we will use T̃ to designate the T matrix writ-
ten in the resonator’s coordinate system.) Thus, the deviation
from the spherical shape results in two main changes: (i) ap-
pearance of the nondiagonal elements, which are responsible
for coupling between VSHs of different polarizations (TE and
TM) and different numbers l, and (ii) dependence of the diag-
onal elements of the T matrix, T̃

(σ,σ )
m,l;m,l , on the modal number

m. When deviations from the spherical shape are not too large,
the latter has the largest impact on the spectral properties of
the resonators. Indeed, numerical calculations of the T matrix
show that all nondiagonal elements of the T matrix remain
small for ellipticity parameters of the spheroid up to 0.05,
which is a typical value for practically available nominally
spherical resonators [see Fig. 2 where we used color (gray
scale) coding to indicate values of different elements of the T
matrix. The horizontal and vertical axes in this plot represent

FIG. 2. Real part of various diagonal and nondiagonal elements of the T matrix T̃
(1,1)

10,l;10,ν (a) and T̃
(1,1)

39,l;39,ν (b) computed for the same

frequency corresponding to a second radial order resonance of T̃
(1,1)

39,l;39,ν and e = 0.048.
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FIG. 3. Real part of a diagonal element of the T matrix T̃
(1,1)
m,39;m,39

as a function of the size parameter x. Black solid line corresponds
to the spherical resonator with 2l + 1 degenerate polar modes (e =
0). Colored dashed and dotted lines depict several resonances of a
spheroidal resonator (e = 0.048) with the same orbital number l =
39 and different polar numbers m. Note that at the resonance the real
part of the diagonal element of the T matrix is very close to −1 in
both spherical and spheroidal cases.

orbital numbers l and v in the T matrix given in Eq. (7), so that
the squares along the main diagonal in this figure correspond
to l = v elements of the T matrix, while the squares off the
main diagonal represent the nondiagonal elements. One can
see from this figure that the off-diagonal elements of the
T matrix remain rather small as compared to the diagonal
elements]. At the same time, the diagonal elements of the T
matrix still demonstrate resonance behavior characterized by
Eq. (6), but with frequency and the width of the resonances
now dependent on m (see Fig. 3, where we plot the frequency
dependence of the real parts of the elements of the T matrix
with the same values of l = v, but different values of m = μ.
One can clearly see the same Lorentz-like resonance shapes of
the resonances in the spheroids, but with resonant frequencies
dependent on the value of the polar number m).

The T matrix has a number of general properties reflecting
various symmetries of the scattering object. They all are well
known and can be found, for instance, in Ref. [62]. For
the convenience of the readers, they are also summarized
in Appendix A to this paper. One of the most important
properties for this work is the transformation property of the T
matrix upon the rotation of a coordinate system. While the T
matrix of the spheroid has its simplest form in the resonator’s
system, in this work we will also have to use a system of
coordinates with the polar axis passing through the centers
of the resonator and nanoparticle (we will call it the particle’s
coordinate system). All coordinate systems used in this work
are presented in Fig. 1. If the rotation from the resonator’s to
the particle’s coordinates is described by three Euler’s angles
α, β, and γ (designation of the Euler’s angles is the same as
in Ref. [62]), the T matrix in the particle’s system, T

(σ,σ ′ )
m,l;μ,ν , is

related to the T matrix in the resonator’s system by

T
(σ,σ ′ )
m,l;μ,ν =

m1=min (l,ν )∑
m1=− min (l,ν )

Dl
m,m1

(−γ,−β,−α)

× T̃
(σ,σ ′ )
m1,l;m1,ν

Dν
m1,m

(α, β, γ ), (8)

where we took into account that the T matrix in the res-
onator’s system, T̃

(σ,σ ′ )
m1,l;m1,ν

, is diagonal in the modal indices
m. Dν

m1,m
(α, β, γ ) in Eq. (8) is a Wigner D matrix, realizing a

2l + 1-dimensional representation of the rotation operator in
the space formed by spherical harmonics with orbital number
l. The transition between resonator and particle coordinate
systems shown in Fig. 1 is described by Euler angles,

α = π/2, β = −θp, γ = 0, (9)

where θp is the polar coordinate of the particle in the res-
onator’s coordinate system. In this case, the transformation
rule given by Eq. (8) can be expressed as

T
(σ,σ ′ )
m,l;μ,ν =

m1=min(ν,l)∑
m1=− min(ν,l)

(−1)μ−m1d (l)
m,m1

(θp )T̃ (σ,σ ′ )
m1,l;m1,ν

d (ν)
m1,μ

(θp ),

(10)
where d (l)

m,m1
(θp ) is a d (small) Wigner matrix. An explicit

expression for this quantity is provided in Eq. (B5) of
Appendix B, and in the derivation of Eq. (10) we used
Eq. (B4).

B. General theory of interaction between the spheroidal
resonator and a subwavelength polarizable particle

This is the main section of the paper, in which we derive
equations for the expansion coefficients of the field scattered
by the resonator, cm,l and gm,l . Having found these coef-
ficients, we will be able to determine modified resonance
frequencies as well as the spatial profile of the field scattered
by the resonator-particle system. The main assumption of our
theory is that the field scattered by the nanoparticle can be
described in the dipole approximation. This approximation is
introduced by presenting the field scattered by the nanoparti-
cle as a linear combination of VSHs of TM polarization with
orbital number l = 1 and neglecting the contribution from TE
polarized VSHs:

E(p)
sc =

∑
|m|�1

pmN(3)
m,1(k1rp, θp, ϕp ). (11)

It should be noted that VSHs in Eq. (11) are written in
the coordinate system centered at the nanoparticle, which is
indicated in Eq. (11) by subscript p in rp, θp, ϕp. We will
call these coordinates particle centered and would like to
warn readers against confusing it with the particle coordinate
system introduced in the previous section. While the former
refers to the position of the origin of the coordinates, the
latter denotes the direction of the polar axis (along the line
connecting the centers of the resonator and the particle). Sim-
ilarly, one has to distinguish between the resonator-centered
coordinates with origin at the resonator’s center, and the
resonator coordinates whose polar axis is parallel to the
axis of rotation of the resonator. Both resonator-centered and
particle-centered coordinate systems can be either resonator
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or particle coordinates depending on the orientation of their
polar axes (Fig. 1).

The field scattered by the particle, E(p)
sc , is determined by

the total field E(p)
in (rp ) incident on it. Taking into account

that WGMs are usually excited by a tapered fiber positioned
in the immediate vicinity of the resonator, it is reasonable
to assume that E(p)

in (rp ) ≡ E(r )
sc (rr ), where E(r )

sc is the field
scattered by the resonator and presented by Eq. (1). This
field, however, must be rewritten in the particle-centered
rather than in the resonator-centered coordinate system. If
these coordinate systems can be transformed to each other
by a simple translation, one can convert resonator-centered
VSHs into the particle-centered ones and vice versa using
the vector translational addition theorem [80]. According to
this theorem, the resonator-centered VSHs of Eq. (1) can be
presented as

N(3)
m,l (k1rr , θr , ϕr )

=
∞∑

ν=1

ν∑
μ=−ν

[
A

(+)
μ,ν;m,l (k1,−dpr )N(1)

μ,ν (k1rp, θp, ϕp )

+B
(+)
μ,ν;m,l (k1,−dpr )M(1)

μ,ν (k1rp, θp, ϕp )
]
,

M(3)
m,l (k1rr , θr , ϕr )

=
∞∑

ν=1

ν∑
μ=−ν

[
A

(+)
μ,ν;m,l (k1,−dpr )M(1)

μ,ν (k1rp, θp, ϕp )

+B
(+)
μ,ν;m,l (k1,−dpr )N(1)

μ,ν (k1rp, θp, ϕp )
]
, (12)

where dpr is the position vector of the center of the parti-
cle in a resonator-centered coordinate system, A

(+)
μ,ν;m,l and

B
(+)
μ,ν;m,l are so-called translation coefficients, and superscript

(+) indicates that the radial dependence of these coefficients
is given by the outgoing spherical Hankel functions. One
can see from Eq. (12) that translation coefficients A

(+)
μ,ν;m,l

connect VSHs of the same polarization, while coefficients
B

(+)
μ,ν;m,l are responsible for the polarization conversion due to

translation. In this paper we use the same normalization of
the VSH and of the translation coefficients as in Ref. [62] (all
relevant expressions are given in Appendix C, Eqs. (C1)–(C4)
for VSHs and Eqs. (C5)–(C8) for the translation coefficients).
The translation coefficients have useful symmetry properties
with respect to inversion of the translation vector dpr and
interchange of the modal indices [81]:

A
(+)
m,l;μ,ν (k1,−dpr ) = [A(−)

μ,ν;m,l (k1, dpr )]
∗,

B
(+)
m,l;μ,ν (k1,−dpr ) = [B (−)

μ,ν;m,l (k1, dpr )]
∗, (13)

where superscript (–) in translation coefficients on the right-
hand side of Eq. (13) indicates that their dependence upon
the radial coordinate of the translation vector dpr is given by
incoming spherical Hankel functions h

(2)
l (k1dpr ).

Choosing the polar axes of the particle-centered and the
resonator-centered coordinates to be parallel to the translation
vector dpr (i.e., assuming that both of them are the particle
systems), we make the translation coefficients diagonal with
respect to indices m and μ. This choice of the coordinate
axes significantly simplifies calculations and will be used in

the rest of this work. Taking into account the explicit form of
the translation coefficients, Eq. (C9) in Appendix C, one can
show that in the particular case of translation coefficients with
m = μ and one of the polar indices equal to unity, symmetry
relations given by Eq. (13) take the form

A
(+)
m,l;m,1(k1,−dpr ) = A

(+)
m,1;m,l (k1, dpr ),

B
(+)
m,l;m,1(k1,−dpr ) = −B

(+)
m,1;m,l (k1, dpr ). (14)

With the help of Eq. (12) we can present Eq. (1) in the form
suitable for finding coefficients pm of Eq. (11). Using the
Lorenz-Mie solution for the spherical particles [62] we find

pm = αp

∞∑
l=1

[gm,lA
(+)
m,1;m,l (k1,−dpr )

+ cm,lB
(+)
m,1;m,l (k1,−dpr )], (15)

where

αp ≡ α
(2)
1 (xς ) (16)

is an abbreviated notation for the l = 1 Lorenz-Mie coefficient
for TM polarized field of a spherical particle of radius Rp.
This coefficient is given by the same expressions as Eq. (5)
with the resonator’s refractive index replaced by the particle’s
index np, and the resonator’s radius by the particle’s radius
Rp. In order to keep the same definition of the size parameter
x as in Eq. (5), we introduced into Eq. (16) a parameter ς =
Rp/Rr � 1 characterizing the size of the particle relative to
that of the resonator.

Before continuing with the derivation of equations for
the field expansion coefficients we must comment on the
applicability of Eq. (11) for the field of the nanoparticle. The
approximation expressed by this equation is not equivalent to
the uniform field assumption, which is often identified with
the dipole approximation. While the latter is valid only if
xς � 1 and allows replacing the Lorenz-Mie coefficient αp

with the first nonvanishing terms in its expansion with respect
to xς ,

αp ≈ −i
2

3
(n1xς )3

n2
p − n2

1

n2
p + 2n2

1

[
1 + i

2

3
(n1xς )3

n2
p − n2

1

n2
p + 2n2

1

]
,

(17)

the validity of Eq. (11) requires only that the Lorenz-Mie
coefficient αp remains much larger than all other coefficients
α

(σ )
l in the spectral region of interest. In the case of WGMs

characterized by large values of orbital number, l � 1, the
inequality xς � 1 and, hence, the validity of Eq. (17), are not
at all assured even for very small nanoparticles while Eq. (11)
might remain valid even when Eq. (17) is not. To illustrate this
point we compare αp with quadrupole and other higher-order
coefficients using, as an example, parameters of the system
studied in Ref. [12] (ς = 0.0058, n1 = 1.326, nr = 1.449,
np = 1.5718). Taking into account that the orbital number of
the WGM excited in those experiments was l = 340, which
corresponds to x = 242.15 at the frequency of the WGM res-
onance, we estimate xς ≈ 1.39. Clearly, the uniform field ap-
proximation given by Eq. (17) is not valid in this case. At the
same time, estimates of the ratio α

(2)
l (xς )/αp for l > 1 pro-

duce values α
(2)
2 (xς )/αp ≈ 0.245 − 0.05i, α

(2)
3 (xς )/αp ≈
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0.0235 − 0.006i, and even smaller values for larger orbital
mode numbers. However, one also needs to be aware of the
l = 1 contribution to the particle’s field from the TE polarized
VSH, which, for such large values of the parameter xς ,
can become comparable with the dipole TM contribution.
For the parameters cited above, we find that α

(1)
1 (xς )/αp ≈

0.521 − 0.068i and it might have to be taken into account.
This contribution can become even more significant in the
case of nanoparticles with very high refractive index, which
can show a very strong magnetic response [30,69–71]. This
is a very interesting possibility, and, in principle, the theory
presented in this paper can be generalized to include also
the TE contribution to the particle field. However, this is a
topic for a separate publication, and here we will stay within
the dipole approximation expressed by Eq. (11), whose range
of validity is defined by inequality xς � 1 and is much less
restrictive than condition xς � 1 required for applicability of
the uniform field approximation.

The expansion coefficients of the resonator’s scattering
field, gm,l and cm,l , in the presence of the particle are deter-
mined by the same Eq. (3) as in the absence of the particle,
where, however, the incident field coefficients am,l and bm,l

should be modified to account for the contribution of the field
scattered by the particle into the field incident on the resonator.
This is achieved by applying the translational addition theo-
rem to Eq. (11), which allows rewriting this field in the form

E(p)
sc =

∑
|m|�1

∞∑
ν=1

ν∑
μ=−ν

pm

[
A

(+)
μ,ν;m,1(k1, dpr )N(1)

μ,ν (k1rr , θr , ϕr )

+B
(+)
μ,ν;m,1(k1, dpr )M(1)

μ,ν (k1rr , θr , ϕr )
]
. (18)

Combining Eq. (18) with Eq. (2) for the external incident
field, we find that in the particle’s coordinate system the
incident field coefficients am,l and bm,l in Eq. (3) must be
replaced according to

am,l ⇒ am,l + pmB
(+)
m,l;m,1(k1, dpr ),

bm,l ⇒ bm,l + pmA
(+)
m,l;m,1(k1, dpr ). (19)

At this point, we shall specify the excitation conditions that
will be assumed in this work. The most effective excitation of
WGMs is achieved by using a tapered fiber positioned in the
close proximity of the resonator [82–85]. Strictly speaking,
the resonator and the exciting fiber must be considered as
a coupled system, in which the field in the fiber not only
excites WGMs but also affects their properties, most notably
the Q factor [85–89]. To deal with this situation rigorously
one would need to treat coefficients of the incident field as
dynamic variables and complement equations for the field in
the resonator with equations describing the field in the fiber.
This consideration, however, is outside of the scope of this
work, and here we shall treat the expansion coefficients of the
incident field as external parameters. We will choose them in
a way that would mimic the excitation in a spherical resonator
and in the absence of the nanoparticle of a single mode of a
given (TE or TM) polarization with a specified orbital number
l = L and radial number s = S. In the resonator’s coordinate
system such a mode is characterized by a single VSH with
modal numbers m = M, l = L. Thus, the TE illumination

conditions are described by the parameters of the incident field
chosen as

ãm,l = a0δm,Mδl,L, b̃m,l = 0, (20)

while to describe the TM illumination we postulate

b̃m,l = b0δm,Mδl,L, ãm,l = 0. (21)

Here we again use the tilde to indicate that the respec-
tive quantity is written in the resonator’s coordinate system.
Parameters a0 and b0 are normalization coefficients that can
be determined from experimental values of power entering
the resonator. It should be emphasized that pure TE or pure
TM modes cannot be excited in the spheroidal resonators,
therefore Eqs. (20) and (21) should not be construed to assume
that the field actually excited under conditions of Eq. (20) has
TE polarization or that the field excited under conditions of
Eq. (21) is of TM polarization.

Expansion coefficients of the field transform under rotation
from the resonator’s to the particle’s coordinates characterized
by Euler angles α, β, γ as(

am,L

bm,L

)
=

L∑
m1=−L

D(L)
m,m1

(−γ,−β,−α)

(
ãm1,L

b̃m1,L

)
. (22)

Taking into account values of the Euler’s angles, given by
Eq. (9) and Eqs. (20) and (21), we can present the expansion
coefficients of the incident field in the particle’s coordinate
system as (

am,L

bm,L

)
= (−i )Md

(L)
m,M (θp )

(
a0

b0

)
. (23)

Substituting Eq. (19) into Eq. (3) we arrive to the following
system of equations for the expansion coefficients of the field
scattered by the resonator in the presence of the nanoparticle:

c
(σ )
m,l = c

(σ,0)
l,m +

∞∑
ν=1

1∑
μ=−1

[
T

(1,1)
m,l;μ,νB

(+)
μ,ν;μ,1(k1, dpr )

+ T
(1,2)
m,l;μ,νA

(+)
μ,ν;μ,1(k1, dpr )

]
p(σ )

μ ,

g
(σ )
m,l = g

(σ,0)
l,m +

∞∑
ν=1

1∑
μ=−1

[
T

(2,1)
m,l;μ,νB

(+)
μ,ν;μ,1(k1, dpr )

+ T
(2,2)
m,l;μ,νA

(+)
μ,ν;μ,1(k1, dpr )

]
p(σ )

μ , (24)

where we added superscripts in c
(σ )
m,l and g

(σ )
m,l to distinguish

between the two types of the excitation—TE for σ = 1 and
TM for σ = 2. Coefficients c

(σ,0)
l,m and g

(σ,0)
l,m are expansion co-

efficients of the scattered field under TE or TM illuminations
in the absence of the nanoparticle:

c
(σ,0)
l,m =

L∑
μ=−L

T
(1,σ )
m,l;μ,Laμ,L = (−i )Md

(l)
m,M (θp )T̃ (1,σ )

M,l;M,La0,

g
(σ,0)
l,m =

L∑
μ=−L

T
(2,σ )
m,l;μ,Lbμ,L = (−i )Md

(l)
m,M (θp )T̃ (2,σ )

M,l;M,Lb0,

(25)
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where we used transformation properties of the T matrix,
Eq. (10), and of expansion coefficients, Eq. (23).

Using Eq. (24) one can eliminate the resonator’s coeffi-
cients c

(σ )
m,l and g

(σ )
m,l in Eq. (15) and derive a closed system of

equations for the particle’s coefficients p(σ )
μ , where we again

added a superscript to distinguish between the cases of TE
(σ = 1) and TM (σ = 2) illumination conditions:

1∑
μ=−1

[δm,μ − αp(Um,μ + Vm,μ)]p(σ )
μ

= αp

∑
l

[
c

(σ,0)
l,m B

(+)
m,1;m,l (k1,−dpr )

+ g
(σ,0)
l,m A

(+)
m,1;m,l (k1,−dpr )

]
. (26)

Matrices Um,μ and Vm,μ in Eq. (26) are defined as

Um,μ =
∑

ν

∑
l

[
T

(2,1)
m,l;μ,νB

(+)
μ,ν;μ,1(k1, dpr )

+ T
(2,2)
m,l;μ,νA

(+)
μ,ν;μ,1(k1, dpr )

]
A

(+)
m,1;m,l (k1,−dpr ),

Vm,μ =
∑

ν

∑
l

[
T

(1,1)
m,l;μ,νB

(+)
μ,ν;μ,1(k1, dpr )

+ T
(1,2)
m,l;μ,νA

(+)
μ,ν;μ,1(k1, dpr )

]
B

(+)
m,1;m,l (k1,−dpr ). (27)

Since translation coefficients vanish whenever one of the
polar numbers m or μ exceeds its respective orbital number l

or ν, the only nonzero elements of these matrices correspond
to values |m| � 1, |μ| � 1. This is, of course, fully consistent
with the dipole approximation used to describe the field scat-
tered by the particle. In the case of spherical resonators, when
the T matrix becomes diagonal in all its indices and loses its
dependence on the polar number m, matrices Um,μ and Vm,μ

are reduced to the respective expressions of Refs. [48,49]:

Um,μ = δm,μ

∑
l

α
(2)
l [A(+)

m,l;m,1(k1, dpr )]
2
,

Vm,μ = −δm,μ

∑
l

α
(1)
l [B (+)

m,l;m,1(k1, dpr )]
2
, (28)

where we used Eq. (4) to represent elements of the T matrix
in terms of the Lorenz-Mie coefficients and took into account
properties of the translation coefficients given by Eq. (14).

Derivation of Eq. (26) essentially completes the formu-
lation of the general theory of the WGM resonances in
spheroidal resonators interacting with a polarizable dipole.
Full numerical analysis of the system under consideration
involves solution of the system of Eqs. (26) and (24), which is
quite straightforward, provided that we can compute matrices
Um,μ and Vm,μ. They contain products of the off-diagonal
components of the T matrix and the translation coefficients.
The T matrix in the resonator’s coordinate system can be
computed using one of many publicly available codes, e.g.,
one presented on the website maintained by Mishchenko [90],
and transformed into the particle’s system using the trans-
formation rule, Eq. (10). The computation of the translation
coefficients appearing in Eq. (28) is also quite straightforward
with Eq. (C9) and requires only the ability to compute Hankel
functions. The problem arises for very high values of L � 50

since in this case the nondiagonal elements of the T matrix
become very small while the translation coefficients become
very large. Under these circumstances, it is very easy to lose
significant contributions to Um,μ and Vm,μ if the magnitude of
the T-matrix elements drops below the precision limit set for
their computation. This difficulty becomes more significant
for small particles located very close to the surface of the
resonator because in this case in order to reach convergence
criteria one has to include terms with higher values of l

into respective sums in Eqs. (24) and (26). This problem,
however, is not of principle nature and can be overcome
by improving the computational precision of available T-
matrix codes. Using modern computational platforms these
calculations can be carried out with arbitrary precision, which
will, of course, make the computations longer. In this work,
whose main goal is to illustrate the developed approach, we
shall limit our consideration to relatively low values of L. At
the same time, we showed in Ref. [67] that the WGM with
lower orbital orders excited in smaller resonators can result
in significantly enhanced particle-related effects. Therefore,
consideration of WGMs with smaller orbital numbers presents
significant interest and the results of this work can be useful
beyond mere illustration of the method.

III. INTERACTION BETWEEN WGMs OF A SPHEROIDAL
RESONATOR AND A SUBWAVELENGTH PARTICLE:

RESULTS

A. Particle-induced modification of the WGM resonance
frequencies

In this section we discuss the modification of resonance
frequencies of the spheroidal resonator due to interaction with
the nanoparticle. This issue has attracted the largest attention
in the recent literature (see the Introduction for references)
due to its importance for WGM-based single particle sensors.
In this subsection we will present the results of the numerical
computation of these frequencies, which will be compared
with the results of approximate analytical calculations based
on the resonant approximation [67]. For numerical simula-
tions we choose the resonator-particle system with the follow-
ing parameters: n1 = 1, nr = np = 1.59, Rr = 4 μm, Rp =
0.032 μm, and dpr = 4.2 μm. The calculations were carried
out for excitation conditions of both TE and TM polarizations
with the exciting field characterized by L = 39 and different
values of the polar number M . To compute the frequencies
of the modified WGM resonances it is sufficient to consider
the expansion coefficients of the particle’s scattered field p(σ )

μ

defined by Eq. (26). The frequencies are found by identifying
the resonances of these coefficients.

We begin by computing the dependence of the particle-
induced resonance frequencies upon the ellipticity of the res-
onator e. For this particular computation we assume that the
particle is positioned in the equatorial plane of the resonator
(θp = π/2) and study coefficients p

(σ )
±1 and p

(σ )
0 as functions

of frequency. For TE excitation, we find that coefficients p
(1)
±1

demonstrate resonance behavior with the same resonance fre-
quency for both p

(1)
1 and p

(1)
−1 coefficients, while the coefficient

p
(1)
0 remains very small for all frequencies. This means that

in the case of the TE excitation there exist components of
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FIG. 4. Dependence of the frequency splitting versus ellipticity
of the resonator in case of TE excitation for two resonator-particle
distances obtained from coefficients p

(1)
±1. Gray lines (solid and

broken) represent results of numerical computation, and black solid
and broken lines show results obtained from analytical expressions
derived using the resonance approximation of Ref. [67].

the resonator’s field that do not interact with the particle,
and, therefore resonate at the frequency of the initial WGM
resonance of the resonator. This conclusion is confirmed by
direct calculations of the coefficients c

(σ )
m,l and g

(σ )
m,l of E(r )

sc (r),
which will be presented in the next section of the paper. Thus,
as expected, the particle induces splitting of a single TE WGM
peak in two spectrally close resonances, one of which coin-
cides with the original WGM resonance of a single resonator.
This behavior of TE WGMs is related to the properties of
the translation coefficient B

(+)
m,l;m,1(k1, dpr ), which vanishes at

m = 0 [see Eq. (C9) in Appendix C], and can also be traced to
the reflection symmetry of the resonator-particle system with
respect to the equatorial plane of the resonator [67].

The results of these calculations for two different values
of the resonator-particle distance dpr and TE excitation are
shown in Fig. 4. One can see that a small deviation of the
resonator’s shape from sphere results in a sharp reduction of
the splitting δω expressed in terms of the dimensionless size
parameter x. However, after initial decrease, δω dependence
on e saturates so that when the ellipticity exceeds some
crossover value ecr, the splitting remains virtually independent
of e. The crossover value ecr depends on dpr (ecr = 0.001
for dpr = 4.036 μm and ecr = 2 × 10−5 for dpr = 4.2 μm),
but always remains relatively small so that all realistic nomi-
nally spherical solid resonators are characterized by ellipticity
parameters e > ecr. The regime e < ecr can in principle be
achieved in liquid droplets actuated as resonators, which
recently started attracting significant attention [91–95]. Ex-
periments with liquid droplets controlled by optical tweezers
might provide the experimental verification of the effects
presented in Fig. 4. Physically, the ecr separates two regimes:
For e < ecr the particle-induced splitting δω exceeds the
spectral distance �ωM,L;M±1,L between WGMs with the same

FIG. 5. Dependence of the frequency splitting versus ellipticity
of the resonator in the case of TM excitation for a single resonator-
particle distance obtained from coefficients p(2)

μ . Gray lines (solid
and broken) represent results of numerical computation, and black
solid and broken lines show results obtained from analytical expres-
sions derived using the resonance approximation of Ref. [67].

value of orbital number L and adjacent polar numbers M and
M ± 1, while for e > ecr we find that δω � �ωM,L;M±1,L.
These findings agree with the approximate analytical results
presented in Ref. [67] and are also shown in Fig. 4. We
can also conclude that the inequality 1 � e > ecr can be
considered as a condition of applicability of the resonance
approximation introduced in Ref. [67].

The resonant response of the resonator-particle system to
the TM excitation is different. Now in addition to resonances
of p

(2)
±1, which occur at coinciding frequencies, we also ob-

serve resonance of p
(2)
0 at a new frequency. The difference

between TM and TE excitations can again be explained by
the different behavior of TE and TM polarized electric fields
with respect to reflection in the equatorial plane. However, the
behavior of both these frequencies as functions of ellipticity
is similar to that of TE polarization, although the value of
ecr is different for each of the two frequencies: It is larger
for the resonance of p

(2)
0 because this resonance is shifted

more strongly from the original WGM frequency than the one
associated with coefficients p

(2)
±1 (see Fig. 5).

One of the challenges in using observations of the particle-
induced shifts of WGM resonances for sensing is the lack
of control over the position of the analyte particle on the
surface of the resonator. It was suggested and demonstrated
experimentally in Ref. [12] that one can determine the angular
coordinate of the particle by comparing frequency shifts of
WGMs with the same orbital, but different polar numbers. It
is interesting, therefore, to consider the resonance frequencies
as functions of the particle’s angular coordinate θp for various
polar modes of the resonator-particle system comparing the
rigorous numerical results with those of the resonant approxi-
mation.

The first thing to note in this regard is that for the
off-equatorial position of the particle coefficients p

(1)
1 , p

(1)
−1
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FIG. 6. Angular dependence of the shift of the particle-induced resonance frequencies excited by a TM type (p(2)
+ , p

(2)
−,0—left vertical axis)

and TE type (p(1)
− —left vertical axis and p

(1)
+ —right vertical axis) excitation with L = 39 and M = L (a) and M = L − 1 (b) obtained by

observing maximums of p
(1,2)
±,0 coefficients for e = 0.0005. The coefficients p

(1)
+ and p

(2)
− vanish at the equatorial position of the particle on the

(a) graph, as well as coefficients p
(1)
− , p

(2)
0 , and p

(2)
+ on the (b) graph.

for the TE excitation or coefficients p
(2)
±1, p

(2)
0 for the TM

excitation do not describe excitation of the normal modes
of the resonator-particle system in the sense that they do
not resonate at a single frequency. Analytical calculations
of Ref. [67] indicate that in this case combinations p

(1,2)
± =

p
(1,2)
1 ± p

(1,2)
−1 represent normal modes for both TE and TM

excitation types. In the latter case, the resonant approximation
predicts that p

(2)
− and p

(2)
0 coefficients resonate at the same

frequency, the fact confirmed by numerical computations as
well. Thus, we computed coefficients p

(1,2)
± and used their

frequency dependence to establish positions of the particle-
induced resonances for a number of different values of θp.
In Fig. 6 we present the results of these calculations for two
values of the exciting polar number, M = L and M = L − 1,
for the resonator with a very small ellipticity e = 0.0005,
which is, however, still larger than the critical value ecr for the
equatorial position of the particle (see Fig. 3). One can see an
excellent agreement between numerical and analytical results
based on the resonant approximation of Ref. [67] for both
fundamental and M = L − 1 modes. This means that, even

for such a small ellipticity, the particle “sees” only two instead
of 2L + 1 degenerate modes in agreement with assumptions
of Ref. [67] and results shown in Fig. 3, while all off-diagonal
and nonresonant elements of the T matrix indeed remain very
small.

However, it is more interesting to compare numerical and
analytical results for more realistic values of ellipticity. In
Fig. 7 we present the results of calculations for e = 0.048,
which corresponds to typical values for nominally spherical
resonators used in sensing experiments. While the magnitude
of the shift, compared to the case of smaller ellipticity, does
not change much, the difference between numerical and ana-
lytical results grows as expected. This difference is growing
with deviation of the particle’s location from equatorial, but
for the M = L − 1 mode and θp below ∼84°, an unexpected
qualitative effect emerges in the frequency dependence of
coefficient p

(2)
− . As one can see from Fig. 8, coefficient p

(2)
−

acquires an additional maximum at angle θp = 79◦, which
grows more prominent for θp = 77◦ and eventually washes
out traces of both original maxima resulting in a broad spectral
feature not directly related to the resonant frequencies of the

FIG. 7. Angular dependence of the shift of the particle-induced resonance frequencies excited by a TM type (p(2)
+ , p

(2)
−,0—left vertical axis)

and TE type (p(1)
− —left vertical axis and p

(1)
+ —right vertical axis) excitation with L = 39 and M = L (a) and M = L − 1 (b) obtained by

observing maximums of p
(1,2)
±,0 coefficients for e = 0.048. At the equatorial position of the particle the coefficients p

(1)
+ and p

(2)
− vanish on the

(a) graph, as well as coefficients p
(1)
− , p

(2)
0 , and p

(2)
+ on the (b) graph.
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FIG. 8. Dependence of the p
(2)
− coefficient on the offset from the

resonator’s frequency (δω = 0) for a set of the polar angles θp , M =
L − 1, and e = 0.048.

system. The origin of this additional maximum can be traced
to one of the nonresonant matrix elements of the T matrix
showing the limitations of the resonant approximation and
even more so of the heuristic phenomenological models. At
the same time this phenomenon does not manifest itself in the
behavior of coefficient p

(2)
0 , which remains unaffected and can

be used instead of p
(2)
− to locate positions of the resonances

[Fig. 7(b)].

B. Resonances of the scattered power

Experimental detection of frequencies of WGM reso-
nances is usually based upon observation of the minima of
the intensity of light transmitted through the fiber used to
excite the resonances [1,82,83,85]. These minima correspond
to frequencies at which the transfer of energy from the fiber
to the resonator is at maximum. Under the steady-state condi-

tions these frequencies also correspond to the maxima of the
power scattered by the resonator (or by the resonator-particle
system). These arguments, of course, do not take into account
the coupling coefficient between the fiber and the resonator,
which affects the excitation of the WGMs, as well as coupling
of the scattered light back to the fiber. This coupling has been
studied intensively for a single resonator [85–89], but how the
presence of the particle affects the coupling, and conversely,
how the proximity of the taper affects the particle-induced
effects, is not clear. There are some indications, however, that
the effects due to interaction with particles can be stronger
than the effects due to the taper [87], and while this question
deserves more careful consideration one can assume that
calculations of the scattered power in the absence of the fiber
well represent the results of actual observations. This quan-
tity provides more information about the resonator-particle
interaction: In addition to the positions of the particle-induced
resonances we can also see their widths and relative heights.
Besides, this quantity allows us to predict whether the particle-
induced resonances can be resolved.

The (dimensionless) power scattered by the resonator with
a single WGM with a given polar number is given by the
following expression:

W (σ )
sc =

lmax∑
l=1

{∣∣c(σ )
0,l

∣∣2 + ∣∣g(σ )
0,l

∣∣2 + 1

2

l∑
m=1

(∣∣c(σ )
m+,l

∣∣2 + ∣∣c(σ )
m−,l

∣∣2

+ ∣∣g(σ )
m+,l

∣∣2 + ∣∣g(σ )
m−,l

∣∣2)}
, (29)

where the sum cutoff number lmax is chosen to achieve the
convergence of the sum, and coefficients c

(σ )
m±,l and g

(σ )
m±,l are

defined similarly to coefficients p
(σ )
±1 :

c
(σ )
m±,l ≡ c

(σ )
m,l ± c

(σ )
−m,l, g

(σ )
m±,l ≡ g

(σ )
m,l ± g

(σ )
−m,l . (30)

Preliminary determination of the resonance positions based
on computation of coefficients p

(σ )
±1 makes finding resonances

of the scattered power much more efficient as it significantly
limits the range of frequencies that need to be covered.
In Fig. 9 we show how analytical results of the resonant

FIG. 9. Dependence of the scattered power on the frequency close to the resonator’s frequency (δω = 0) for e = 0.0005. Graph (a) shows
results for the fundamental resonator’s mode M = L = 39 and the particle located at the equator, while graph (b) represents results for
M = L − 1 = 38 and the particle located at polar angle θp = 81◦. Solid lines correspond to analytical results and dashed lines correspond to
numerical results obtained from Eq. (29).
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FIG. 10. Dependence of the resonator scattered power on the frequency close to the resonator’s frequency (δω = 0) for e = 0.048. Graph
(a) shows results for the fundamental resonator’s mode M = L = 39 and the particle located at the equator, while graph (b) represents results
for M = L − 1 = 38 and the particle located at polar angles θp = 81◦ and 77◦. Solid lines correspond to analytical results and dashed lines
correspond to numerical results obtained from Eq. (29).

approximation compare with numerical calculations for the
resonator with small ellipticity e = 0.0005.

Analytical results are found to be in good agreement with
numerical simulations. For the TE (TM) mode in the selected
frequency ranges the main contribution to the sum in Eq. (29)
comes from c

(σ )
m±,l (g(σ )

m±,l) coefficients, while the rest of the
coefficients are, at least, four orders of magnitude smaller,
thus confirming the validity of the resonant approximation.
Figure 10 shows the same quantities, but for ellipticity e =
0.048. One can see that with deviation of the particle from the
equatorial position the maxima of the scattered power move
toward each other signifying decreasing separation between
the resonance frequencies, and starting with some critical
angle, different for TE and TM polarizations, the maxima start
overlapping and merge into a single peak.

As expected, in the case of larger ellipticity the discrep-
ancy between analytical and numerical results becomes more
prominent. In order to achieve a better quantitative under-
standing of the significance of this difference we compared

numerical and analytical results for the positions of the res-
onance maxima. The differences between these quantities as
functions of the particle’s position are shown in Fig. 11, where
they are normalized by the deviation of the frequency of the
left peak from the resonator’s frequency at the equatorial
position of the particle. One can see that the nonresonant
terms in the T matrix, which are taken into account in our
numerical computations, result in corrections to the amount
of the frequency splitting as large as 4%−6% of the splitting,
which is experimentally significant. One can also notice that
the discrepancy between analytical and numerical results is
greater when the deviations of the particle-induced resonances
from the initial resonator’s frequency are larger and decreases
as the splitting of the resonances becomes smaller.

One of the interesting particle-induced effects found in
spherical resonators [49] is a directionality of the scattered
field determined by the position of the particle. Computing the
dependence of the scattered intensity upon azimuthal angle in
the equatorial plane of the spheroidal resonator, we found that

FIG. 11. Dependence of the difference of peak positions of scattered power between the results of analytical approximation and numerical
simulation on the angular position of the particle. Frequency difference is normalized on the modulus of the shift of the left peak from
resonator’s frequency at θp = 90◦ [see Figs. 9(a) and 10(a)] for fundamental mode M = L = 39. Graph (a) corresponds to e = 0.0005 and
graph (b) is for e = 0.048. Curves for TM mode are calculated down to the angle of ∼85° where both peaks merge together, while TE peaks
are still separated even at 82°.
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FIG. 12. Azimuthal intensity pattern in the equatorial plane for the sphere (a) and spheroid with e = 0.0005 (b) at radius r = 5 μm from
the center. The angle is defined with respect to Zp axis with the particle located on the equator.

even slight deviations from sphericity completely wash out
this directionality (see Fig. 12).

IV. CONCLUSIONS

In this paper we presented the computationally efficient
numerical method of determining spectral characteristics of
a spheroidal whispering-gallery-mode resonator interacting
with a dielectric nanoparticle. The approach is based on the
combination of T-matrix formalism for a single resonator with
a dipole approximation for a field of the nanoparticle and
allows computing a scattered field of the resonator-particle
system illuminated by an incident field in the form of a single
WGM mode of TE or TM polarization. This form of the
incident field mimics excitation of the resonances by a tapered
fiber. Our calculations showed that even the smallest deviation
of the resonator’s shape from an ideal sphere renders spherical
approximation for the shape of the resonator invalid and that
the analytical resonant approximation for spheroidal reso-
nances developed in Refs. [67,68] gives an accurate descrip-
tion of the spectral characteristics of the resonator-particle
system. However, our calculations also showed that for the
values of the ellipticity parameter of the order of 3%–5%,
which is typical for many nominally spherical resonators used
in experiments, the corrections due to nonresonant elements
of the T matrix can become quite significant and result in
up to 4%–6% deviations of the resonant frequencies from the
values predicted by the resonant approximation. With particle-
induced spectral modifications of the WGM resonances be-
coming a centerpiece of new sensing applications these cor-
rections are important enough to take into account when using
experimental results to size the nanoparticle analytes [14–16].
A direct comparison with presently available experimental
data would require expanding the codes for calculation of the
elements of the T matrix beyond available precision, which is
possible, but lies beyond the scope of this work.
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APPENDIX A: LORENZ-MIE COEFFICIENTS FOR
A SINGLE SPHERE

The Lorenz-Mie coefficients for ideal spheres are given by
Eq. (5) of the main text, where respective functions β

(σ )
l (x)

and ς
(σ )
l are defined as

TE polarization:

β
(1)
l (x) = yl (n1x)[nrxjl (nrx)]′ − jl (nrx)[n1xyl (n1x)]′,

ς
(1)
l (x) = jl (n1x)[nrxjl (nrx)]′ − jl (nrx)[n1xjl (n1x)]′,

(A1)

TM polarization:

β
(2)
l (x) = n1

nr

yl (n1x)[nrxjl (nrx)]′−nr

n1
jl (nrx)[n1xyl (n1x)]′,

ς
(2)
l (x) = n1

nr

jl (n1x)[nrxjl (nrx)]′ − nr

n1
jl (nrx)[n1xjl (n1x)]′.

(A2)

In Eqs. (A1) and (A2), functions jl (z), yl (z) are spherical
Bessel functions of the first and second kind, respectively;
[zf (z)]′ means differentiation with respect to the entire argu-
ment.

APPENDIX B: PROPERTIES OF T MATRIX

Properties of the T matrix here are cited from Ref. [62].
The following relation is valid for a scatterer of an arbitrary

shape and for any choice of the coordinate system. (Scatterer
here is any object interacting with an incident electromagnetic
wave. In the context of this paper, the role of the scatterer is
assigned to the resonator.)

T
(σ,σ ′ )
m,l;μ,ν = (−1)m+μT

(σ ′,σ )
−μ,ν;−m,l . (B1)

For axially symmetrical scatterers additional relations be-
tween elements of the T matrix appear. In the resonator’s
coordinate system they can be expressed as

T̃
(σ,σ ′)
m,l;m,ν = (−1)σ+σ ′

T̃
(σ,σ ′)
−m,l;−m,ν,

T̃
(1,2)

0,l;0,ν = T̃
(2,1)

0,l;0,ν = 0. (B2)
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Finally, the presence of the plane of symmetry perpendic-
ular to the axis of rotation is responsible for the following
relations between elements of the T matrix in the resonator’s
coordinate system (for σ �= σ ′):

T̃
(σ,σ )
m,l;m,ν = 1

2 [1 + (−1)l+ν]T̃ (σ,σ )
m,l;m,ν,

T̃
(σ,σ ′ )
m,l;m,ν = 1

2 [1 − (−1)l+ν]T̃ (σ,σ ′ )
m,l;m,ν. (B3)

Most important for us is the transformation property of the
T matrix expressed by Eq. (8) of the main text. The Wigner D
matrix D(ν)

m,μ(α, β, γ ) appearing in that formula can be written
down as

D(ν)
m,μ(α, β, γ ) = e−imαd (ν)

m,μ(β )eiμγ , (B4)

where d (ν)
m,μ(β ) is called the Wigner (small) d matrix. One of

its multiple representations is as follows:

d (l)
m,m1

(β )

= 1

2l

√
(l + m1)!(l − m1)!(l − m)!(l + m)!

×
∑

k

(−1)k
cos (β/2)2l−2k+m−m1 sin (β/2)2k−m+m1

k!(l − m1 − k)!(k − m + m1)!(l +m − k)!
,

(B5)

where summation is carried over such k, which results in
non-negative factorials in the denominator of Eq. (B5). Matrix
d (l)

m,m1
(β ) as a function of β has its maximum at β = ±π/2,

and decreases to zero when β approaches values of zero or
±π . It has the following important properties:

d (l)
m,m1

(−β ) = (−1)m−m1d (l)
m,m1

(β ) (B6)

and

d (l)
m,m1

(β ) = (−1)m−m1d (l)
m1,m

(β ) = d
(l)
−m1,−m(β ), (B7)

valid for an arbitrary angle. In the particular case of β = π/2,
Eq. (B5) gives

d (l)
m,m1

(π/2)

=
√

(l + m1)!(l − m1)!(l − m)!(l + m)!

×
∑

k

(−1)k

k!(l − m1 − k)!(k − m + m1)!(l + m − k)!
.

(B8)

In this case one can derive an additional relation,

d
(l)
−m,m1

(π/2) = (−1)l−m1d (l)
m,m1

(π/2), (B9)

which allows for significant simplifications of the calculations
of the T matrix in the particle’s coordinate system when the
particle is at the equatorial position.

APPENDIX C: VECTOR SPHERICAL HARMONICS AND
TRANSLATION COEFFICIENTS

Different normalizations for VSHs result in different defi-
nitions of the translation coefficients. To avoid possible con-
fusion we present here relevant expressions used in this work,
which are taken from Ref. [62]. It should be noted that the
authors of Ref. [50] utilize a different convention with regard
to normalization of VSH, and, hence, use different formulas
for the translation coefficients.

VSHs are functions of spherical coordinates r, θ, ϕ (ra-
dial, polar, and azimuthal coordinates, respectively) defined
with respect to a particular coordinate system. For TE polar-
ization they are defined as

{
M(3)

m,l (r, θ, ϕ)

M(1)
m,l (r, θ, ϕ)

= κm,lCm,l (θ, ϕ)

{
h

(1)
l (kr )

j
(1)
l (kr )

, (C1)

where

κm,l =
√

(2l + 1)(l − m)!

4πl(l + 1)(l + m)!
. (C2)

The angular portion of the VSH is defined as

Cm,l (θ, ϕ) =
[
ieθ

m

sin θ
P m

l (cos θ ) − eϕ

d

dθ
P m

l (cos θ )

]
eimϕ,

(C3)
where eθ , eϕ are unit vectors of the spherical coordinate
system for the polar and azimuthal directions, respectively,
and P m

l (x) are standard associated Legendre functions. VSHs
of TM polarization are defined as

{
N(3)

m,l (r, θ, ϕ)

N(1)
m,l (r, θ, ϕ)

= 1

k
∇ ×

{
M(3)

m,l (r, θ, ϕ)

M(1)
m,l (r, θ, ϕ)

. (C4)

Translation coefficients A
(+)
μ,ν;m,l (k1, dpr ) and

B
(+)
μ,ν;m,l (k1, dpr ), which are consistent with definition of

VSHs given by Eqs. (C1)–(C4), are expressed as functions of
the radial dpr, polar θpr, and azimuthal ϕpr coordinates of the
particle’s position vector dpr with respect to the center of the
resonator.

A
(+)
μ,ν;m,l (k1dpr, θpr, ϕpr ) = κm,l

κμ,ν

(−1)μ
l+ν∑

p=|l−ν|
a(m, l| − μ, ν|p)a(l, ν, p)h(1)

p (kdpr )P
m−μ
p (cos θpr ) exp[i(m − μ)ϕpr]

B
(+)
μ,ν;m,l (k1dpr, θpr, ϕpr ) = κm,l

κμ,ν

(−1)μ+1
l+ν∑

p=|l−ν|
a(m, l| − μ, ν|p, p − 1)b(l, ν, p)h(1)

p (kdpr )P
m−μ
p (cos θpr ) exp[i(m − μ)ϕpr],

(C5)
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where

a(m, l|μ, ν|p) = (−1)m+μ(2p + 1)

√
(l + m)!(ν + μ)!(p − m − μ)!

(l − m)!(ν − μ)!(p + m + μ)!

(
l ν p

m μ −(m + μ)

)(
l ν p

0 0 0

)
,

a(m, l|μ, ν|p, q ) = (−1)m+μ(2p + 1)

√
(l + m)!(ν + μ)!(p − m − μ)!

(l − m)!(ν − μ)!(p + m + μ)!

(
l ν p

m μ −(m + μ)

)(
l ν q

0 0 0

)
, (C6)

a(l, ν, p) = (i)ν−l+p(2ν + 1)

2ν(ν + 1)
[l(l + 1) + ν(ν + 1) − p(p + 1)],

b(l, ν, p) = − (i)ν−l+p(2ν + 1)

2ν(ν + 1)

√
(l + ν + p + 1)(l + ν − p + 1)(l − ν + p)(−l + ν + p), (C7)

and the coefficients (
l ν p

m μ −(m + μ)

)
(C8)

are Wigner 3j symbols. In the particle coordinate system θpr = 0 and, as a result, only m = μ components of the translation
coefficients are different from zero. In the particular case, when one of the angular momentum indices is taken to be unity,
expressions for the translation coefficients simplify and become

A
(+)
μ,ν;μ,1(k1rpr ) =

√
3

2

[√
(ν + 1)(ν + |μ|)
(2ν + 1)(1 + |μ|)h

(1)
ν−1(k1rpr ) + (−1)μ

√
ν(ν + 1 − |μ|)

(2ν + 1)(1 + |μ|)h
(1)
ν+1(k1rpr )

]
,

B
(+)
μ,ν;μ,1(k1rpr ) = i

√
3

2
μ

√
2ν + 1h(1)

ν (k1rpr ). (C9)
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