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Nonlocal transport in bounded two-dimensional systems: An iterative method
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The concept of transport mediated through the dynamics of “jumping” particles is used to develop an
iterative method for obtaining steady-state solutions to the nonlocal transport equation in two dimensions.
The technique is self-adjoint and capable of correctly treating spatially nonuniform, asymmetric systems. An
appropriate reduced version of the iteration method is used to compare with results obtained with a self-adjoint
one-dimensional transport matrix approach [Maggs and Morales, Phys. Rev. E 94, 053302 (2016)]. The transport
“jump” probability distribution functions are based on Lévy α-stable distributions. The technique can handle the
entire Lévy α-parameter range from one (Lorentz distributions) to two (Gaussian distributions). Cases with
α = 2 (standard diffusion) are used to establish the validity of the iterative method. The capabilities of the
iterative method are demonstrated by presenting examples from systems with various source configurations,
boundary shapes, boundary conditions, and spatial variations in parameters.
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I. INTRODUCTION

Nonlocal transport occurs in a variety of physical systems
of limited extent, that is, systems entirely contained between
confining walls or boundaries. Some examples of bounded
systems exhibiting nonlocal transport in two dimensions in-
clude heat transport in semiconductor alloys [1], relaxation of
photoexcited electrons in graphene [2,3], nondiffusive thermal
conductivity in crystalline silicon [4], hydrodynamic electron
liquids [5], hybrid topological insulators [6], heat transfer in
Lennard-Jones crystals [7], two-dimensional metals [8], and
heat transport in thin silicon layers and graphite sheets [9].
Also, nonlocal transport processes are observed in magneti-
cally confined plasmas surrounded by metallic walls [10–14].
Nonlocal transport is associated with dynamical processes
producing relatively large, compared to the system size, dis-
placements or “jumps.” Nonlocal dynamics is described by
non-Gaussian probability distribution functions. A class of
probability distribution functions (PDFs) inherently contain-
ing large displacements, or Lévy flights [15], is the Lévy
α-stable distributions. Lévy distributions contain some non-
physical attributes (nonfinite moments and infinite jumps)
but prove useful in developing mathematical models of non-
local transport. A key concept developed in the continu-
ous time random walk (CTRW) [16] model is the idea of
transport mediated by “jumping” particles. The probability
of information being transmitted from point (x, y ) to point
(x ′, y ′) depends upon a joint probability distribution function,
η(x − x ′, y − y ′). This fundamental idea is the basis of the
iterative method considered in this paper.

In implementing a practical mathematical procedure to
describe finite-size experiments based on Lévy α-stable PDFs,
some difficult issues need to be overcome. They are related to
the infinite extent of the jumps, as is extensively discussed
in the review by Zaburdaev et al. [17], and to the interaction
with the boundaries [17,18]. One approach to handling the
infinite extent of the jumps is to introduce a sharp truncation

of the PDF at a specified cutoff [19]. Another method [20] is
to introduce an exponential tempering of the spatial fractional
derivatives used in a fractional Fokker-Planck equation. Ver-
meersch et al. [21] applied the exponential tempering directly
on the Lévy PDF to implement a CTRW model [22–25] of
thermoreflectance measurements.

The issue of a proper description of the coupling of the
nonlocal system to an external world through a boundary
involves the difficulties intrinsic to the infinite jumps, but
there are other subtleties. An approach based on the fractional
Fokker-Planck description is to postulate a “sheath” or insu-
lating layer whose dimension has to be judiciously chosen
[26]. Another methodology, proposed by Zoia et al. [27], is
to discretize the fractional Laplacian operator and solve an
eigenvalue problem for free and absorbing boundaries, and
in principle, to represent the solutions as a superposition of
the eigenmodes. Diffusion in an open Lévy system, with a
legislated reflection coefficient, has been explored by Lepri
and Politi [28].

Another element for a successful modeling of a nonlocal
transport experiment using Lévy PDFs is the capability to
handle spatial variations in the parameters associated with
the distributions. This situation may arise in physical systems
because the internal dynamics switches character within var-
ious regions of the system, as has been found in some model
comparisons [29]. Fractional diffusion in a composite medium
has been addressed by Stickler and Schachinger using a
finite-width boundary between layers of different fractional
order [30].

For a broader perspective on the description of nonlocal
transport in two dimensions (2D), it should be mentioned that
there are a significant number of works in the literature on
the subject of numerical techniques to solve 2D fractional
diffusion equations. Some of these approaches include the
use of alternating direction implicit (ADI) methods combined
with Richardson extrapolation [31], decomposition of the
coefficient matrix into a combination of sparse and structured
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dense matrices [32], combining the matrix transfer technique
[33] with Lanczos methods [34], and a novel ADI method
with Dirichlet boundary conditions [35].

The consideration of an iterative method to tackle the
complexities of nonlocal transport in two dimensions, for
a bounded system whose Lévy parameters can vary with
position, is a consequence of the experience obtained in prior
work by the coauthors. In Ref. [36] a matrix method was
introduced to describe phenomena akin to those studied in
the present work, but constrained to one dimension. A key
element that emerges from that earlier effort is the necessity
for the underlying methodology to preserve self-adjoint struc-
ture in systems with spatial variations in parameters. Another
central concept, also arising from earlier work, is that the
interface with external systems requires the implementation
of intermediate boundary conditions or “fuzzy boundaries.”
In extending the principles of self-adjoint structure and fuzzy
boundaries to two-dimensional systems it is found that the
iterative method is far superior to the matrix approach.

The mathematical model of jumping particle transport in
2D is presented in Sec. II. Section III has a comparison of
the iteration method, in one dimension (1D), to nonlocal self-
adjoint transport matrix results. Section IV shows 2D profiles
computed with the iteration method in azimuthally symmetric
cases. Section V contains a treatment of the general case
and presents results from a variety of nonsymmetric systems.
Section VI discusses results and presents conclusions. The
case of separable jumping particle PDFs is presented in Ap-
pendix A. Appendix B presents a method for reducing the
number of iterations needed for profile convergence.

II. MATHEMATICAL MODEL OF NONLOCAL
TRANSPORT IN 2D

In the study of random walks [37], the concept of “walkers”
is a fundamental tool. Walkers are individual elements moving
at regular time intervals from a grid point to a nearest neighbor
grid point in the classical random walk process. The concept
of individual walkers was expanded in the continuous time
random walk (CTRW) model [22] to a collection of “parti-
cles” that wait at a grid point before jumping to another grid
point, not necessarily a nearest neighbor. The waiting time
and the distance jumped are treated as random variables and
are described by probability distribution functions (PDFs).
The key quantities in the CTRW model are a waiting time
PDF and a jumping distance PDF. The jumping particles
and jumping particle probability distribution functions are the
main ingredients of the model used in this study to describe
nonlocal transport on a discrete grid. In the present paper,
motivated by heat transport experiments in plasmas [11,14], it
is envisioned that the “jumping particles” carry energy packets
(a scalar quantity) from a grid point in the system to other grid
points in the system so that the “temperature” of the system
undergoes a process of nonlocal transport. The characteristics
of the jumping process are described by the jumping particle
PDF, P (�x, t ), where �x is the vector position and t the time.

An equation determining the Fourier and Laplace trans-
form of the PDF of jumping particles, P̃ (�k, s ), for a Marko-
vian jump process (a jump process without memory) was

introduced by Montroll and Weiss [22],

[1 − ψ̃ (s)η̃(�k)]P̃ (�k, s) = 1 − ψ̃ (s)

s
, (1)

where ψ̃ (s) is the Laplace transform of the waiting time dis-
tribution. The waiting time distribution gives the probability
of a particle having moved in the time interval [0, t̄], ψ (t̄ ) dt̄ .
Here, a bar symbol over a spatial or temporal quantity denotes
that it is measured in physical units (e.g., seconds for time
and centimeters for distance). The Fourier transform of the
jump PDF is η̃(�k). The jump PDF gives the probability of a

particle jumping a distance |�̄x − �̄x′| from �̄x′ to �̄x. Montroll
and Weiss considered an n-dimensional finite grid in deriving
their equation. In this study, the dimensionality is taken as
n = 2. Thus the jump PDF is a function of the Cartesian
coordinates (x̄, x̄ ′) and (ȳ, ȳ ′). The waiting time probability,
ψ (t̄ ), is assumed to be independent of position and the jump
probability, η(x̄, x̄ ′, ȳ, ȳ ′), is assumed to be independent of
time. The initial condition is taken to be that all the particles
are located at (x̄, ȳ ) = 0.

Equation (1) is simplified by assuming that the waiting
time distribution is a Poisson distribution with characteristic
time, τ̄ , ψ (t̄ ) = exp(−t̄/τ̄ )/τ̄ . The Laplace transform of the
Poisson distribution is ψ̃ (s) = 1/(1 + sτ̄ ). With this assump-
tion Eq. (1) becomes

P̃ (�k, s )s − 1 = P̃ (�k, s )[η̃(�k) − 1]/τ̄ . (2)

The inverse Laplace and Fourier transforms of Eq. (2) then
give an equation governing the evolution of the probability
distribution in continuous space and time,

∂

∂t̄
P (x̄, ȳ, t̄ ) = 1

τ̄

[ ∫ ∞

−∞

∫ ∞

−∞
dȳ ′dx̄ ′{η[p(x̄ ′, ȳ ′), x̄ − x̄ ′,

ȳ − ȳ ′]P (x̄ ′, ȳ ′, t̄ )} − P (x̄, ȳ, t̄ )

]
. (3)

The initial condition for Eq. (3) has been taken as
P (x̄, ȳ, t̄ = 0) = δ(x̄) δ(ȳ); i.e., all the particles start at the
origin.

The PDF governing the displacement of jumping particles
is peaked at the point of origin of the jumpers. The origin point
of the jumps uniquely identifies a set of jumping particles and
thus can be used to characterize the parameters of the jump
probability distribution at that point. In Eq. (3), the jumping
particles are assumed to originate at the point (x̄, ȳ ) = (0, 0)
and the peak value of the PDF is also located at that point.
The location of the peak in the jump PDF can be manipulated
when using the Fourier transform technique and this property
is used in computing the spatial form of the Lévy distributions.
With the peak of the jump distribution located at (0, 0), the
Fourier transform has the form η̃(p(0), kx, ky ), with p(0)
denoting the parameter values of the jump distribution at the
point (x̄, ȳ ) = (0, 0). In employing the jump PDF in transport
calculations, the jump distribution peak is required to be at
the spatial location (x̄ ′, ȳ ′). In the process of inverting the
Fourier transform, the peak of a jump distribution centered
at the origin can be moved to the location (x̄ ′, ȳ ′) by multiply-
ing the Fourier transform by exp(−ikxx̄

′ − ikyȳ
′). Also, the

parameter values, p(0), can be chosen to have new values,
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p(x̄ ′, ȳ ′), that characterize the jump distribution with peak
value located at (x̄ ′, ȳ ′). Inverting this modified Fourier trans-
form, η̃[p(x̄ ′, ȳ ′), kx, ky] exp(−ikxx̄

′ − ikyȳ
′), then gives a

jump distribution with peak at (x̄ ′, ȳ ′) that has the spatial
form of the jump distribution in the integrand of Eq. (3),
η[p(x̄ ′, ȳ ′), x̄ − x̄ ′, ȳ − ȳ ′].

Solutions to equations, such as Eq. (3), are computed,
in this study, on a N × N grid of evenly spaced, dis-
crete points, (x̄i , ȳj ). In a discrete space, it is convenient
to introduce an expression for the transported scalar quan-
tity (like the temperature, T ) in terms of individual prob-
abilities, T (x̄, ȳ, t̄ ) = ∑N−1

0

∑N−1
0 Ai,jPi,j (x̄, ȳ, t̄ ), where

each Pi,j (x̄, ȳ, t̄ ) satisfies Eq. (3) with the initial condi-
tion Pi,j (x̄, ȳ, 0) = δ(x̄ − x̄i )δ(ȳ − ȳj ). The relevant equa-
tion becomes

∂

∂t̄
T (x̄, ȳ, t̄ )

= 1

τ̄

∫ ∞

−∞

∫ ∞

−∞
dȳ ′dx̄ ′{η(p(x̄ ′, ȳ ′), x̄ − x̄ ′, ȳ − ȳ ′)

× T (x̄ ′, ȳ ′, t̄ )},− 1

τ̄
T (x̄, ȳ, t̄ ) = GS (x̄, ȳ, t̄ ), (4)

where a source term GS (x̄, ȳ, t̄ ) has been added. Physically,
if T is identified with “temperature,” this source represents the
external heating power density applied to the system.

For applications to actual experiments, it is desired to
describe a system of limited physical extent, so the next
assumption is that the jump distributions, η, are nonzero
only over a limited spatial region, R. For convenience let
the region R be square; R: {0 � x̄ � L̄, 0 � ȳ � L̄}. The
jump distributions are required to have zero value outside the
spatial region R. The “truncation” of the jump distributions is
accomplished by multiplying them by a “top hat” function,

fth(x̄, ȳ ) =
[

1 (x̄, ȳ) ∈ R

0 (x̄, ȳ ) /∈ R
. (5)

Consider the truncation of the jump distribution with peak
located at the point (x̄, ȳ), η[p(x̄, ȳ ), x̄ − x̄ ′, ȳ − ȳ ′]. Since
the jump distributions are probability densities it is required
that∫ ∞

−∞
dȳ ′

∫ ∞

−∞
dx̄ ′η[p(x̄, ȳ), x̄ − x̄ ′, ȳ − ȳ ′]fth(x̄ ′, ȳ ′)

=
∫ L̄

0
dȳ ′

∫ L̄

0
dx̄ ′η[p(x̄, ȳ), x̄ − x̄ ′, ȳ − ȳ ′]

= 1; ∀(x̄, ȳ) ∈ R. (6)

Normalizing the position variable to L̄ and the time to τ̄

gives dimensionless spatial coordinates (x, y ) = (x̄/L̄, ȳ/L̄),
and dimensionless time, t = t̄/τ̄ . In the new coordinates, the
model transport equation for T (x, y, t ) is,

∂

∂t
T (x, y, t ) −

{∫ 1

0
dy ′

∫ 1

0
dx ′η′[p(x ′, y ′), x − x ′,

y − y ′]T (x ′, y ′, t ) − T (x, y, t )

}

= τ̄GS (x, y, t ); (x, y) ∈ R, (7)

where η′ = ηL̄2 denotes the dimensionless jump distribution.

The primary focus of this study is the steady-state case, in
which the time derivative in Eq. (7) is zero,

−
∫ 1

0
dy ′

∫ 1

0
dx ′η′(p(x ′, y ′), x − x ′, y − y ′)

× T (x ′, y ′) + T (x, y )

= τ̄GS (x, y ) = S(x, y ). (8)

The new source (GS multiplied by τ̄ ), S(x, y ) = τ̄GS , is
an energy density and thus has the same units as temperature.
The amplitude of the temperature is directly dependent upon
the amplitude of the source, so that adjusting the source am-
plitude also adjusts the amplitude of the temperature. In most
situations treated in this paper the maximum amplitude of the
source is unity, so that the temperature can be considered as
normalized to the maximum source amplitude.

The iteration method of solution is based upon the double
integral term in Eq. (8). The double integral represents the
processes of particles jumping from all points in the sys-
tem (x ′, y ′) ∈ R, and carrying the temperature at that point,
T (x ′, y ′) to a particular spatial location, (x, y ) ∈ R. This
term embodies the physical processes involved in nonlocal
transport. The explicit form of the term is∫ 1

0

∫ 1

0
dx ′dy ′{η[p(x ′, y ′), x − x ′, y − y ′]T (x ′, y ′)}. (9)

The jump distribution in the integrand is not simply a func-
tion of x − x ′, y − y ′ because the parameters characterizing
the jump distribution centered at (x ′, y ′) are allowed to vary in
an arbitrary fashion as represented by the function p(x ′, y ′).

The integral operator formulation of Eq. (9) cannot, in the
general case, be reduced to matrix multiplication operations.
A matrix operator formulation of Eq. (9) can be obtained
in the case that the 2D jump distribution can be written as
the product of two, 1D jump distributions, that is, when the
variables are separable. However, in the general case, the 2D
jump distribution PDF in Eq. (9) is not separable into two 1D
jump distribution PDFs and a technique, such as the iteration
technique, that does not depend upon matrix operators is
needed to find a solution. Nonetheless, it is instructive to
consider the case when the 2D PDF is separable, and the
detailed discussion of this case and its solution in terms of
matrix operators is presented in Appendix A.

A. General jumping particle equation

In the general case, in which the jump distribution func-
tion depends on four variables, η[p(x ′, y ′), x − x ′, y − y ′] =
η̄(x, x ′, y ′, y ), it is not separable, and the matrix operator
techniques used in the separable case discussed in Appendix A
are not available. Rather, Eq. (8) is solved using an itera-
tive method based upon the details of the physical process
embodied in Eq. (9). Before discussing the details of the
iterative method it is useful to obtain a discrete form of
Eq. (8) by introducing a calculation grid. The calculation grid
used in this study is a collection of N × N discrete points
representing the (x, y ) plane. The spacing between nearest
neighbor grid points is h = 1/(N − 1). The values of (x, y )
in the calculation grid are in the space R, and thus 0 � x � 1
and 0 � y � 1. Thus each point on the calculation grid is
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represented by a pair of indices, and (x, y ) = (ih,mh) with
(i, m) integers and 0 � i � N − 1 and 0 � m � N − 1. The
representation of spatial locations (x, y ) as discrete points
then implies that any function of spatial location also has
a discrete representation, T (x, y ) = T (ih,mh) = T (i, m). In
using Eq. (8), there are actually two calculation grids involved,
one for the integration variables (x ′, y ′) and another for the
spatial variables (x, y ). Therefore, a discrete representation of
Eq. (8) involves a four-dimensional object η̄(x, x ′, y ′, y) →
η̄(i, j, k,m).

Equation (8) states that each value of the scalar quantity,
T, in the (j, k) plane, T (j, k), is distributed to the point
(i, m) according to the probability “subdistribution” function,
η̄(i, :, :, m). In the notation, η̄(i, :, :, m), the colon symbol
(:) in a slot indicates the entire range of the variable associated
with the slot, while a single letter indicates the variable for that
slot has the indicated value. Thus the notation, η̄(i, :, :, m),
indicates that x has the value ih, the index j ranges from 0
to N − 1 (x ′ ranges from 0 to 1), the index k ranges from 0
to N − 1 (y ′ ranges from 0 to 1), and y has the value mh.
Using the notation η̄(x, x ′, y ′, y) for the jump distribution,
the discrete form of Eq. (8) gives an expression for the
temperature at each individual point in the (i, m) plane,

T (i, m) =
N−1∑
j=0

N−1∑
k=0

h2η̄SA(i, j, k,m)T (j, k) + S(i, m). (10)

In Eq. (10) the jump distribution function η̄ has been re-
placed with the function η̄SA. It is crucial for obtaining correct
solutions, when the parameters are allowed to have spatial
gradients, that the self-adjoint form of the jump distribution,
η̄SA, is used. The self-adjoint form is obtained from η̄ by
ensuring that η̄SA remains unchanged under interchange of i

with j (x with x ′) and k with m (y with y ′),

η̄SA(i, j, k,m) = [η̄(i, j, k,m) + η̄(j, i,m, k)]/2. (11)

Physically, the temperature at each point in the (j, k) plane,
T (j, k), is distributed, or spread out, by particles jumping
to points in the (i, m) plane, as represented by the term
η̄SA(:, j, k, :). Equation (10) is solved using an iterative
procedure. The iterative technique consists of obtaining a
better estimate of the temperature profile from a previous
estimate. That is, at step n in the iteration, Tn+1(i, m) is
obtained from Tn(j, k) by applying Eq. (10). The first estimate
of the temperature profile is not crucial, but a good guess
speeds the convergence process. Two guesses for the initial
profile used in this study are a constant value, T1 = const., and
the other is that the starting profile is the same as the source,
T1 = S. A technique for obtaining a good guess to the starting
profile for cases when the grid size is large is presented in
Appendix B. Whatever guess is chosen for the initial profile,
the temperature at iteration step n + 1 is

Tn+1(i, m) =
N−1∑
j=0

N−1∑
k=0

h2η̄SA(i, j, k,m)Tn(j, k) + S(i, m).

(12)

The iterative procedure is based upon the assumption
that a unique steady-state solution to Eq. (12) exists and is
determined by a balance between the source input and

transport to sinks, or regions of losses, generally located at
the boundaries of the system. If the iterative procedure is
initiated with a test profile having amplitude larger than the
steady-state solution, the source cannot sustain the boundary
losses associated with the profile, and under iteration the pro-
file decays (in amplitude and shape) toward the steady-state
solution. Similarly, an initial profile with amplitude too low
has insufficient losses at the boundaries to balance the source
input. Under iteration, the profile grows in amplitude toward
the steady-state solution. These assertions are confirmed by
subsequent computations using iteration with Eq. (12).

B. Probability distribution functions for jumping particles

In the 1D problem [36], the probability distributions repre-
senting nonlocal transport are taken from the class of Lévy
α-stable distributions. A brief review of the properties of
1D Lévy α-stable distributions is appropriate before intro-
ducing the 2D form. The 1D Lévy α-stable distributions
are characterized by two parameters, (α, γ ), with alpha, the
order of the distribution, restricted to the range, 1 � α � 2,
and gamma, the width of the distribution, restricted to h �
γ (h is the calculation grid spacing). The two parameters
characterizing the distribution are allowed to be functions
of position. The values [α(x), γ (x)] specify the order and
width of the distribution with peak at the spatial location,
x. The spatial form of the 1D Lévy α-stable distribution,
LLevy([α(x), γ (x)], x − x ′) is computed numerically, using
the standard FFT (fast Fourier transform) algorithm, from the
Lévy α-stable characteristic function [38], which has the form

ln(L̃Levy([α, γ ], kF )) = −(γ |kF |)α. (13)

The spatial variable, x, is scaled to the length of the system,
x = x̄/L̄, as is the jump distribution width, γ = γ̄ /L̄, where
γ̄ is the width measured in physical units (length). Likewise,
the Fourier variable, kF , is scaled to L̄, kF = k̄F L̄, where
k̄F is measured in physical units (1/length). The notation kF

is introduced here to distinguish the Fourier wave number
variable from the index variable k.

A distinctive feature of the Lévy α-stable class is that the
distributions do not have finite second moments, because they
decay in an algebraic fashion asymptotically. For large values
of x, the Lévy α-stable distributions behave as LLevy(α, x) ∼
1/|x|1+α , and for α < 2 this behavior leads to a nonfinite
second moment. The exception is the case α = 2, in which
the asymptotic decay is not algebraic, but exponential, and a
finite second moment exists.

The form of the 2D Lévy distribution characteristic func-
tion adopted for this study is a direct generalization of the
1D form. The procedure consists of replacing the amplitude
of the 1D k-vector with the amplitude of the 2D k-vector,
|kF | = (k2

F, x + k2
F, y )1/2, with �kF = kF,x êx + kF,y êy (êx and

êy are unit vectors in the x and y directions). This substitution
results in distributions that are spatially isotropic about the
peak location. The spatial form of the distribution is found by
a 2D inverse Fourier transformation. The explicit form of the
2D Lévy characteristic function is

ln (L̃Levy([α, γ ], |kF |)) = − (γ |kF |)α,

|kF | = (
k2
F, x + k2

F, y

)1/2
. (14)
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Like the 1D Lévy distribution, the isotropic 2D distribution
is characterized by two parameters, [α, γ ], whose values can
vary spatially with the peak location variables.

As a concrete example, the PDF denoted by η̄(:, j, k, :)
is a 2D Lévy distribution with peak located at the spa-
tial point corresponding to x ′ = jh, y ′ = kh. The distri-
bution parameter set is a function of the variables (j, k),
[α(j, k), γ (j, k)]. The distribution with peak located at the
point (j, k) is a function of the variables (x = ih, y = mh).
The function η̄(:, j, k, :) is computed from the characteristic
function exp (−[γ (j, k)|kF |]α(j,k)) by using the inverse fast
Fourier transform in two dimensions. The inverse Fourier
transform is computed on a 2N × 2N grid. The positive
parts of the discrete Fourier wave numbers, kF, x and kF, y ,
range from 0 to (N − 1)2π . The peak of the inverse trans-
form, η̄2N (:, j, k, :), is located at the center of the 2N × 2N

grid. The peak of the inverse transform is first translated to
the spatial location (x ′, y ′) = (j, k) and then reduced to a
N × N function of (x, y ) = (i, m), η̄(:, j, k, :). The function
η̄(:, j, k, :) is then appropriately truncated at the boundaries
and renormalized so that it satisfies the requirements of a PDF,
namely, that

∑N−1
i=0

∑N−1
m=0 h2η̄(i, j , k, m) = 1.

C. Boundaries

The physical system is considered to consist of two spatial
regions: a nonlocal transport medium surrounded by a wall
material. In this study, the wall material is taken as providing
a perfect heat reservoir, or heat bath. That is, the wall material
can maintain a uniform temperature everywhere in the bound-
ary region. For convenience, in most cases, the uniform wall
temperature is set to zero.

The probability distributions of jumping particles are ter-
minated at the interface between the nonlocal system and
the wall heat reservoir, in the sense that a particle jumping
from the nonlocal system cannot jump to all locations within
the wall. Particles jumping from the nonlocal system into the
heat reservoir jump to points in the wall material immediately
adjacent to the nonlocal system. The distance particles jump
into the wall is chosen as equal to the width of the jump
distribution (measured in units of grid spacing, h) at the
wall-nonlocal system interface. For example, if the jump
distribution width, γ , is equal to one grid spacing (γ = h)
at the wall-nonlocal system interface, then the wall region,
into which particles jump, is one grid spacing wide. If the
distribution width at the interface location is larger, then the
overlap region is larger. For example, if the distribution width
at the wall is γ = 3h, then the overlap region is three grid
points wide. This prescription creates a layer in which the
material wall and the nonlocal system coexist, and provides
for a smooth transition between the nonlocal system and
the wall. The transition layer is the analog of the “fuzzy”
wall introduced in the previous 1D analysis of Maggs and
Morales [36].

III. COMPARISON TO 1D NONLOCAL TRANSPORT

A. Iteration method in 1D

Solutions to the 1D nonlocal transport problem can be
found by employing a self-adjoint matrix, transport operator

approach [36]. The iterative technique presented in Eq. (12)
as an approach to obtain solutions to the 2D problem can also
be used to obtain solutions in the 1D case. It is instructive to
compare solutions obtained with these two approaches.

For the 1D problem, Eq. (12) is modified to

Tn+1(i) =
N−1∑
j=0

hη̄(i, j )Tn(j ) + S(i). (15)

The ith row of the variable η̄, hη̄(i, :) is a 1D PDF with
peak value at location x ′ = jh. Each row of hη̄ represents
a PDF, and thus the sum over each and every “column” of
hη̄ (sum over the j variable) is unity. Ultimately, the proper
form of the η̄ matrix is a self-adjoint structure with rows
and columns summing to unity. To accomplish this, η̄ un-
dergoes the following transformations: η̄ → (η̄ + η̄†)/2 (with
the dagger, †, representing the transpose operation), followed
by a transformation that ensures all rows and columns sum
to unity, η̄ → I − (η̄ ∗ c1) + η̄. In the last transformation, I

is the identity matrix, and c1 is a column vector with all
elements equal to unity. The star operator represents matrix
multiplication. The final form of the transformed η̄ satisfies
the requirement that it is self-adjoint and all rows and columns
sum to unity.

1. Application of the iteration method in 1D

Figure 1 illustrates the application of Eq. (15) to obtain a
solution to the simple problem with parameter values α = 2
and γ = 1. The heat reservoir is five grid points wide on
both the left and right sides, and the overlap region between
the nonlocal region and the heat reservoir is one grid point
wide. The temperature is set equal to zero in the heat reservoir
region. The source is centrally located with a Gaussian profile,
S(x) = exp(−x2/a2), with a = 0.05. The iteration process
used to solve Eq. (15) begins with an initial temperature
profile. In order to illustrate the convergence process two
initial profiles are chosen. Both are spatially uniform, but one
value, Tinitial = 100, results in profiles that tend toward the
final profile from below, while the other, Tinitial = 220, gives
profiles that approach the final result from above. The iteration
process starts with the initial profile at step 1. The value of
the initial profile at all points x ′ is distributed to points x

according to Eq. (15). The redistributed profile is then used
as the starting point for step 2 of the iteration. The profile
produced in step 2 of the iteration process then becomes the
input for step 3. The iteration process is repeated until the
iterated profile converges.

A profile is considered to have converged when the log-
arithmic derivative of the spatially averaged value of the
calculated temperature, T̄ , with respect to iteration number, is
less than a chosen value. The profile convergence criterion is∣∣∣∣d log(T̄ )

dni

∣∣∣∣ =
∣∣∣∣ 1

T̄

dT̄

dni

∣∣∣∣ < ε. (16)

In Eq. (16), ni is number of iterations (a positive integer
value), and T̄ is the spatially averaged value of the profile,
T̄ = ∑

i

∑
m T (i, m)/N2, always a positive quantity. The sign

of the logarithmic derivative is determined by the sign of the
derivative of the mean profile, dT̄ /dni , which of course can be
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FIG. 1. Solutions to Eq. (15) are obtained by iteration. An initial
profile evolves under iteration to a converged profile. (a) The be-
havior of the peak amplitude of the iterated profiles as the number
of iterations increases for two different, uniform initial profiles. The
peak value of the profile starting with uniform value 100 [dashed
blue (lower) trace] steadily increases toward the converged value of
the peak amplitude. The peak amplitude of the profile starting with
uniform value 220 [dashed orange (upper) trace] increases at first, but
then reaches a maximum value and subsequently steadily decreases
toward the same value as the blue (lower) trace. (b) Profiles at various
iteration steps (as noted) for the Tinitial = 100 case. (c) Profiles at
various iteration steps (as noted) for the Tinitial = 220 case. The solid
red trace in panels (b,c) is the converged profile (ε = 10−5). The
converged profile is the same for both starting cases.

negative. Since the parameter epsilon is positive, the absolute
value of the logarithmic derivative is used in Eq. (16). The pa-
rameter epsilon, ε, is somewhat arbitrary, but is chosen so the
change in profile with iteration number is small enough to suit
the situation at hand. A typical value for epsilon is ε = 10−5.

As shown in Fig. 1(a), the achievement of a converged
profile requires a considerable number of iteration steps. In
this example, over 5000 iterations steps are needed to obtain
a converged profile. The dashed blue (lower) and dashed
orange (upper) traces show the evolution of the peak profile
amplitude with iteration step. The dashed blue (lower) curve
is for the initial temperature profile, Tinitial = 100, and the
dashed orange (upper) trace is for Tinitial = 220. Both initial
profiles lead to the same final value for the peak amplitude.
The convergent behavior displayed by the two traces was
assumed, and indeed is necessary for the iteration technique to
yield a steady-state profile. It is possible to develop techniques
to speed up the convergence process, and a method for doing
so is discussed in Appendix B.

The profiles shown in Figs. 1(b) and 1(c) illustrate the
change in the iterated profile shape as the converged profile is
approached. The profiles are shown at a nonlinear progression
of iteration steps (1, 20, 40, 80, 160, 320, 640, 1280, and 2560)
for clarity. The profiles merge as they approach the converged
profile, as is made clear by comparing the difference between
the profile shown at iteration step 2560 and the converged
profile (solid red trace, iteration step 5120).

B. Comparison to the self-adjoint transport matrix method

Figure 2 shows profiles obtained using the self-adjoint
transport matrix method [36] compared to profiles obtained
using the iteration technique. The source is the same as used in
Fig. 1 and the number of grid points is N = 101. Two values
of the alpha parameter are considered, α = 2 and α = 1.5. For
each value of alpha, two values of the distribution width are
considered, γ = 1 and γ = 3. The boundary configuration for
the iterative procedure is the fuzzy interface of the nonlocal
system with the heat reservoir. The overlap region between
the nonlocal system and the heat reservoir is one grid spacing
in width for the γ = 1 case, and three grid spaces in width for
the γ = 3 case. In the transport matrix method, the nonlocal
system is bounded by material walls with high (classical)
conductivity, κ = 1000. The high wall conductivity leads to
uniform temperature in the wall region and thus mimics the
heat reservoir boundary used in the iteration technique. The
transport matrices are computed using the fuzzy wall interface
between the wall and nonlocal system.

In Fig. 2, profiles obtained with the transport matrix
method are shown as dashed lines and the converged profiles
obtained by iteration are solid lines. The case with γ = 1
is shown in Fig. 2(a). The profile with α = 2 and γ = 1,
computed using the iteration technique, is the same as the
converged profile in Fig. 1. The starting profile for both
cases in the iteration technique was chosen to be equal to
the source. For both values of alpha, profiles obtained with
the transport matrix have slightly larger peak amplitude. For
α = 2 the difference in profile amplitude is about 1%, but for
α = 1.5 it is about 6%. The inset in Fig. 2(a) shows that the
offset between the profiles for the α = 1.5 case occurs at the
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FIG. 2. A comparison of profiles obtained by iteration and pro-
files obtained with the transport matrix. (a) The distribution width
is one grid spacing. The difference in profiles originates at the
boundary. (b) The distribution width is three grid spaces. The matrix
method has a material fuzzy wall and the iteration technique uses a
fuzzy interface with the heat reservoir.

boundary. Other than the offset at the boundary, the profile
shapes are nearly identical. Figure 2(b) shows the profiles
for the case γ = 3. It is difficult to distinguish the dashed
lines from the solid lines. In this case, the two methods yield
profiles that differ by less than one-tenth of a percent. From
the results shown in Fig. 2, it is evident that the iteration
technique with a heat reservoir and fuzzy interface yields a

result similar to the transport matrix with wall material of high
conductivity, and a fuzzy wall interface.

IV. 2D PROFILES WITH AZIMUTHAL SYMMETRY

The simplest 2D situation is a system with azimuthal sym-
metry. Nonlocal transport in an azimuthally symmetric system
has been investigated by Kullberg et al. [26]. In the present
model, which employs a rectangular grid, an azimuthally sym-
metric system can be approximated by using a heat reservoir,
with a circular wall, as a boundary. Since the temperature is
held at a constant value of zero in the heat reservoir boundary
region, the corners of the rectangular calculation grid are not
relevant to the nonlocal region of the system, as is illustrated
later in Figs. 3 and 4.

With a circular wall boundary, the next ingredient in an
azimuthally symmetric system is an azimuthally symmetric
source. Such a source is realized by requiring that the source
term is a function of radial position only, S(x, y ) → S(r ).
Finally, the parameters characterizing the jump distributions
must be spatially uniform, or depend only upon radial
position. Figure 3 presents an example of transport in an
azimuthally symmetric system with parameter values α = 2
and γ = 1 (gamma is measured in units of grid spacing, h).
The source term is a ring, S(r ) = exp[(r − 0.15)2/0.001],
and the jump distribution parameters are spatially uniform.
Figure 3(a) shows contours of the 2D profile to demonstrate
the azimuthal symmetry. The profile is computed on a
151 × 151 rectangular grid with a heat reservoir located at
r � 0.45. A projection of the normalized profile along the
dashed line in Fig. 3(a) (at y = 0) is shown in Fig. 3(b). Also
shown in Fig. 3(b) is a projection of the ring source along
the dashed line, and the normalized 1D profile associated
with the projected source. In the region interior to the ring
source (r � 0.15), both profiles are “flat,” but outside the
ring, the 1D profile decreases linearly while the 2D profile
has a “concave” shape.

The difference between the 1D and 2D profiles is fun-
damental and represents the difference between the second
derivative operator in one ( ∂2

∂x2 ) and two ( 1
r

∂
∂r

r ∂
∂r

) dimensions,
as corresponds to the α = 2 case. In fact, these two operators
can be inverted to obtain the 1D and 2D profiles. The 1D pro-
file can be obtained by double integration of the source over
the x variable, T (x) = − ∫

dx ′{∫ x ′

0 dxS(x) − 1
2

∫ 1
0 dxS(x)}.

Similarly, a radial 2D profile cross section can be obtained
by double integration of the source cross section, T (r ) =∫ 0.5

0 dr ′{∫ r ′

0 drrS(r )}/r ′ − ∫ r

0 dr ′{∫ r ′

0 drrS(r )}/r ′. To obtain
the correct radial profile, the integrand of the integral over r ′,
{∫ r ′

0 drrS(r )}/r ′, must be set to zero at r ′ = 0. In other nonlo-
cal transport cases with 1 � α < 2, the technique of integrat-
ing the source is not available because the transport operator
is not proportional to a second derivative operator. For this
reason, the case in which α = 2 is particularly instructive.

Figure 4 shows a similar situation as that shown in Fig. 3,
but with nonlocal transport, α = 1.5 and γ = 1. Figure 4(a)
shows contours of the 2D profile and again demonstrates the
azimuthal symmetry of the solution. A projection of the 2D
profile along the dashed line in Fig. 4(a) (y = 0) is compared
to the 1D case in Fig. 4(b). This case illustrates the “hollow”
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FIG. 3. (a) Contours of the 2D profile for the case α = 2 are
shown to demonstrate the azimuthal symmetry of the iteration so-
lution. (b) A 1D profile is compared to a projection of the 2D profile
along the dashed line in panel (a) (along y = 0). The difference
in profile shape is fundamental and arises from the difference in
dimensionality.

profiles that result from nonlocal transport with a “ring”
source for alpha values not equal to 2. The concave shape of
the 2D profile relative to the 1D profile persists. The concave
profile shape is present in both cases (α = 2, 1.5) and is,
therefore, identified as a signature of the 2D geometry.

Nonlocal transport in the azimuthally symmetric, 2D case,
with α = 1.5, is investigated in the work by Kullberg et al.
[26]. Transport in the presence of a ring source is presented
in Fig. 6(a) of Kullberg et al. [26]. The ring source is unity
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FIG. 4. (a) Contours of the 2D profile for the case α = 1.5
are shown to demonstrate the azimuthal symmetry of the iteration
solution. (b) A 1D profile is compared to a projection of the 2D
profile along the dashed line in panel (a) (along y = 0). In the region
outside the ring source, the 2D profile has a concave shape similar to
the α = 2 case [Fig. 3(b)], while the 1D profile now exhibits convex,
rather than linear, behavior.

between the radial values, 0.7 � r � 0.75, and zero at radial
locations outside this range. In addition to the ring source,
Kullberg et al. include a constant source with amplitude 1/100
of the ring-source maximum value. Figure 5 shows a com-
parison of the profile obtained using the iteration technique
for similar conditions. The comparison case uses a radial
coordinate with 0 � r � 0.5 corresponding to an x coordinate
ranging from −0.5 � x � 0.5, so the comparison ring source
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FIG. 5. A profile computed using the iteration method is com-
pared to the profile obtained by Kullberg et al. [26] (dashed beige
line overlying the blue temperature trace). The main difference in the
two curves is at the boundary as seen in the expanded view. To allow
for an easy comparison, the symbol ρ used in Ref. [26] is used here
to represent the radial coordinate r .

is unity in the range of values 0.35 � r � 0.375. The compar-
ison profile has a heat reservoir boundary at r � 0.475, and
the source does not include a constant term. The comparison
profile, with the radius scaled by a factor of 2 is shown as
the dashed beige line overlying the blue temperature trace
in Fig. 5. The profiles agree except near the boundary when
the dashed curve goes to zero at the heat reservoir location
as shown by the detailed view in Fig. 5. In the calculation
of Kullberg et al., the boundary is a sheath, so a difference
is expected in the boundary region. Note that agreement
between the two methods is achieved by not including the
small constant source in the iteration calculation.

V. GENERAL CASE: 2D PROFILES WITHOUT
AZIMUTHAL SYMMETRY

Azimuthal symmetry in a physical system can be broken by
a variety of individual factors or a combination of factors. For
example, variations in source configuration, boundary shape,
boundary conditions, and spatial variations in parameters or
combinations of these factors can break symmetry. In this
section several nonsymmetric systems are illustrated by pre-
senting specific examples.

A. Nonsymmetric source

Figure 6 presents a case in which the same ring source
used in Figs. 3 and 4 is moved along the diagonal so that the
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FIG. 6. (a) Contours of the solution to Eq. (8) with an off-center,
ring source for the case α = 1.5, γ = 1. The boundary is held at a
constant temperature by a heat reservoir with a circular wall at radius
r = 0.45. (b) Profile projections along the diagonal [the dashed line
in (a)] for the case α = 1.5, γ = 1 (solid orange line) and the case
α = 2, γ = 1 (solid blue line). The diagonal projection of the ring
source (times 40) is shown as the dashed line.

source center is located at (x, y ) = (−0.14, −0.14). The new
off-center source breaks the azimuthal symmetry. A projection
of the source shape, along the diagonal, is shown as the
dashed line in Fig. 6(b). The jump distribution parameters are
spatially uniform. Two cases are considered: α = 2, γ = 1
and α = 1.5, γ = 1. The boundary condition is again a heat
reservoir located at r � 0.45. Contours of the profile with
α = 1.5 are shown in Fig. 6(a), and the diagonal projection
[along the dashed line in Fig. 6(a)] is shown in Fig. 6(b)
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[orange solid line (labeled α = 1.5)]. The diagonal projection
of the profile for the case with α = 2 is also shown in Fig. 6(b)
[blue solid line (labeled α = 2)]. The two profiles are shown
without normalization in order to emphasize the difference in
transport between the two alpha values. Transport is larger
for the α = 1.5 case, so the peak amplitude of the profile is
smaller. The profile for the α = 2 case is no longer flat in the
center of the source region, as in Fig. 3(b), and the profile
for the α = 1.5 case retains a hollow shape, but the profile
generally decreases with increasing radial value.

The validity of the profile shapes can be tested in the
α = 2 cases, the 2D profiles whose projections are shown
in Figs. 3(b) and in 6(b), because the transport operator is
proportional to the second derivative operator in those cases.
The profiles computed with the iteration technique can be
tested as solutions to the diffusion equation, which is the
governing equation for the case α = 2. The diffusion equation
in the 2D case involves the second-derivative operator in the
x direction, D2x , and in the y direction, D2y . Treating the row
number as the variable x, and the column number as the
y variable, D2xT corresponds to ∂2T (x, y )/∂x2 and T D2y

corresponds to ∂2T (x, y )/∂y2, so that the proper 2D matrix
form of the diffusion equation with uniform distribution width
(γ = 1 in the present case) is

∂2T (x, y )/∂x2 + ∂2T (x, y )/∂y2

= S → D2xT + T D2y = S. (17)

The second-derivative operators in both the x and y di-
rections are tridiagonal matrices with elements [−1, 2, −1],
with 2 being the diagonal element. Application of the two
operators, as in Eq. (17), to the profiles computed by the
iteration method should yield the ring source. Inserting the
two α = 2 profiles shown in Figs. 3 and 6 into the left-hand
side of Eq. (17) gives a result very close to the source term.
The difference between the source term and the left-hand
side of Eq. (17) is shown in Fig. 7 for two calculation grid
sizes, N = 101 and N = 151. The difference decreases with
increasing grid size.

The errors arise due to the limited size of the calculation
grid. The error term is proportional to the product of D2x and
D2y , and involves a term similar to the one that arises in the
separable case [see Eq. (A5) in Appendix A]. For a source
with scale size LS , the error is proportional to (h/LS )2. The
error decreases with increasing grid size and vanishes in the
limit h → 0. The diffusion equation is recovered in this limit
with α = 2, but there is a practical upper limit to the size of
the grid, and thus to the grid spacing, because of computer
memory limitations. Only an approximation to the diffusion
equation is achieved on a finite-sized calculation grid.

B. Nonsymmetric boundary conditions

Another way that azimuthal symmetry can be broken is
with boundary conditions. Figure 8 shows a situation with
four heat reservoirs along the boundary of the rectangular cal-
culation grid. The values of the alpha and gamma parameters
are held constant at α = 2 and γ = 1, and there is no internal
source. The reservoirs along the bottom and top walls are held
at the same temperature, T = 5, higher than the temperature
of the reservoirs along the left and right walls, T = 1. The
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FIG. 7. Accuracy of solution to the diffusion equation (α = 2)
depends upon grid size. (a) The difference between the left- and
right-hand sides of Eq. (17) along the dashed line in Fig. 3(a) for two
calculation grid sizes as noted. (b) The difference between the left-
and right-hand sides of Eq. (17) along the diagonal (dashed line) in
Fig. 6(a).

boundary condition along the edges of the calculation grid
outside of the reservoirs is that the temperature is zero, T = 0.

The topology of the four-reservoir arrangement is that
of a saddle point. The saddle point is at the center of the
calculation grid. The topology of the temperature contours
remains the same as the value of alpha is changed. The value
of the temperature at the saddle point decreases slightly as
the value of alpha decreases, but the most notable change is
the profile shape. Figure 9 shows a projection of the tempera-
ture profile along the vertical direction (constant x), together
with a projection of the profile along the horizontal direction
(constant y) for two values of alpha, α = 2 and α = 1.2.
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FIG. 8. Contours of constant temperature with four heat reser-
voirs located along the walls of the system with α = 2. The heat
reservoirs at the top and bottom keep the temperature at T = 5.
The heat reservoirs on the left and right walls set the temperature at
T = 1. The topology is a saddle point configuration with the saddle
point at the center of the grid. Temperature profiles along the dashed
lines, one in the vertical direction (constant x, x = 0) and the other
in the horizontal direction (constant y, y = 0) are shown in Fig. 9.

Transport is nonlocal for α < 2 and thus very sensitive to
boundary conditions. Transport is also stronger for smaller
values of alpha. These two factors combine to give a broader
profile and a lower saddle point temperature for the case with
α = 1.2.

C. Nonsymmetric alpha parameter

Situations without azimuthal symmetry can be created by
choice of the spatial dependence of the jump distribution pa-
rameters. As an example of a nonsymmetric system, transport
in the presence of a ring of “alpha turbulence” is explored. The
geometry consists of a ring source as shown in Figs. 3 and 4,
but with the peak of the ring located at larger radius, r =
0.4. The ring source is surrounded by a heat reservoir with
T = 0 at radial values larger than 0.49 (r � 0.49). The ring
source encloses a system in which the alpha parameter varies
spatially as shown in Fig. 10. The width parameter gamma
is held constant, γ = 1. The alpha parameter consists of a
“core” with α = 2 surrounded by a ring of alpha turbulence
in which alpha varies both radially and azimuthally. Four
different cases are considered and projections of the alpha
values for each case are shown in Fig. 11. One case has
constant alpha, α = 2, and no alpha turbulence. This case sets
the baseline of heating associated with classical transport. The
other three cases have different mean values of alpha in the
turbulent ring, ᾱ = 1.83, ᾱ = 1.47, and ᾱ = 1.16. Figure 10
shows contours of the values of alpha in a ring of turbulence
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FIG. 9. Temperature profile projections for the four-heat-
reservoir configuration shown in Fig. 8. The vertical projection is
along the line dashed line at x = 0 shown in Fig. 8. The horizontal
projection is along the dashed line at y = 0. Profiles for two values
of alpha parameter are shown, α = 2 and α = 1.2. The topology of
the temperature contours is the same for the two values of alpha.
The major difference is in the shape of the vertical and horizontal
temperature profile projections, as shown.

surrounding a central core of α = 2 for the ᾱ = 1.83 case. The
alpha turbulence in the other two turbulent ring cases has the
same spatial configuration but modified, as shown in Fig. 11,
by the larger transition region to the core α = 2 value.

Figure 12 shows the temperature profiles that result from
the various spatial variations in alpha. The source is a ring
with peak value located at r = 0.4 and a profile of the source
(multiplied by a factor of 10) is shown for reference. The
temperature for the case α = 2 is constant inside the source.
This is the expected classical behavior for constant alpha
equal to 2. The temperature inside the source is reduced for
nonlocal transport. An average value of ᾱ = 1.83 reduces the
temperature to about 75% of the value for the α = 2 baseline
case.

The profile is reduced to about 38% for the ᾱ = 1.47
case and to about 22% for the case with ᾱ = 1.16. Also, the
temperature profiles increasingly display a “hollow profile”
shape, characteristic of nonlocal transport, as the average
value of alpha in the turbulence ring decreases.

From the examples shown, it is clear that a spatial variation
in alpha value can lead to substantial reductions in the heating
efficiency. Large reductions require that transport is very
nonlocal, in the sense that average alpha values are closer to 1
than 2.

D. Nonsymmetric system boundary

Another example of a nonsymmetric system is one that
mimics the geometry of a generic “magnetic confinement”
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FIG. 10. Contours of alpha values for the case ᾱ = 1.83. This
figure shows the radial and azimuthal variation of alpha values in a
ring surrounding a core of alpha value 2. The same turbulence pattern
is used in the cases with lower mean value of alpha. Projections of
alpha values along the dashed line, for the four cases, are shown in
Fig. 11. The peak of the ring source is at r = 0.4.

device. Figure 13 shows contours of “magnetic surfaces”
together with the possible spatial variation of the alpha param-
eter in a fictional, generic confinement device. Figure 13(a)
shows the spatial dependence of magnetic surfaces in a cross
section of the fictional device. The alpha parameter values are
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FIG. 11. Projections along the line y = 0 of alpha values for the
four cases considered. The constant α = 2 case sets the baseline for
heating. The radial width of the alpha turbulence ring decreases for
lower average values of alpha in order to accommodate the transition
to the core alpha value.
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FIG. 12. Temperature profiles for the four cases of alpha vari-
ation. The central temperature decreases with decreasing value of
average alpha. Heating efficiency decreases with increasing nonlocal
behavior.

taken to be constant along magnetic surfaces and the spatial
dependence of the alpha parameter in the device is shown in
Fig. 13(b). The alpha parameter varies from 2 in the central
region to 1.2 near the edges of the device. The spatial variation
is different in the horizontal and vertical directions and there is
no azimuthal symmetry in this example. The jump distribution
width is chosen to be constant throughout the device, γ = 1.

Figure 14 shows contours of the temperature profile in
the fictional, generic device for a spatially constant source
and with the spatial variation in alpha shown in Fig. 13. The
region surrounding the device is a heat reservoir with the
temperature set to zero in this region. The contours of constant
temperature are similar to, but not the same as, the magnetic
surfaces shown in Fig. 13(a). A projection of the temperature
profile in the horizontal direction through the middle of the
device is shown in Fig. 14(b) [blue (lower) trace]. This profile
projection is compared to a projection [orange (upper) trace]
of a system with the same magnetic surfaces and constant
source, but with a constant value of α = 2 (the classical case).
The profile shape is not greatly different, but transport is larger
for nonlocal behavior, so that the central temperature is greatly
reduced in the spatially varying alpha case.

E. Spatially varying gamma parameter

Figure 15 shows an example of an rf (radio frequency)
heating scenario in the same generic confinement device. The
rf heating source is crudely modeled as a vertical rectangular
region at a horizontal location outside of the central region of
the device. In this example, the alpha parameter is taken to be
spatially constant but the width parameter, γ , varies spatially.
Gamma is smallest in the central region (γ = 1) and largest
in the outer regions (γ = 4). The magenta curves (labeled as
γ ) in Fig. 15 show the morphology of the spatial variation in
gamma and the amplitude variation in gamma is illustrated in
Fig. 16 by a projection along y = 0. The transport coefficient
(diffusion coefficient, Dc, for α = 2) is proportional to γ α ,
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FIG. 13. (a) Magnetic surfaces in a fictional, generic confine-
ment device. These surfaces are arbitrarily chosen for purposes of
illustration. (b) Contours and cross sections [along the dashed lines
in (a)] of the spatial variation of the alpha parameter in the fictional,
generic device. The spatial dependence of alpha is again arbitrarily
chosen, but alpha values are constant along magnetic surfaces.

so that this particular spatial variation in gamma results in a
much larger transport coefficient in the exterior regions of the
device. For spatially uniform γ , transport along and across
magnetic surfaces is uniform (isotropic) due to the form of
the Lévy characteristic function given in Eq. (14). Spatially
varying γ causes nonisotropic transport, similar to the term,
∇Dc · ∇T , that appears in the case of classical diffusion
for the nonuniform diffusion coefficient. Figure 15 shows
temperature contours associated with the rf heating source for
the case α = 2.

Two other cases are considered. One, with a spatially con-
stant value of α = 1.5 together with the gamma variation used
in Fig. 15, and the other with a combination of the spatially
varying gamma and the spatially varying alpha shown in
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FIG. 14. (a) Contours of the temperature in the generic confine-
ment device for a spatially constant source. The contours are not
the same as the magnetic surface contours shown in Fig. 13(a).
(b) A profile projection at the midpoint (vertical position zero) for the
nonuniform alpha case [blue (lower) trace] is compared to a profile
projection from the same system, but with classical (α = 2) transport
[orange (upper) trace].

Fig. 13. The temperature contours produced in all three cases
are similar to those shown for the α = 2 case in Fig. 15, but
the profile projections differ. The profile projections for all
three cases are shown in Fig. 16. The largest temperatures
in the central region are achieved for the α = 2 case. The
temperature is reduced by reduced alpha values, both in the
case of constant alpha (α = 1.5) and for spatially varying
alpha. In fact, the latter two cases produce nearly identical
results.
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These examples demonstrate the variety of physical system
configurations that the iteration method can handle, including
variations in source configurations, boundary shapes, bound-
ary conditions, and spatial variations in parameters.
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FIG. 16. Projections along y = 0 of the temperature profiles for
three rf heating scenarios with spatially varying transport coefficient
(proportional to γ α). The gamma parameter varies (solid line, scale
on the right-hand side) from 1 in the center to 4 in the exterior
regions. Classical transport (α = 2) results in the largest central
temperature. The case with α = 1.5 and the spatially varying alpha
case give very similar results.

VI. CONCLUSIONS

An iterative method for obtaining steady-state solutions
to 2D nonlocal transport of scalar quantities in a bounded
system is developed. The method is based upon the idea that
transport is effected through, and mediated by, “jumping”
particles. Jumping particles carry information throughout the
bounded system. The characteristics of the physical processes
represented by the jumping particles are embodied in a four-
dimensional (4D) joint probability distribution function. The
iterative method relies on this association. It is assumed that
a unique steady-state profile exists and represents a balance
between the sources and sinks in the system. This assumption
is borne out in subsequent applications of the iterative method.

The capability of the jumping particle technique to rep-
resent nonlocal transport relies on the type of probabil-
ity distribution functions used in their description. In this
study the class of Lévy α-stable distributions is used, be-
cause they clearly represent a type of nonlocal transport,
namely, Levy flights. For simplicity and clarity of presenta-
tion, the Lévy distributions used in this paper are isotropic.
That is, the PDF at each spatial point is characterized by
a single value of α and distribution width, γ . The use of
isotropic distributions restricts the number of physical systems
that can be represented. For example, cases with temperature
anisotropies cannot be modeled with isotropic Lévy distribu-
tions. This is not a fundamental limitation, but represents an
area in which the capability of the model could be extended.
A practical limitation of the technique is the computer re-
sources required. The iteration technique requires a compu-
tation involving a 4D “stored in memory” object [the quantity
η̄SA(i, j, k, m), Eq. (11)] at every point on a N × N grid.
Significant computer resources are required to implement the
method if the grid size is large. In the examples shown, the
largest grid size used in the calculations is (151) × (151).
Large grid sizes are needed for accurate representation of
complicated boundary shapes. In principle the grid size is not
a limit on the method, but in practice it certainly is.

One of the advantages of the iteration technique, which
uses the concept of jumping particles to transmit information,
is that it can be expanded, in principle, to obtain solutions in N
dimensions. However, in practice, requirements on computer
memory would limit the application of the iteration technique
to no more than three dimensions. Another major attribute of
the jumping particle method is that it is not tied to a specific
computation geometry. In the examples presented, N × N

calculation grids are used, but this is a matter of convenience
and not necessity. The inherent geometry independence of the
iteration technique is what allows for solutions in the presence
of complicated boundary configurations.

While the iteration technique was developed to solve the
general 2D problem, it can be modified to handle 1D nonlocal
transport. In Sec. III results obtained with the 1D form of
the iteration technique were compared to the results obtained
using a transport matrix operator [36]. The comparison with
1D models also allows for an assessment of the 2D interface
between the nonlocal system and surrounding walls. In the 2D
system the surrounding walls are assumed to act as heat reser-
voirs and hold the wall temperature at a constant value, while
the 1D system uses walls with adjustable conductivity. The
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interface of the 2D nonlocal system with the heat reservoir has
an overlap region with width the same as the jump distribution
width at the interface. The comparison to 1D results shows
that this overlap region is similar to the “fuzzy wall” concept
used in the 1D transport matrix method.

Examples of solutions in 2D are divided into two classes,
those with azimuthal symmetry and those without. Examples
of azimuthally symmetric profiles arising from a ring source
are presented for two values of the alpha parameter, α = 2 and
α = 1.5. The case with α = 2 represents “classical” transport
(second-derivative operators), while the α = 1.5 case repre-
sents a generic example of nonlocal transport. It is demon-
strated that the iteration method can represent azimuthally
symmetric systems even though the calculation is done on a
rectangular grid. It is also shown that there is a fundamental
difference in profiles computed using 1D methods and the
projection of 2D profiles. The 2D profiles have an inherently
“concave” shape arising from the 2D geometry. Previous work
by Kullberg et al. [26] falls in the azimuthally symmetric
category, and the iteration technique was shown to reproduce
the results of Kullberg et al.

Since the entire range of the alpha parameter, 1 � α � 2
is handled by the iteration method, it is benchmarked by con-
sidering the results of classical transport cases (α = 2) when
transport is governed by the diffusion equation. It is demon-
strated that, for the α = 2 cases treated, the iteration technique
results in steady-state profiles that are proper solutions to the
diffusion equation, within the error limits introduced by finite
calculation grid size.

Cases without azimuthal symmetry arise from several fac-
tors or combination of factors. Among these factors are the
form and location of the source term, the spatial shape of
boundaries, boundary conditions with broken symmetry, and
nonuniform spatial dependence of the parameters associated
with the PDFs. Examples of specific cases without azimuthal
symmetry are presented in Sec. V. Among the examples
presented is the case of an asymmetric system arising from
a noncentral source location, a case with spatially nonuni-
form boundary conditions, and a case with spatially varying
probability distribution parameter in a system with alpha
turbulence. Another example presented is a system with fun-
damentally asymmetric geometry similar to that found in a
magnetic confinement device. Nonuniformities in both the al-
pha and gamma parameters are considered in several “rf heat-
ing” scenarios in the confinement device geometry. The com-
plex examples considered in Sec. V demonstrate the ability of
the iteration technique, in conjunction with the heat reservoir
boundary condition, to model actual experimental systems.
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APPENDIX A: SEPARABLE CASE

The 2D jump distribution is separable when it
can be written as the product of two 1D jump

distributions,

η[p(x ′, y ′), x − x ′, y − y ′]

= ηx[p(x ′, y), x − x ′]ηy[p(x, y ′), y − y ′]. (A1)

The two jump distributions on the right-hand side of
Eq. (A1) can be cast in the form of matrix operators. The sim-
plest situation occurs when the two 1D distributions, ηx and
ηy , are only dependent on two variables, ηx[px (x ′), x − x ′]
and ηy[py (y ′), y − y ′]. In this case Eq. (9) can be written as∫∫

dx ′ηx[px (x ′), x − x ′]T (x ′, y ′)ηy[py (y ′), y − y ′]dy ′.

(A2)

In discrete form Eq. (A2) becomes a matrix equation,

N−1∑
j=0

N−1∑
k=0

mx
i,jTj,km

y

k,m = mx T my. (A3)

The matrices, mx and my are 1D jump distribution matrices
as described in detail in Maggs and Morales [36], and are
related to the full self-adjoint transport matrices as mx =
−Mx + I and my = −My + I . The full transport equation,
Eq. (8), in this simple case then becomes

T = mx T my + S. (A4)

Equation (A4) can be put in a more familiar form,

−Mx T My + Mx T + T My = S. (A5)

If the alpha parameter has the value 2 (α = 2), then the
transport matrices become second-derivative operators, Mx =
∂2/∂x2 and My = ∂2/∂y2. Equation (A5) then has the familiar
form of the 2D diffusion equation, with diffusion coefficient
D = 1, if the cross term Mx T My is negligible,

Mx T + T My =
(

∂2

∂x2
+ ∂2

∂y2

)
T = S. (A6)

The solution to Eq. (A4) is found by employing an iterative
technique,

Tn = mx Tn−1my + S; n � 1, (A7)

with T 0 = 0 (i.e., T1 = S). The iteration is repeated until
some chosen degree of accuracy is achieved. One possibility is
to require the sum total of the difference between the profiles
at step m and m + 1 to be less than epsilon, a small number,

N−1∑
i=0

N−1∑
j=0

[Tm+1(i, j ) − Tm(i, j )] � ε. (A8)

The smaller the value chosen for epsilon, the larger
the number of iterations required to meet the criteria.
Also, the ability to meet the criteria depends upon N, the size
of the discrete grid chosen to represent the matrix operators.
It may be necessary to choose a finer grid spacing (larger N)
to meet the desired accuracy.

The matrices in the general separable case, ηx[p(x ′, y ),
x − x ′] and ηy[p(x, y ′), y − y ′] are characterized by three
indices, one for each variable: (x, x ′) and y for ηx and
(y, y ′) and x for ηy . It is convenient to think of these
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three-dimensional (3D) structures as a “book” of 2D ma-
trices. Each matrix book has N pages, and each page
contains a single N × N matrix. For example, each page
of the matrix book corresponding to the jump distribution
ηy[p(x, y ′), y − y ′] represents a single value of the variable
x and each page contains a 2D matrix for the variables
(y, y ′). Denote the matrix book corresponding to the jump
distribution ηx[p(x ′, y ), x − x ′] as L(m, i, j ), and the book
corresponding to ηy[p(x, y ′), y − y ′] as R(k,m, i ). In the
matrix book notation the index i denotes the value of the
variable x, j the value of x ′, k the value of y ′, and m the value
of y. Using matrix book notation Eq. (8) becomes

T (i, m) =
N−1∑
j=0

N−1∑
k=0

L(m, i, j )T (j, k)R(k,m, i ) + S(i, m).

(A9)

In a fashion similar to that used to solve Eq. (A2), Eq. (A9)
can be solved using an iteration technique. The solution to
Eq. (A9), at iteration step n is then

Tn(i, m) =
N−1∑
j=0

N−1∑
k=0

L(m, i, j )Tn−1(j, k)R(k,m, i )

+ S(i, m); n � 1. (A10)

The major difference between the iteration technique
shown in Eq. (A10) and that shown in Eq. (A7) is that a
double sum is required to find the solution Tn at each point
(i, m) in the x-y plane, whereas a single double sum (two
matrix multiplications) gives the solution over the entire plane
in Eq. (A7). Therefore, the computation time is much longer
for Eq. (A10) as compared to Eq. (A7). Not surprisingly, the
spatially nonuniform case requires much more computation
time.

APPENDIX B: REDUCING THE NUMBER OF ITERATIONS

The number of iterations required to achieve a desired level
of error in the computed profile depends upon the source, the
value of alpha, and the size of the computation grid. Profile
convergence is evaluated by monitoring the behavior, with
iteration number ni of the mean value of the entire profile,

T̄ (ni ) = 1

(N )2

∑
i,j

T (ni, i, j ). (B1)

The grid size is N × N and the grid spacing is hN =
1/(N − 1). The mean value of the profile is chosen because
it assesses the behavior of the entire profile. In the iteration
process, profiles approach, but never actually reach, their
asymptotic value. The measure, used in this study, of how
close a profile is to its asymptotic value is the logarithmic
derivative, with respect to iteration number, of the profile
mean,

εA ≡ |[log(T̄ )]′| = |d log(T̄ )/dni |. (B2)

For a given grid size, N × N , the profile can be computed
in a straightforward manner by iteration as indicated by
Eq. (12). However, the iteration process requires many steps
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FIG. 17. The log (base 10) of the logarithmic derivative of the
profile mean is shown as a function of iteration number for three
small grid sizes (as indicated). The dashed line indicates a value
of 10−5. Linearity indicates exponential decay of the logarithmic
derivative.

to achieve convergence, and the purpose of this Appendix is
to present a technique for decreasing the number of iterations
needed to obtain a desired level of convergence. The number
of computations required in one iteration step is proportional
to the square of the number of grid points, N2. Because of
this scaling, profile convergence is relatively rapid for small
grid sizes. For example, the computation time on a 21 × 21-
size grid as compared to a 101 × 101 grid is (21/101)2 =
0.0432 times smaller. Briefly, the technique used to reduce
the number of iterations is to compute a converged profile for a
grid size smaller than the desired grid size, and then resize and
renormalize the converged profile to the larger grid. Profile
convergence is then computed on the large grid size with the
resized, renormalized profile as the starting profile.

Successful implementation of the resized profile approach
requires computation of converged profiles on several smaller-
sized grids so that the scaling of profile amplitude with grid
size can be estimated. It is necessary to have an estimate
of how the profile amplitude scales with grid size in order
to obtain a useful starting profile for the large grid. As a
concrete example, consider the computation of the profile
associated with a ring source on a (101) × (101) grid. The
value of alpha is taken to be 2 (α = 2) because, for fixed grid
size, this alpha value requires the largest number of iterations
to achieve profile convergence. The ring source used in the
calculations has the same analytic dependence for all grid
sizes, S = exp[−(r − 0.15)2/0.001].

The computation of the resized starting profile for the
(101) × (101) grid starts by computing converged profiles on
three smaller-sized grids, N = [21, 31, 41]. The degree to
which the computed profiles are asymptotic is measured by
the logarithmic derivative of the profile mean as shown in
Fig. 17.

It is important to note that the logarithmic derivative decays
exponentially as the profile for a fixed grid size approaches its
asymptotic value. This behavior will be exploited to obtain a
“projection” of the profile amplitude in the computation on
the large grid size.
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FIG. 18. The asymptotic profiles obtained for three small grid
sizes. These profiles are used to obtain the amplitude scaling with
grid size.

Figure 18 shows asymptotic profiles computed on three
grids with N = [21, 31, 41]. “Asymptotic profile” in this
instance means that εA = [log(T̄ )]′ = 10−5 (see Fig. 17). The
fidelity of representing the source, of course, changes with
grid size and this effect is reflected in the profiles’ shapes. The
behavior of the mean profile values on the small grids is used
to extrapolate the profile mean onto the larger grid. The profile
mean value, T̄ , is assumed to vary as Na . Using the mean
values of the three profiles shown in Fig. 18, the value of the
parameter, a, is found to be a = 2.06. The starting profile for
the calculation of the large grid (N = 101) is obtained by us-
ing the asymptotic profile, T41, obtained on the N = 41 grid.
First the profile T41 is resized to a (101) × (101) grid, T41 →
T 41

101. Although most of the calculation results shown here are
obtained using MATLAB, the resizing is accomplished by using
the IDL program CONGRID, which is very flexible as regards
grid sizes and produces excellent results with the /INTERP and
/MINUS_ONE flags set. The starting profile for the calculation
on the (101) × (101) grid, T 0

101 is obtained by renormalizing
the resized profile. Renormalization is accomplished by using
the scaling parameter obtained from the behavior of the profile
mean values, T 0

101 = (101/41)aT 41
101. The iteration process on

the (101) × (101) grid is then initiated with T 0
101 as the starting

profile.
Figure 19 shows the behavior of the logarithmic derivative

of the profile mean value as a function of iteration number
[log(εA)] for the computation of the asymptotic profile on the
(101) × (101) grid. The starting profile is the resized, renor-
malized profile obtained from the (41) × (41) grid, T 0

101. The
computation consists of straightforward iteration [Eq. (12)]
for 250 steps and then a “projection” of the profile amplitude
using the assumption that the logarithmic derivative of the
profile mean value is decaying exponentially,

d

dni

log[T̄ (ni )] = exp(bni + c). (B3)

The constants (b, c) are obtained by fitting the log of the
logarithmic derivative of the mean value, log (d[log(T̄ )]/dni ),
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FIG. 19. The behavior of the log (base 10) of the logarithmic
derivative of the profile mean value in the computation of the
asymptotic profile for a ring source on a (101) × (101) grid using
profile amplitude projection. The dashed lines indicate the fits used
to project the profile amplitude.

to a straight line over the last half of the 250 step iteration
range. These fits are shown as the dashed lines in Fig. 19.
Note that the constants (b, c) are such that exp(bni + c) →
0, ni → ∞. It is found from Eq. (B3) that

log[T̄ (ni )] = exp(bni + c)/b + log[T̄ (∞)]. (B4)

The asymptotic value of the profile mean value is “pro-
jected” to be

T̄ (∞) = T̄ (nf )/exp[exp(bnf + c)/b], (B5)

where nf is the last of the 250 iteration steps (nf = 250).
The final profile in the 250-step iteration process is then
renormalized to have the mean value, T̄ (∞), and another
250 iteration steps are performed. The process is repeated
until the desired accuracy is obtained. As shown in Fig. 19,
the logarithmic derivative is below 10−6 in less than 750
iterations.

The curves shown in Fig. 17 can be used to estimate the
number of iterations required to achieve a certain value of
the logarithmic derivative by assuming that the number of
iterations varies as Nd . For a value of εA [Eq. (B2)] equal to
10−6, the scale parameter for the required number of iterations
is d = 1.82. The number of iterations required to have εA =
10−6 for N = 41 is ni = 570. Using this information, the
estimated number of iterations needed to have εA = 10−6 for
N = 101 is ni = 570(101/41)d = 2940. The profile projec-
tion technique can decrease calculation times considerably.
The computation time needed to obtain the asymptotic profiles
for the N = [21, 31, 41] cases is equivalent to about 135
iteration steps with N = 101. Including this overhead, the
computation time is reduced by about two-thirds, for this spe-
cific example, with the use of the profile projection technique.
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