
PHYSICAL REVIEW E 99, 013304 (2019)

Performance of hybrid quantum-classical variational heuristics for combinatorial optimization

Giacomo Nannicini*

IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA

(Received 25 July 2018; revised manuscript received 13 December 2018; published 14 January 2019)

The recent literature on near-term applications for quantum computers contains several examples of the
applications of hybrid quantum-classical variational approaches. This methodology can be applied to a variety
of optimization problems, but its practical performance is not well studied yet. This paper moves some steps in
the direction of characterizing the practical performance of the methodology, in the context of finding solutions
to classical combinatorial optimization problems. Our study is based on numerical results obtained applying
several classical nonlinear optimization algorithms to Hamiltonians for six combinatorial optimization problems;
the experiments are conducted via noise-free classical simulation of the quantum circuits implemented in Qiskit.
We empirically verify that: (1) finding the ground state is harder for Hamiltonians with many Pauli terms; (2)
classical global optimization methods are more successful than local methods due to their ability of avoiding
the numerous local optima; (3) there does not seem to be a clear advantage in introducing entanglement in the
variational form.
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I. INTRODUCTION

The hybrid quantum-classical variational approach is an
optimization algorithm devised for the early generation of
universal quantum computers. Variational approaches have
been applied to a variety of fields, e.g., chemistry [1,2],
machine learning [3,4], optimization [5–7]. In broad terms,
a variational approach works by choosing a parametrization
of the quantum state that depends on a relatively small set
of parameters, then using classical optimization routines to
try to determine values of the parameters corresponding to
a quantum state that maximizes or minimizes a given utility
function. Typically, the utility function is a Hamiltonian en-
coding the total energy of the system, to be minimized. This
directly relates to an optimization context: the same idea can
be applied to classical combinatorial optimization problems,
provided that we can construct a Hamiltonian encoding the
objective function of the optimization problem.

This report summarizes our experience in using classical
derivative-free optimization methods to try to find good solu-
tions for these problems, and sheds some lights on limitations
that should be overcome to increase the effectiveness of the
variational approach. All our computational experiments are
based on noise-free simulations of quantum hardware, and we
therefore have access to the full quantum state with which
we can exactly evaluate the Hamiltonians. The conclusions
of the study might be considerably different if real hardware
had been used, considering the inherent amount of noise that
affects the computations. To the best of our knowledge, this is
the most comprehensive numerical study of a hybrid quantum-
classical variational method for combinatorial optimization.
The most notable limitation of our study is the fact that we
use only one type of variational form, and we do not test any
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problem-dependent variational form as advocated by some
other works [7–9].

Our study leads to the following observations. Even if the
variational form used in our experiments is guaranteed to
span the ground state, the resulting optimization problems
are difficult for classical local optimization methods, e.g.,
gradient descent: These methods often get stuck in local
minima that may be very far from the optimal solution. Global
optimization seems to be more reliable, but the performance
of all algorithms is very problem-dependent. In particular, the
variational approach has difficulties on the problem classes
that also appear to be the hardest for a classical Branch-and-
Bound solver. This difficulty is likely related to the concept
of “density” of the problem representation. Indeed, the per-
formance of the classical branch-and-bound solver can be
explained by the fact that the classical representation of these
difficult problems as binary quadratic optimization problems
leads to dense matrices, which are known to be harder to
deal with than sparse matrices. Similarly, for the variational
approach our experiments show that the number of distinct
eigenvalues of the Hamiltonian is a good indicator of the
difficulty of a problem instance; this can be explained in light
of the fact that eigenpairs represent stationary points of the
optimization problem. The number of distinct eigenvalues is
often related to the number of terms in the representation
of the Hamiltonian as a weighted sum of Paulis, depending
on the weights. This observation may provide an easy way
to quickly estimate the difficulty of finding the ground state
with the variational approach on a given Hamiltonian. Fur-
thermore, for these classes of problems, which yield diagonal
Hamiltonians, it is unclear if two-qubit entangling gates help
accelerate convergence to the ground state. Finally, regard-
less of the method used and the problem class, attaining
a good approximation ratio or attaining a good probability
of sampling the optimal solution seems to require a large
number of iterations of the classical optimization routine;
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the scaling of the performance with respect to problem size
(limited to what can be ascertained in a study that considers
at most 18 qubits) indicates that as problem size increases,
the number of necessary iterations grows more than linearly,
which is expected when dealing with nonconvex problems.
Considering the crucial role played by the variational form in
this type of method, it is important that future research efforts
carefully consider the choice of variational form and its effect
on the performance of the optimization algorithm.

II. THE VARIATIONAL APPROACH

The hybrid quantum-classical variational approach aims to
find the quantum state attaining minimum energy for a given
Hamiltonian by varying a set of parameters that control the
quantum state. The algorithm that varies the parameters is
a classical optimization algorithm. Formally, let H be the
Hamiltonian encoding the total energy of a system, let θ

be a vector of parameters, and let |ψ (θ )〉 = U (θ )|0〉 be the
quantum state obtained by applying a given parametrized
quantum circuit U (θ ) to the initial state |0〉; for example, the
quantum circuit U (θ ) could include some rotations, and the
vector θ encodes the rotation angles. The variational approach
aims to determine

min
θ

〈ψ (θ )|H |ψ (θ )〉. (1)

It is well known that since |ψ (θ )〉 is normalized, the minimum
value of Eq. (1) is bounded below by the minimum eigenvalue
λmin of H , and in fact λmin = min|ψ〉〈ψ |H |ψ〉. Determining
such minimum value is in general NP-hard, as will be shown
in the next section by encoding several NP-hard problems into
this framework. The optimization of Eq. (1) can be performed
in a hybrid setting that uses a classical computer running an
iterative algorithm to select θ , and a quantum computer to
compute information about 〈ψ (θ )|H |ψ (θ )〉 for given θ , for
example, the value of 〈ψ (θ )|H |ψ (θ )〉 itself or its derivatives
with respect to θ . Since finding the minimum of Eq. (1) is an
approximation of the problem of finding the minimum eigen-
value of H , this approach is typically called the variational
quantum eigensolver (VQE) in the literature [10].

The unitary matrix U (θ ) is typically called the variational
form or ansatz. Clearly the choice of the variational form has
a fundamental role. In certain settings, it is possible to show
that a specific variational form spans the optimal solution to
a class of problems, or that there exist efficient algorithms to
optimize θ under some conditions [8]. However, appropriately
choosing U (θ ) is in general a difficult task. Determining an
appropriate classical algorithm to optimize over θ is also
difficult in general. Existing works in the literature typically
employ iterative continuous optimization algorithm, e.g., var-
ious forms of gradient descent or direct search methods [2,11].

III. HAMILTONIANS FOR BINARY
OPTIMIZATION PROBLEMS

The most natural formulation of combinatorial optimiza-
tion problems on a quantum computer is via an Ising spin-
glass model, which directly translates into a Hamiltonian.

Indeed, we have

Z =
(

1 0
0 −1

)
Z|0〉 = |0〉 Z|1〉 = −|1〉,

and the two eigenvalues ±1 of Z correspond to the positive
and negative spin. The Ising spin-glass model can be seen as
a quadratic unconstrained binary optimization problem, and it
inherits its hardness [12]. In general, computing the partition
function of an Ising model is NP-complete [13]. Because of
this, any problem in NP can be reduced to an Ising model; we
are particularly interested in combinatorial problems that have
a natural mapping to Ising spin-glass models, i.e., problems
with the property that if the original instance has size n, we
need only n qubits for an Ising spin-glass representation.

As we will see in the following, some problems are natu-
rally formulated in terms of spin variables ±1, whereas others
have a more natural formulation in terms of 0-1 variables.
The transformation between the two types of variables is
straightforward; see, e.g., Ref. [14]. The main idea is as fol-
lows. Consider a binary quadratic unconstrained optimization
problem:

min{c�x + x�Qx : x ∈ {0, 1}n}, (2)

then transform Eq. (2) into an Ising model using the sub-

stitution xj = yZ
j +1

2 , where xj ∈ {0, 1} and yZ
j ∈ {−1, 1} for

j = 1, . . . , n; we use the superscript Z to distinguish ±1
spins from 0-1 variables. Since Eq. (2) is a quadratic model,
the substitution yields a summation of terms, each of which
contains either one or two yZ

j variables. The Hamiltonian is
then a summation of weighted tensor products of Z Pauli
operators, where each term of the summation contains at most
two Zs. Furthermore, since Z is diagonal, the Hamiltonian
resulting from this transformation is diagonal.

If the original binary quadratic optimization problem is
constrained, the approach mentioned above can still be ap-
plied by adding appropriate (quadratic) penalties for con-
straint violations in the objective function. In the cases of
relevance for this paper, the additional constraints for Eq. (2)
can be expressed as the requirement Ax = b for some choice
of A, b; in this case, it is sufficient to add the term α‖Ax −
b‖2 to the objective function Eq. (2) with a sufficiently large
α, to ensure that the unconstrained formulation has the same
optimum as the original constrained formulation.

We now describe the six classes of combinatorial optimiza-
tion problem employed in our numerical study.

A. Maximum stable set

Given an undirected graph G = (V,E), a stable set
(also called independent set) is a set of mutually nonad-
jacent vertices. We are interested in determining a stable
set of maximum cardinality: We label this problem STA-
BLESET. Assuming that V = {1, . . . , n}, the problem can be
formulated as

max

⎧⎨
⎩

∑
j∈V

xj −
∑

(i,j )∈E

xixj : x ∈ {0, 1}n
⎫⎬
⎭.

Indeed, the first summation in the objective function repre-
sents the cardinality of the stable set, while the second part
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penalizes including two adjacent vertices. It is straightforward
to check that the penalty always offsets the objective function
increase derived from selecting a vertex that is adjacent to
an already selected vertex. This problem is a specific case
of the set packing problem [14]. It is one of six basic NP-
complete problems discussed in the seminal work of Ref. [15].
Transforming the 0-1 binary variables into ±1 spins gives the
Hamiltonian.

B. Maximum 3-satisfiability

The maximum 3-satisfability problem, MAX3SAT in the
following, tries to determine an assignment of Boolean vari-
ables that satisfies the largest number of clauses of a Boolean
formula in conjunctive normal form, where each clause has
exactly three literals. This is one of the six basic NP-complete
problems in Ref. [15]. There are several approaches to con-
struct a Hamiltonian for MAX3SAT. The approach followed
in this paper is to transform an instance of MAX3SAT with
m clauses into an instance of STABLESET on a suitably con-
structed graph with 3m vertices. This transformation is well-
known, and we refer the reader to Refs. [14,15] for details.
We remark that in principle we can model MAX3SAT with n

Boolean variables using n Ising spins and a 3-local Hamil-
tonian, i.e., a tensor product of three Pauli terms for each
clause. However, we employ the transformation to STABLESET

for two reasons: First, it allows us to study the behavior of
VQE on random instances of STABLESET versus structured
instances of the same problem; second, the formulation with
products of three Pauli terms cannot be directly translated into
a quadratic unconstrained model with n 0-1 variables, and we
use this direct transformation in Sec. IV C when assessing the
difficulty of these problem instances with a classical branch-
and-bound solver.

C. Number partitioning

Given a set of numbers S := {a1, . . . , an}, the prob-
lem of number partitioning (PARTITION) asks to deter-
mine P1, P2 ⊂ {1, . . . , n}, P1 ∪ P2 = {1, . . . , n}, P1 ∩ P2 =
∅ such that |∑j∈P1

aj − ∑
j∈P2

aj | is minimum. To construct
a Hamiltonian for this problem, notice that if we associate an
Ising spin variable yZ

j ∈ {−1, 1} to each number a1, . . . , an,
we have

∑
j=1,...,n yZ

j = ∑
j :yZ

j =1 aj − ∑
j :yZ

j =−1 aj . Further-

more, minimizing |∑j∈P1
aj − ∑

j∈P2
aj | is equivalent to

minimizing |∑j∈P1
aj − ∑

j∈P2
aj |2, and we can thus write

min

⎧⎨
⎩

⎛
⎝ ∑

j=1,...,n

yZ
j

⎞
⎠

2

: yZ
j ∈ {−1, 1}

⎫⎬
⎭.

Expanding the square gives the Hamiltonian in the desired
form. PARTITION is one of the six basic NP-complete problems
in Ref. [15].

D. Maximum cut

Given an undirected graph G = (V,E) with weights wij

on the edges, the maximum cut problem (MAXCUT) calls for

determining a partition of V into disjoint sets V1, V2 such that∑
(i,j )∈E

i∈V1 ,j∈V2

wij

is maximum, i.e., the sum of the weights of edges with
endpoints on opposite sides of the partition. An Ising spin-
glass model without field is essentially a weighted MAXCUT

problem [12]. The problem can be formulated as

max

⎧⎨
⎩

∑
(i,j )∈E

wijy
Z
i yZ

j −
∑

(i,j )∈E

wij

2

⎫⎬
⎭.

E. Market split

The market-split problem [16] can be described as the
problem of assigning the n customers of a firm that sells
m products to two subdivisions of the same firm, in such
a way that the two subdivisions retain roughly an equal
share of the market. Formally, we are given a matrix A

with nonnegative entries aij that represent the amount of
product i bought by customer j . We want to determine a 0-1
assignment xj for each customer j so that for each product i,∑n

j=1 aij xj ≈ ∑n
j=1 aij . If we let b be the vector with entries

bi = �∑n
j=1 aij
, then this is simply the problem:

min{‖Ax − b‖2 : x ∈ {0, 1}n}.
Expanding the square and transforming the 0-1 binary vari-
ables into ±1 spins gives the Hamiltonian. This problem is
known to be very difficult for classical algorithms based on
branch-and-bound [17].

F. Traveling salesman problem

Given an undirected complete graph G = (V,E) with
weights wij on the edges, the traveling salesman problem
(TSP) aims to find a Hamiltonian cycle of minimum weight,
i.e., a cycle that visits all nodes of the graph and such that
the sum of the edge weights is minimum. To formulate this
problem we use the formulation given in Ref. [18]. Let n be
the number of nodes. For i, p = 1, . . . , n, let xi,p be 1 if node
i appears in position p in the cycle, 0 otherwise. Fixing the
first node of the cycle to be the node with index label 1, i.e.,
x1,1 = 1, TSP can be formulated as

min
∑n−1

i,j=1 wij

∑n−1
p=1 xi,pxj,p+1+∑n−1

j=1 wj1xj,n

∀i = 1, . . . , n
∑n

p=1 xi,p = 1

∀p = 1, . . . , n
∑n

i=1 xi,p = 1

x1,1 = 1
∀i, p = 1, . . . , n x ∈ {0, 1}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

To derive a Hamiltonian for this problem, we penalize the
violation of the constraints in the objective function inserting
terms of the form α(

∑n
p=1 xi,p − 1)2, where α is sufficiently

large, e.g., α = n max(i,j )∈E wij . TSP (rather, Hamiltonian
cycle) is one of six basic NP-complete problems in Ref. [15].
Note that the formulation requires n2 binary variables, so the

013304-3



GIACOMO NANNICINI PHYSICAL REVIEW E 99, 013304 (2019)

number of qubits does not scale linearly in the problem size;
this is the only problem in our test set with this property.

IV. DATA AND EXPERIMENTAL SETUP

This section describes the procedure used to generate ran-
dom instances of each class, as well as the overall setup used
for our experiments.

A. Generation of random instances

Given the desired number of qubits q, we generate in-
stances as follows:

(1) STABLESET: we generate a random Erdős-Rényi graph
with q nodes and edge probability 0.3.

(2) MAX3SAT: we generate a random formula in conjunc-
tive normal form with �q/3
 Boolean variables and �q/2

clauses. Clauses are generated sequentially, adding one literal
(positive or negative) chosen uniformly at random among
literals that do not appear in the same clause.

(3) PARTITION: we generate q integers in the interval
[1, q2 + 1], chosen uniformly at random.

(4) MAXCUT: we generate a complete graph with q nodes
and integer weights selected uniformly at random in the
interval [−10, 10].

(5) MARKETSPLIT: we follow the procedure described in
Ref. [16], for q binary variables.

(6) TSP: we generate a complete graph with
√

q + 1
nodes and integer weights selected uniformly at random in
the interval [0,9]. Note that the resulting problem instance is
in general not symmetric.

B. Experimental setup

We applied the VQE to all problems described in the previ-
ous subsection, testing all problem sizes from 6 to 18 qubits;
because of the Hamiltonian formulation used, Max3SAT re-
quires the number of qubits to be a multiple of 3, and TSP
requires the number of qubits to be a perfect square, hence
these two problems were only tested for sizes in the range
[6, 18] that satisfy the stated restrictions. For each problem
type and size, we repeat the experiment 20 times with a
different random seed; the random seed affects the instance
itself (as it is randomly generated) and the starting point of
the optimization algorithm. Note that we provide the same
sequence of random seeds to all optimization algorithms,
so that all optimization algorithms solve the same sequence
of problems with the same sequence of starting points. The
average number of terms in the Hamiltonian for some problem
sizes, as well as the number of distinct eigenvalues, are
reported in Table I, where we can see that a large number
of terms does not necessarily correspond to more distinct
eigenvalues, because of integer weights. The distribution of
the objective function value of the feasible solutions for the
randomly generated instances is plotted in Fig. 1. It shows that
PARTITION and MARKETSPLIT instances have many solutions
that are close to the optimum in relative terms, MAXCUT has
very few, and the other problem classes are somewhere in
between.

To evaluate the progress of VQE toward reaching an opti-
mal solution for the problem at hand, we employ a method-

TABLE I. Average number of terms in the Hamiltonian (each
term is a tensor product of Pauli Z), and average number of distinct
eigenvalues. All numbers are rounded to the nearest integer.

Number of terms Number of distinct eigenvalues

q 15 16 17 18 15 16 17 18

MAXCUT 99 113 129 145 201 225 251 228
TSP — 99 — — — 5 291 — —
MAX3SAT 37 — — 43 65 — — 78
PARTITION 105 120 136 153 710 883 1081 1304
MARKETSPLIT 120 136 153 171 22 204 37 564 57 532 81 151
STABLESET 48 53 60 65 107 120 138 150

ology based on the data profiles described in Ref. [19]. More
details regarding the meaning of each graph are given in the
corresponding subsections. The optimum for each problem is
computed using the classical solver IBM ILOG Cplex 12.7.1,
which can certify optimality; we use an optimal 0-1 solution
obtained by Cplex to compute the value of the ground state of
the corresponding Hamiltonian.

We tested five optimization algorithms:
(1) Limited-memory BFGS (LBFGS) [20]: a quasi-

Newton local optimization method. We use the SciPy imple-
mentation of this algorithm, in which the gradient is estimated
numerically by finite differences.

(2) Constrained Optimization By Linear Approximation
(COBYLA) [21]: a model-based local optimization method
that builds a linear approximation of the objective function

FIG. 1. Distribution of the objective function value of all feasible
solutions for the random instances used in the numerical experi-
ments, averaged across all instances of a certain size. The y-axis
value is the approximation ratio. Error bars extend between ± the
standard deviation. The top graph plots data for instances between 6
and 12 qubits, the bottom graph plots data for instances between 13
and 18 qubits.
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over a simplex. We use the original FORTRAN implementa-
tion through its SciPy interface.

(3) RBFOpt [22]: a model-based global search method
that builds an adaptive radial basis function interpolant of
the objective function. The algorithm alternates between a
global search and a local search that follows a trust region
framework [23].

(4) Modified Powell’s conjugate direction method
(PCD) [24]: a pattern search local optimization method
that searches along a given set of directions, which is updated
at every iteration. We use the implementation in SciPy.

(5) Simultaneous Perturbation Stochastic Approximation
(SPSA) [25]: a model-based local optimization method that
builds a gradient approximation using two function evalu-
ations per iteration. We use the implementation found in
QISKit [18].

In the brief description above, we classify as “local”
algorithms those which converge to a (at least) first-order
stationary point, and “global” algorithms those that do not
employ convergence criteria based on first-order stationarity,
but rather have a mechanism to escape any local optimum.
In our tests, the performance of LBFGS and COBYLA is
very similar across the board. PCD and SPSA performed
considerably worse than the remaining algorithms in our
experiments. This is not surprising: PCD was not designed to
be parsimonious in the number of function evaluations, and
therefore exhibits slower convergence; whereas SPSA was
designed to be robust to noise, but this robustness comes at
a price and is not exploited at all in our noise-free setting.
Overall, numerical experiments using PCD and SPSA are
simply slower and do not yield further insight with respect
to looking at the first three optimization algorithms alone.
Other popular algorithms such as Nelder-Mead and genetic
algorithms were not considered as they usually yield inferior
results in mathematical benchmarks [23]. For these reasons,
in the following we only report results for COBYLA, RBFOpt
and occasionally LBFGS.

C. Analysis of difficulty with classical branch-and-bound

To quickly assess the difficulty of instances in our test
set on classical computers, we transformed each Hamiltonian
into a quadratic unconstrained binary optimization problem,
and we solved it to global optimality using using the branch-
and-bound algorithm in the commercial integer programming
solver IBM ILOG Cplex 12.7.1. The average solution times
are given in Fig. 2. The graph shows that running times for
PARTITION, MARKETSPLIT and MAXCUT scale exponentially
with problem size, while the other problem classes appear
considerably easier.

We remark that we did not make any attempt at fine-
tuning the algorithm or improving the problem formulation:
we directly translated the Hamiltonian into a quadratic form
with binary variables, and let Cplex solve the instance with
its default parameters [26]. It is well known that the perfor-
mance of integer programming models depends heavily on
the particular formulation of the optimization problem; our
automatic translation of the Hamiltonian yields very weak
formulations, therefore in practice one can expect significant
improvements (potentially orders of magnitude) using better

TABLE II. Average density (expressed as the number of nonzero
elements in Q over the total number of elements) and fraction of
negative eigenvalues for the test instances.

Density Negative eigenvalues

q 15 16 17 18 15 16 17 18

MAXCUT 0.95 0.95 0.95 0.95 0.62 0.61 0.59 0.60
TSP — 0.72 — — — 1.00 — —
MAX3SAT 0.31 — — 0.25 1.00 — — 1.00
PARTITION 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MARKETSPLIT 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
STABLESET 0.40 0.39 0.39 0.38 1.00 1.00 1.00 1.00

classical methodologies. In other words, Fig. 2 is far from
representing the state of the art of classical optimization for
the problem classes under consideration.

To understand what causes the difficulty of certain problem
classes for IBM ILOG Cplex, we looked at two properties that
are known to affect the performance of solution methods for
quadratic optimization problems, namely: the density of Q

and the distribution of its eigenvalues. The linear term c of the
cost function was added to the diagonal of Q, since for binary
variables x2 = x. Statistics are reported in Table II. These
data suggest that density strongly correlates with problem
difficulty: most instances have many negative eigenvalues (all
problems are expressed as minimization problems), but only
some instances are dense (MARKETSPLIT and PARTITION are
fully dense, followed by MAXCUT), and these appear to be
the hardest to solve for Cplex.

D. Variational form

The choice of the variational form is crucial for the per-
formance of VQE; in particular, if the ground state (minimum
energy state) of the Hamiltonian cannot be attained by a given
variational form, then VQE will never reach the optimum
energy. For combinatorial optimization problems it is easy to
construct variational forms that are guaranteed to contain the
ground state in their span: It is sufficient to ensure that the
variational form can generate any binary string on q qubits.

In our experiments, we use a variational form constructed
in layers; see Ref. [2]. The first layer always consists in single-
qubit Y rotations, with one variational parameter per qubit
to determine the rotation angle. This ensures that any binary

FIG. 2. Average solution times using IBM ILOG Cplex, single-
threaded. The y axis is on a log scale.
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Y (θ1) • • Y (θ4) • • Y (θ7)

Y (θ2) Z • Y (θ5) Z • Y (θ8)

Y (θ3) Z Z Y (θ6) Z Z Y (θ9)

FIG. 3. Example of the variational form on three qubits. Each
box represents a layer.

string can be obtained with just the first layer. Each additional
layer after the first contains entangling gates, more specifically
controlled-Z gates applied to all qubit pairs, followed by
another set of single-qubit Y rotations with one variational
parameter each to represent the angle. Thus, each layer has
q variational parameters. The resulting circuit is exemplified
in Fig. 3 for three qubits. We experimented with nearest-
neighbor controlled-Z gates as well, i.e., between qubit j

and j + 1 for all j = 1, . . . , q, but this does not change the
conclusions of the study.

Our experiments use up to three layers of this variational
form, using the labels 1L, 2L, 3L to indicate how many have
been used. For the global classical optimization algorithm
RBFOpt only 1L and 2L are tested, because the optimization
for 3L is too time consuming. By construction, the variational
form has low depth, as is the case for ansatz that have been
implemented in hardware [2].

The specific choice of variational form used in this paper
is justified by the fact that it is guaranteed to span the ground
state. The entangling layers, coupled with Y rotations, allow
us to control the level of entanglement, and experimentally
verify whether entanglement helps speed up convergence, see
Sec. V F. We remark that for 0-1 optimization problems there
exists an optimal solution that is a computational basis state,
hence entanglement is not necessary in principle, unlike, e.g.,
certain quantum chemistry problems in which the ground state
is known to be an entangled state.

V. RESULTS AND ANALYSIS

We now report a summary of our findings, based on plots
provided in this paper as well as further analysis not reported
for space reasons.

A. Convergence versus number of iterations

In the first set of graphs we study the convergence of each
optimization algorithm as the number of iterations progresses,
over the entire set of problem instances. Here and in the rest
of the paper, convergence is defined in the following way. Let
x̃ be the initial point given to the optimization algorithm [27],
and let x∗ be an optimal solution to the problem. Calling f

the objective function, we say that an optimization algorithm
converges to a precision of τ ∈ [0, 1] if it determines a point
x such that f (x)−f (x∗ )

f (x̃ )−f (x∗ ) � 1 − τ . Notice that when τ = 0 this
implies determining an optimal solution, whereas τ = 1 is
trivially satisfied by any point x returned by the optimization
algorithm.

To account for different problem sizes and the dimension
of the search space, we normalize the iteration number by

FIG. 4. Fraction of the instances on which a given algorithm
converges to the specified tolerance, versus the normalized number of
iterations. The top graph plots data for COBYLA, the bottom graph
plots data for RBFOpt.

reporting the “equivalent gradient iterations,” where each
gradient iteration performs n + 1 function evaluations and n

is the total number of parameters of the variational form that
are being optimized. Using the variational form described in
Sec. IV D, a problem instance on q qubits with a variational
form with � layers has n = q� parameters. We remark that n +
1 corresponds exactly to the number of function evaluations
that are perfomed by a gradient-based method that estimates
the gradient by finite differences along the coordinate axes
(e.g., the LBFGS implementation used in our tests); for such
methods, the normalization gives an accurate count of the
major iterations of the optimization algorithm. Other methods,
however, do not try to estimate the gradient at every major
iteration, but we apply the same normalization in order to have
a fair comparison. This normalization is also standard in the
derivative-free optimization literature to account for varying
problem sizes [19]. The maximum number of function evalu-
ations is set to 100(n + 1) for all optimization algorithms, in
these and in all subsequent experiments.

In Fig. 4, we report aggregate results for COBYLA
and RBFOpt over the entire test set. As mentioned earlier,
LBFGS’s performance is very close to that of COBYLA.
The curves are drawn for three convergence levels: τ ∈
{0.001, 0.01, 0.1}. The x axis indicates the normalized num-
ber of iterations (i.e., equivalent gradient iterations), the y axis
reports the fraction of instances on which the optimization
algorithm converges up to a specified tolerance.

We can see from Fig. 4 that the local optimization algo-
rithm (COBYLA) plateaus after a relatively small number
of normalized iterations, whereas the global optimization
algorithm (RBFOpt) continues improving and in the long
run achieves convergence on more instances. LBFGS shows
the same behavior as COBYLA, and this suggests that the

013304-6



PERFORMANCE OF HYBRID QUANTUM-CLASSICAL … PHYSICAL REVIEW E 99, 013304 (2019)

FIG. 5. Fraction of the instances on which a given algorithm
converges to the specified tolerance, versus the normalized number
of iterations. In these plots we employed a variational form with two
layers. The top graph plots data for COBYLA, the bottom graph plots
data for RBFOpt.

local optimization algorithms are stuck in a local minimum.
However, all algorithms fail to converge to high accuracy
in a large fraction of the instances. Interestingly, using two
layers of the variational form seems to be better when relying
on a local optimization method, but worse when employing
the global algorithm of RBFOpt. A possible explanation is
that RBFOpt works better when the number of parameters
to be optimized is small, and therefore does not benefit from
the enlarged search space found in the case of several layers
of the variational form. In other words, this fact may stem
from properties of the optimization algorithm, rather than the
variational form itself. It is therefore not clear whether the
additional layers, which introduce entanglement, truly help.
This will be discussed more in detail in Sec. V F.

To understand whether some of this behavior is problem-
dependent or can be observed on the entire set of test in-
stances, we report similar plots in Fig. 5, but now we plot
curves for each instance class. For space reasons, we only pro-
vide plots for two layers of the variational form, but this is rep-
resentative of the overall picture. The plots clearly show some
problem-dependent behavior. In particular, some instances are
considerably easier than others: all optimization algorithms
excel on MAX3SAT, but struggle on MARKETSPLIT. The most
difficult problem classes are MARKETSPLIT, PARTITION and (to
a lesser extent) MAXCUT and TSP. This is the same ranking in
terms of difficulty that was obtained when applying a classical
branch-and-bound algorithm, which seems to indicate that
problems that are hard for IBM ILOG Cplex are also hard for
the VQE heuristic. In the next subsection we perform further
numerical experiments to try to determine what makes certain
problems harder.

To summarize the results presented in this subsection,
our experiments indicate that different problem classes have
different difficulty levels, independent of the optimization

algorithm (PCG and SPSA, not reported here, exhibit similar
behavior). This may depend on the specific procedure adopted
to generate random instance, resulting in harder instances
for some classes of problems. These remarks are consistent
with the literature in classical combinatorial optimization,
where the most successful methods to solve problems take
advantage of problem-specific structure. The agnostic nature
of VQE, coupled with classical derivative-free optimization
algorithms, results in alternating performance with mixed
results that seem to match the behavior of classical branch-
and-bound.

B. Density and eigenvalues

Table I shows that the hardest problems have more distinct
eigenvalues than easier problems (TSP, that exhibits a large
number of distinct eigenvalues, seems not too difficult in
Fig. 5, but the analysis in subsequent sections indicates that
the approximation ratio of the solution found by VQE is fairly
large). These problems also seem to have Hamiltonians with
more terms. It is important to investigate if these quantities
correlate with difficulty.

In the classical setting, the density of the quadratic objec-
tive function matrix is an important factor in determining the
difficulty of an instance. When discussing quantum Hamilto-
nians, the most natural proxy is the number of Pauli terms that
appear in the summation defining the Hamiltonian. Because
we are using a nonlinear optimization tool to determine the
ground state, it is also conceivable that the number of distinct
eigenvalues of the Hamiltonian could be a good indicator of
the difficulty of Eq. (1) (since every eigenvector is a stationary
point of the optimization problem). To test these conjectures,
we run some experiments on Hamiltonians consisting of a
weighted summation of random pairs of Pauli Z. We fix the
number of pairs in each Hamiltonian to 10, 20, . . . , 100, and
the weights are chosen uniformly at random in {−1, 1} in the
first set of experiments and [−1, 1] in the second set of experi-
ments (notice that the first is a discrete set, the second is a real
interval). The number of qubits varies between 10 and 18, and
for each combination of parameters we generate 20 random
Hamiltonians. The average number of unique eigenvalues of
these Hamiltonians is given in Table III (for space reasons,
we report only for q even). As expected, the Hamiltonians
in the second set of experiments (random weights in [−1, 1])
have many more unique eigenvalues than in the first set of
experiments, even if the number of Pauli terms is the same.
Indeed, for large enough number of Pauli terms, the Hamil-
tonians with random weights in [−1, 1] have the maximum
number of distinct eigenvalues (2q−1, since by construction
for every eigenvalue λ, −λ is also an eigenvalue).

Running VQE on these Hamiltonians shows that density is
not a good indicator of difficulty, but the number of eigenval-
ues is. In Fig. 6 we report convergence with τ = 0.01 and a
variational form with two layers using COBYLA; results with
other optimizers or number of layers are similar. The graph
suggests that problems with very small number of Pauli terms
(e.g., 10) are easy across all sizes but as soon as the number
increases it is no longer possible to detect a strong correlation
between number of terms and difficulty. However, the num-
ber of distinct eigenvalues affects difficulty (remember from
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TABLE III. Average number (rounded to the nearest integer) of
unique eigenvalues in the Hamiltonian depending on the number of
Pauli terms in the summation defining the Hamiltonian.

Number of Number of qubits q

Pauli Weights in {−1, 1} Weights in [−1, 1]

terms 10 12 14 16 18 10 12 14 16 18

10 9 9 10 10 11 336 390 633 755 896
20 13 14 16 17 18 499 1843 6246 19 251 45 056
30 16 18 20 20 22 512 1997 7680 30 310 95 027
40 19 21 22 24 26 512 2048 8192 31 948 117 964
50 21 23 25 27 29 512 2048 8192 32 768 131 072
60 23 26 28 30 33 512 2048 8192 32 768 131 072
70 24 28 31 32 35 512 2048 8192 32 768 131 072
80 26 30 32 34 37 512 2048 8192 32 768 131 072
90 14 32 34 36 39 512 2048 8192 32 768 131 072
100 14 33 35 38 41 512 2048 8192 32 768 131 072

Table III that there is saturation of the number of eigenvalues
for more than ≈30 Pauli terms in the Hamiltonian with
weights in [−1, 1], hence we cannot expect problems to get
more difficult when they have more than 30 terms).

To support this conclusion, we compare the number of
iterations for convergence for increasing number of Pauli
terms using a nonparametric statistical test known as the
Friedman test. The groups (algorithms) compared correspond
to the number of Pauli terms in the Hamiltonian, for uni-
form weights in {−1, 1} and in [−1, 1]. We use confidence
α = 0.95; the null-hypothesis (no differences between the

FIG. 6. Average number of iterations for convergence to τ =0.01
for Hamiltonians with a different number of Pauli terms, using
COBYLA and a variational form with 2 layers. The top graph plots
data for Hamiltonians with weights in {−1, 1}, subfigure (b) plots
data for Hamiltonians with weights in [−1, 1].

TABLE IV. Pairwise comparison of the number of iterations
for convergence. A “+” in row i and column j indicates that in
experiment i the Friedman test detected more iterations than in
experiment j ; vice versa with a “−”; no difference is detected with
a “=”. The two-digit numbers labeling column and rows indicate the
number of Pauli terms in the experiment.

variables) is rejected, p value 1.11e−16, and we perform
pairwise comparisons in the post hoc analysis. The post hoc
analysis clearly indicates that for the same number of terms in
the Hamiltonian, problems with uniform weights in [−1, 1],
which have more distinct eigenvalues, take longer to converge.
We report a subset of the results in Table IV.

To conclude, our experiments with random Hamiltonians
obtained as sum of pairs of Zs indicate that we can expect the
difficulty of a problem instance to increase with the number of
distinct eigenvalues. This, in turn, can be related to the number
of Pauli terms in the summation defining the Hamiltonian,
depending on the distribution of the weights. The results are
consistent with our observations in the preceding sections.
From a practical standpoint, unfortunately computing the
number of distinct eigenvalues is not an easy task unless the
Hamiltonian is known in the full Hilbert space.

C. Impact of problem size

We now study the impact of problem size, i.e., number
of qubits, on the performance of VQE. Figure 7 reports the
fraction of problem instances on which convergence to a
specified level of tolerance is attained, with problem size
varying from 6 to 18 qubits. Results are aggregated over all
problem classes.

The plot indicates a slight downward trend in the con-
vergence rate as problem size increases. We remark that in
these experiments the scaling of the number of iterations
that each algorithm is allowed to run is the same as in the
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FIG. 7. Fraction of the instances on which a given algorithm
converges to the specified tolerance, versus the number of qubits.
The top graph plots data for COBYLA, the bottom graph plots data
for RBFOpt.

previous section, namely 100(q� + 1) iterations where q is
the number of qubits. Hence, the plot suggests that increasing
the number of iterations linearly in the number of qubits is
not sufficient to maintain constant the fraction of instances
on which convergence to high accuracy is attained. Indeed, as
remarked in the previous section, Fig. 4 shows diminishing
returns for increased iteration number, and some algorithms
reach a plateau after a certain number of iterations; Fig. 7
provides the additional information that problem instances
become harder to solve as the qubit count increases. The data
gathered from our experiments is not sufficient to extract an
overall trend and determine what is the correct scaling of
the number of iterations to maintain a constant fraction of
instances on which converge is achieved.

Similar plots that provide a curve for each problem class
(Fig. 8) indicate that the downward trend is not observed
among all problem classes: specifically, the performance of all
optimization algorithms on partition and TSP does not seem
to deteriorate for increasing problem size. However, this is
the case for the remaining problems, and this leads to our
observations for the average case.

D. Approximation ratio

The convergence profiles shown in previous sections have
the useful properties of being normalized with respect to the
initial point and invariant to constant shifts to the diagonal
of the Hamiltonian. A more commonly used metric to assess
the performance of optimization methods (especially from a
theoretical point of view) is the approximation ratio, defined
as the value (1 + ε) such that the algorithm attains a solution
of value at most f (x∗)(1 + ε), where f (x∗) is the optimum
value. We report the evolution of the approximation ratio for

FIG. 8. Fraction of the instances on which a given algorithm
converges to the specified tolerance, versus the number of qubits.
In these plots we employed a variational form with two layers. The
top graph plots data for COBYLA, the bottom graph plots data for
RBFOpt.

PARTITION and MAXCUT in Fig. 9. We remark that some of
the test problems have energy values unrestricted in sign,
i.e., the classical optimization algorithm explores points with
positive and negative value. The approximation ratio only
makes sense for nonnegative values. Notice that the minimum

FIG. 9. Average approximation ratio (geometric average) versus
the normalized number of iterations. The top graph plots data for
PARTITION and its y axis is on log scale, the bottom graph plots data
for MAXCUT.
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eigenvalue of the Hamiltonian can be negative, in particular
for all max optimization problems converted to a min problem
by taking the negative of the objective function. Therefore,
in our graphs we only report iterations for which the energy
value of the quantum state has the same sign as the minimum
eigenvalue of the Hamiltonian, and for problems with negative
minimum eigenvalue we plot the ratio f (x∗)/f (x) rather than
f (x)/f (x∗); this way, all graphs are decreasing and lower
bounded by 1. The average across all instances is taken using
the geometric average, which is more suitable in this context
since the approximation ratio is a multiplicative quantity
rather than additive.

On PARTITION the approximation ratio is very large, con-
sistent with the observation that this problem class appears to
be difficult. The performance on MARKETSPLIT is very similar
(additional graphs are given in the Appendix). On MAX-
CUT, the global optimization algorithm eventually reaches
an approximation ratio close to 1, but convergence is slow;
the local optimization algorithms are stuck in local optima
with ratio �1.05. STABLESET is similar to MAXCUT, whereas
on MAX3SAT all algorithms quickly attain ratio very close
to 1, consistent with our previous observations. TSP starts
with approximation ratios ≈103 but quickly reaches values
� 10, even though no algorithm attains 1. Since the original
formulation for TSP is heavily constrained (transformed to
unconstrained by penalizing constraint violations), the initial
point given to the classical optimization algorithm is likely
infeasible (i.e., it does not satisfy the constraints) and incurs
heavy penalties that affect its energy value; the optimization
then moves towards feasibility, which explains the large initial
approximation ratios that quickly decrease as the feasible
region is reached.

E. Probability of sampling the optimal solution

So far, we have been concerned with studying the speed
with which optimization algorithm find a quantum state with
an optimal or close-to-optimal energy value, as evaluated
according to a given Hamiltonian. We remark that the energy
of a quantum state corresponds to the expected objective
function value of the binary solutions that can can be sam-
pled from that quantum state. This can be easily verified:
let H be Hamiltonian encoding of a combinatorial problem
with objective function f : {0, 1}q → R. Then if |ψ〉 is a
basis state, it corresponds to a binary string z, and we must
have 〈ψ |H |ψ〉 = Hz,z = f (z), where by Hz,z we denote the
element of H whose row and column are indexed by z.
Furthermore, recall that Hamiltonians for combinatorial prob-
lems encoded as binary problems use only Pauli Z operators,
resulting in a diagonal Hamiltonian. Therefore, for a general
state |ψ〉, we can write

〈ψ |H |ψ〉 = 〈ψ |diag(H )|ψ〉 =
∑

z∈{0,1}q
〈ψz|ψz〉Hz,z

=
∑

z∈{0,1}q
Pr(|ψ〉 = z)Hz,z

=
∑

z∈{0,1}q
Pr(|ψ〉 = z)f (z).

FIG. 10. Fraction of the instances on which a given algorithm
explores at least one quantum state with probability of sampling the
optimal solution greater than a given threshold, versus the normal-
ized number of iterations. The top graph plots data for COBYLA,
the bottom graph plots data for RBFOpt.

In the above expression, Pr(|ψ〉 = z) is the probability of
sampling z when performing a measurement of all the q qubits
from state |ψ〉.

Because of this relationship, it is in principle possible
(although unlikely) that VQE produces quantum states that
have a high probability of sampling an optimal binary string
z, while the energy of the quantum state is larger than the
optimum value; see Ref. [8] for a discussion of concentration
of the probability distribution. We analyze this possibility in
our next set of experiments. More specifically, we look at how
the probability of sampling an optimal solution increases as
the optimization algorithm progresses. In the spirit of the plots
reported in the previous section, given a convergence level
ρ, we compute the fraction of instances in which a quantum
state that has probability at least ρ of sampling the optimal
binary string has been observed within a certain number of
normalized iterations. We remark that this yields “optimistic”
graphs, because it yields nondecreasing curves: in practice it
is possible that the optimization algorithm explores a quantum
state with high probability of sampling the optimal string, but
the algorithm does not stop there and in subsequent iterations
such probability decreases.

Plots generated as discussed above are reported in Figs. 10
and 11. It is evident from the plots in Fig. 10 that for the local
optimization algorithm (COBYLA in this graph, but LBFGS
is similar), the fraction of instances in which the probability of
sampling the optimal solution is greater than a given constant
plateaus very quickly. Further iterations of the optimization
algorithm may increase such probability (typically, the energy
value goes down, as observed in previous sections), but the
plots show that this is an improvement on instances for which
the optimization algorithm has already found “good” quantum
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FIG. 11. Fraction of the instances on which a given algorithm
explores at least one quantum state with probability of sampling
the optimal solution greater than a given threshold, versus the
normalized number of iterations. These plots are generated with
a variational form with two layers. The top graph plots data for
COBYLA, the bottom graph plots data for RBFOpt.

states. The situation is different for the global algorithm
RBFOpt: we observe a steady increase in the curves, implying
that the algorithm explores quantum states with sufficiently
large probability of sampling the optimal string on more
and more instances. However, we remark that for a global
algorithm the “optimistic” way of generating these graphs
may have a significant impact: indeed, a global optimization
algorithm will often explore quantum states from unknown
regions of the search space, and for this reason it is more
likely to encounter quantum states that satisfy the convergence
criterion, but it may not be able to detect when one of these
states has been found. In other words, even though RBFOpt
explores better quantum states as the iteration count increases,
it may not be able to indicate from which quantum state the
optimal string can be sampled. In any case, these plots indicate
that the local optimization algorithms can quickly get stuck
in local minima that do not contain quantum states likely to
yield the optimal binary string. This is not suprising: due to
their hardness, we expect NP-hard combinatorial optimization
problem to give rise to Hamiltonians associated with highly
nonconvex energy landscapes.

Figure 11 highlights once more the large discrepancy
between problem instance classes: while for some classes
any optimization algorithm quickly determines a quantum
state that has high probability of yielding the optimal string,
other classes of problems appear out of reach, especially for
the local optimization algorithms. Global optimization looks
more promising, but it is affected by a different set of issues
which may limit its practical usefulness. We remark that
optimizing the expected objective function value of the binary
strings may not be the best possible approach, if the end goal is
simply to reach a certain probability of sampling an optimum

Y (θ1) T Y (θ4) T Y (θ7)

Y (θ2) T Y (θ5) T Y (θ8)

Y (θ3) T Y (θ6) T Y (θ9)

FIG. 12. Example of the variational form without entanglement
on three qubits. Each box represents a layer.

(rather than aiming for the ground state, that has probability 1
of sampling an optimum).

F. Entanglement versus no entanglement

The variational form used throughout the paper introduces
entanglement after the first layer of Y rotations. Experiments
discussed in Sec. V A do not show any clear advantage for the
variational forms 2L and 3L that use entanglers, as compared
to 1L that generates product states only. Indeed, Fig. 4 reports
a marginal improvement with 2L and 3L using COBYLA, but
this comes at the cost of several additional iterations of the
optimization algorithm (recall that the x axis is normalized
by q� + 1, where � is the number of layers); with RBFOpt,
the variational form 1L achieves the best results. Other local
solvers yield results consistent with COBYLA. We now try
to understand whether 2L, 3L can truly improve performance
of the local solvers because of entanglement, or if the reason
for such improvement could be attributed to other factors,
e.g., better chance to escape local minima. To do so, we
repeat the experiments and the analysis using a variational
form that mimicks the one described in Sec. IV D, but does
not use two-qubit gates, i.e., the CZ gates of Fig. 3. Having
multiple adjacent Y rotations on the same qubit would amount
to introducing copies of the same variational parameter, which
is undesirable from an optimization standpoint. Hence, after
each layer of Y rotations we apply a T gate on each qubit.
This way, each variational parameter on the same qubit has a
different effect. We obtain a variational form exemplified in
Fig. 12.

We compare the performance of the optimization algo-
rithms using the previous variational form (which we label
2L-CZ, 3L-CZ) and the new variational form without en-
tanglement (labeled 2L-T, 3L-T). A summary of the results
is given in Fig. 13, reporting convergence versus number of
iterations as in Sec. V A, and Fig. 14, reporting probability of
sampling an optimal solution versus number of iterations as in
Sec. V E. Fig. 13 shows that for COBYLA, the performance
of 2L-CZ, 2L-T, 3L-CZ, 3L-T is essentially indistinguishable.
This is confirmed by Fig. 14, looking at the probability
of sampling an optimal solution. The variational form with
two and three layers still appear to be better than 1L, but
there does not seem to be any significant difference between
using CZ gates or T gates. A possible explanation is that the
local optimization algorithm finds better solutions (in a larger
number of iterations) when there are additional variational
parameters that can be used to avoid being trapped in a
local minimum. Similar results are obtained with LBFGS.The
results with RBFOpt tell a different story: Here, 2L-CZ is
sinificantly better than 2L-T in Fig. 13, even though attaining
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FIG. 13. Fraction of the instances on which a given algorithm
converges to the specified tolerance, versus the normalized number
of iterations. We compare variational forms with and without entan-
glement. The top graph plots data for COBYLA, the bottom graph
plots data for RBFOpt.

a better objective function value does not seem to affect the
probability of sampling an optimal solution; see Fig. 14. The
variational form 1L is still better than any 2L variational form
with RBFOpt, as remarked in Sec. V A.

FIG. 14. Fraction of the instances on which a given algorithm
explores at least one quantum state with probability of sampling the
optimal solution greater than a given threshold, versus the normal-
ized number of iterations. We compare variational forms with and
without entanglement. The top graph plots data for COBYLA, the
bottom graph plots data for RBFOpt.

The results reported in this section paint a mixed picture.
They suggest that there may be nothing special about varia-
tional form with entangling CZ gates, because we can achieve
similar results with a different variational form that does not
introduce entanglement. The variation in performance of the
various algorithm may be attributed to characteristics of the
algorithms themselves, rather than of the variational form:
some algorithms seem to benefit from having additional vari-
ational parameters to optimize, while others do not. Overall,
while the experiments are not conclusive, we are unable to
observe any advantage in using two-qubit gates in our setting,
as compared to variational forms with single-qubit gates only.

VI. CONCLUSIONS

Our study of VQE on classical combinatorial optimization
problems highlights several obstacles that need to be over-
come in order to make it a viable method with potential to be
used in practice. The first obstacle is that local optimization
algorithms that aim at first-order stationary points appear to
get stuck in local minima very frequently on certain problem
classes. A possible solution is to use different classical op-
timization algorithms, more suited for nonconvex problems,
or a different variational form. A second obstacle is that
convergence to the optimum is slow, requiring more and more
iterations of the classical optimization routine as the problem
size increases. This difficulty may be alleviated by computing
derivatives on the quantum computer, rather than relying
on derivative-free optimization methods or finite-difference
estimations of the gradient; the computation of derivatives
is possible for certain types of variational forms. A different
choice of variational form may also help. The third obstacle is
that the performance of VQE on classes of problems correlates
with the performance of a classical branch-and-bound solver
on a naive translation of the Hamiltonian to a quadratic form
over binary variables: since VQE performs well only on prob-
lems for which the classical branch-and-bound also performs
well, there is little advantage to be gained. This is likely due
to the fact that these hard problems have dense quadratic
matrices in the classical representation, and the corresponding
Hamiltonians have many distinct eigenvalues. A possible way
forward is to start exploiting problem structure in a systematic
way, moving away from the problem-agnostic nature of VQE;
this may also alleviate some of the other issues.

Our experiments indicate that there does not seem to be
a significant gain in performance, if any, by using two-qubit
gates in the variational form, as compared to single-qubit
gates. Of course, if the variational form yields a product
state the computation could be performed efficiently on a
classical computer, hence suggesting that VQE does not yield
any quantum speedup on this class of problems. However,
two important remarks are in order: first, binary optimization
problems by construction admit a ground state that is a basis
state, therefore they are very poor candidates to showcase the
benefits of entanglement; second, from a theoretical point of
view we know that two-qubit gates can be useful even for
binary optimization problems (e.g., Ref. [8] shows that we can
essentially simulate adiabatic optimization with a problem-
dependent variational form with a sufficient number of gates).
Hence, while two-qubit gates do not seem to yield benefits
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in the setting of this paper, this conclusion would change on
a different class of problems or with a different optimization
approach than a problem-agnostic VQE.

Ultimately, the most important question is to understand
whether a VQE-like approach has potential to be competitive
with classical combinatorial optimization methodologies. At
the scale at which we are able to simulate, which is approx-
imately the scale of existing superconducting qubit devices,
this question cannot be answered: algorithms and software for
binary optimization on classical computers are very refined,
and optimal solutions for the problems discussed in this paper
can typically be found in fractions of a second [28]. However,
the VQE implementation tested in this paper requires the

exploration of hundreds or thousands of trial states as well
as iterations of a classical optimization algorithm), and may
fail to converge anyway. Leaving aside considerations on
hardware efficiency, this suggests that the performance of
VQE must be greatly increased before it can be considered
competitive. Our study provides some suggestions on possible
directions of improvement.
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