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Electron density fluctuations in collisional dusty plasma with variable grain charge
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The kinetic theory of electric fluctuations in a collisional weakly ionized dusty plasma is formulated with
due regard to the grain charging dynamics. The correlation functions of electron and ion density are obtained
by considering their collisions with neutrals described within the Bhatnagar-Gross-Krook model. The electron
density correlation spectra in isothermal and nonisothermal plasma are calculated for various values of grain
density, grain size, and ion collisionality.
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I. INTRODUCTION

Electromagnetic fluctuations are important and often the
only source of information about the medium’s parameters.
They are closely related to electromagnetic, kinetic, and
thermodynamic properties of the macroscopic systems. In
particular, the correlation functions of the microscopic particle
densities determine static and dynamic form factors of the
system and thus the spectrum of electromagnetic wave scatter-
ing by plasmas [1–3]. The kinetic coefficients in the Fokker-
Planck equation [1,3,4] and the collision integrals in kinetic
equations are also determined by the microscopic phase den-
sity fluctuations. It is also obvious that the fluctuations of the
electromagnetic field play the role of the Langevin sources in
the Brownian motion of charged particles in plasmas [2,5].
Therefore, the calculation of the electric field fluctuations in a
dusty plasma [6] is important for describing particle diffusion,
the intensity of which determines, to a considerable extent, the
processes of formation and melting of plasma crystals [7,8].

The theory of fluctuations in ordinary collisional plasma is
well developed [9–13]. The problem of generalization of this
theory to the case of dusty plasma has a number of issues that
remain open. The dust grains acquire electric charges due to
absorption of electrons and ions from the surrounding plasma,
i.e., grains are charged by the plasma currents that flow toward
its surface. In the stationary state, the flux of electrons on
the grain surface is equal to the flux of ions, thus the total
current is equal to zero. The fluctuations of the charging
current lead to the fluctuations of the stationary grain charge.
Therefore, the problem arises of including such fluctuations
into self-consistent calculation of electric field fluctuations.
Moreover, the grain charges depend on the electromagnetic
field via charging currents and, thus, they generate additional
dielectric polarization of the medium, which should be taken
into account along with the polarization due to the plasma
components.
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To solve the problem under consideration two approaches
are usually used. The first of them is based on the description
of grain charge dynamics using the charging equation and ex-
plicit representation of the charging currents in terms of fluc-
tuations of plasma particle distribution functions and charging
cross sections [14–17]. The disadvantage of such an approach
is that it requires phenomenological description of plasma
particle collisions with grains (both elastic and inelastic) and
additional calculations of “shadow” and bombardment forces
(generated by scattering and absorption of plasma particles
by a grain in the presence of another grain) to describe con-
sistently the collective grain-grain interaction, if necessary.
In the second approach the grain charge is treated as an
independent dynamic variable and thus the grain distribution
function depends not only on the coordinate and velocity, but
also on the grain charge [18–25]. This approach provides the
opportunity to work out consistent kinetic theory of fully ion-
ized dusty plasmas and, in principle, to find collision terms for
particles of all species. However, this approach faces serious
problems with the generalization to the case of collisional
plasmas. The main problem here is that the calculations of
the quantities describing the grain dynamics are expressed
in terms of the charging cross sections that are known for
collisionless plasmas only. At the same time phenomenologi-
cal approximations for such cross sections (see, for example,
[24] and related references cited therein) have a limited range
of application. Actually, the same problem arises in the first
approach, but in that case one can use semiphenomenological
approximations for charging currents [26,27] which take into
account the influence of collisions and, at the same time,
are in a good agreement with the results of experiments and
numerical calculations [28] at arbitrary collision frequencies
and other plasma parameters. This means that we can avoid
the problem of calculating charging cross sections, if the equa-
tions of grain charging dynamics can be formulated in terms
of charging currents. Since the appropriate formulation can
be easily done, the first approach looks more suitable for the
generalization of the theory of electromagnetic fluctuations in
collisionless dusty plasmas to the case of collisional plasma
background.
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The above-mentioned problems with the unknown charg-
ing cross sections for collisional dusty plasmas are the reason
why the consistent calculations of fluctuation spectra are
related to the collisionless [14–16,19], or weakly collisional
regimes [22–25,29]. The purpose of the present paper is to
give a consistent linear kinetic description of electric fluctua-
tions in collisional weakly ionized dusty plasma with regard
to the absorption of electrons and ions by grains and grain
charge variations.

It was shown in [23] that the measurements of density
fluctuation spectra in dusty plasmas can constitute a basis for
in situ diagnostic of invisible submicron dust due to its effects
on plasma responses. The authors state that the proposed
technique can be applied to various plasma environments in
laboratory and space, provided measurements of electrostatic
fluctuation spectra are available. Application of the proposed
method to the diagnostics of dust in space could allow quies-
cent plasma environments to be covered.

II. FLUCTUATIONS OF DISTRIBUTION FUNCTION

The consistent description of fluctuations in dusty plasma
requires considering the charge density fluctuations related to
electrons and ions

δρα (r, t ) = eαδnα (r, t ), α = e, i, (1)

as well as the grain charge density fluctuations

δρg (r, t ) = egδng (r, t ) + ngδeg (r, t ), (2)

where eg is the stationary grain charge and ng is the mean
number density of grains. Notice, that such representation
is valid for fluctuations that satisfy the condition ngR

3 � 1.
Here R is the spatial scale of perturbation.

The number density fluctuations of charged particles have
the form

δnα (r, t ) = nα

∫
dvδfα (r, v, t ), α = e, i, g, (3)

where δfα (r, v, t ) are the fluctuations of distribution function
of the corresponding particle species. In the case of electrons
or ions, they can be found in the same way as in ordinary
plasma [13], but regarding the collisions of electrons and ions
with grains in addition to collisions with neutrals.

Fluctuations of electron and ion distribution functions sat-
isfy the equation [13]{

∂

∂t
+ v

∂

∂r

}
δfα (X, t ) + να

{
δfα (X, t ) − f0α (v)

×
∫

dvδfα (X, t )

}
= − eα

mα

∂δφ(r, t )

∂r
∂f0α (v)

∂v
, (4)

where X = (r, v), δφ(r, t ) is the fluctuation of electrostatic
potential, f0α (v) is the unperturbed distribution function (usu-
ally it is the Maxwell distribution), and να = ναn + ναg , where
ναn and ναg are the effective collision frequencies between
particles of α species with neutrals and grains.

In the case under consideration to justify Eq. (4), we made
the following assumptions. The electrons and ions absorbed
by the grain recombine on its surface and form the neutral gas
atoms (molecules) that evaporate into the surrounding plasma

and can be ionized again due to collisions or to external
ionization sources. Such assumption makes it possible to use
the Bhatnagar-Gross-Krook (BGK) collision integral [30] in
Eq. (4).

Further, the equation for the grain charge fluctuations is
formulated. The averaging of the equation for microscopic
phase density of grains results in a kinetic equation with
collision integral that can be expressed in terms of the correla-
tion functions of microscopic quantities [13]. For the sake of
simplicity, we use the BGK collision integral as in the case of
plasma particles. The linearized equation for the fluctuations
of grain distribution function has the form of Eq. (4) with
α = g, where νg is the effective collision frequency between
grains and other particles. Such an equation, however, does
not take into account the fluctuations of charging collision
frequencies.

The formal solution of Eq. (4) is given by

δfα (X, t ) = δf (0)
α (X, t ) − eα

mα

∫ t

−∞
dt ′

∫
dX′

×Wα (X,X′; t − t ′)
∂δφ(r′, t ′)

∂r′
∂f0α (v′)

∂v′ , (5)

where δf (0)
α (X, t ) is the general solution of the homogenous

Eq. (4), i.e., it is the fluctuation of distribution function in
the system without self-consistent interaction through the
fluctuation electric field. The second term in (5) is the par-
ticular solution of Eq. (4). The function Wα (X,X′; t − t ′)
also satisfies the homogenous Eq. (4), but with the initial
condition Wα (X,X′; 0) = δ(X − X′). Hence, it is the prob-
ability density of particle transition from phase point X′ to the
phase point X during the time interval t − t ′ for particles of α

species.
As is easy to see, δf (0)

α (X, t ) play the role of Langevin
sources of electric field fluctuations in the system. Their
correlation functions have the form [2,3,11]〈

δf (0)
α (X, t )δf (0)

α′ (X′, t ′)
〉

= δαα′

nα

{fα′ (X′, t ′)Wα (X,X′; t − t ′)θ (t − t ′)

+ fα (X, t )Wα (X′, X; t ′ − t )θ (t ′ − t )}. (6)

III. GRAIN CHARGE DYNAMICS EQUATIONS

Further, we need to describe the dynamics of grain charge
fluctuations δeg (r, t ). Following Ref. [31], we assume that the
charging currents are the functions of electron and ion number
density, temperature, and the grain charge

∂eg (r, t )

∂t
= Ich =

∑
α=e,i

I α
ch(nα (r, t ), eg (r, t )). (7)

For the small fluctuations of number density nα (r, t ) = nα +
δnα (r, t ) from the average value nα and small fluctuations of
the grain charge eg (r, t ) = eg + δeg (r, t ) from its stationary
value, which is determined by the condition of zero total
charging current

I e
ch(ne, eg ) + I i

ch(ni, eg ) = 0, (8)
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one obtains from (7) the equation for δeg (r, t )

∂δeg (r, t )

∂t
+ νchδeg (r, t ) =

∑
α=e,i

∂I α
ch(nα, eg )

∂nα

δnα (r, t ), (9)

where the charging frequency νch is given by

νch =
∑
α=e,i

να
ch, να

ch = −∂Iα
ch(nα, eg )

∂eg

. (10)

Now, the explicit forms of charging currents Iα
ch(nα, eg ) in

collisional plasma are needed. Since the mean free path of
electrons le is, usually, about two orders higher than li in gas
discharge plasma, we use the expression

I e
ch = eene

√
8πa2vT e exp (−α), (11)

which is obtained in an orbit motion limited (OML) ap-
proximation, i.e., the collisions of electrons with neutrals are
neglected.

For an ionic charging current we use the interpolation
formula [26], which reproduces with high accuracy the results
of kinetic calculations [28]

I i
ch = eini

√
8πa2vT i

IWCI SC

IWC + I SC
, (12)

where

IWC = 1 + ατ + 0.1(ατ )2λD/li, (13)

I SC =
√

2πατ li/a, τ = Te/Ti. (14)

Here α = eeφs/Te (not to be confused with subscript α

that denotes the plasma particle species), φs is the sur-
face potential, a is the grain radius, k2

D = k2
De + k2

Di , k2
Dα =

4πe2
αnα/Tα , λD = 1/kD is the Debye length, vT α = √

Tα/mα

is the plasma particle thermal velocity, li = vT i/νi is the ion
mean free path, and νi is the collision frequency of ions with
other particles. WC stands for weakly collisional and SC is for
strongly collisional.

It is reasonable to assume [28,32–35] that the electrostatic
potential near the grain is described by the Derjaguin-Landau-
Verwey- Overbeek (DLVO) potential

φ(r ) = eg

r

exp[−kD (r − a)]

(1 + akD )
, (15)

then

α = eeeg

aTe(1 + akD )
. (16)

The space-time Fourier transform (FT)

fkω =
∫ ∞

−∞
dt

∫
drf (r, t ) exp(iωt − ikr) (17)

of Eq. (2) for the grain charge fluctuations along with (9) gives

δρgkω = egδngkω + ing

ω + iνch

∑
α=e,i

I α
ch

nα

δnαkω. (18)

It was taken into account in (18) that according to (11) and
(12)

∂Iα
ch(nα, eg )

∂nα

= Iα
ch

nα

. (19)

We substitute Eq. (5) in (3) and after FT obtain

δnαkω = nα

∫
dvδf

(0)
αkω(v) + i

eαnα

mα

∫
dv

∫
dv′

×Wαkω(v, v′)k
∂f0α (v′)

∂v′ δφkω

= δn
(0)
αkω − k2

4πeα

χα (k, ω)δφkω, α = e, i, g, (20)

where χα (k, ω) is the dielectric susceptibility of the plasma
particle subsystem.

Further, we substitute formula (20) with α = g in the first
term of (18) and formula (20) with α = e, i in the second one.
Thus we obtain

δρgkω = δρ
(0)
gkω − k2

4π
χg (k, ω)δφkω + i

ω + iνch

∑
α=e,i

ναgδρ
(0)
αkω

− k2

4π

i

ω + iνch

∑
α=e,i

ναgχα (k, ω)δφkω, (21)

where

ναg = ngI
α
ch

eαnα

(22)

is the frequency of plasma particle collisions with grains.
Equation (21) can be rewritten to be similar to (20):

δρgkω = δρ̃
(0)
gkω − k2

4π
χ̃g (k, ω)δφkω, (23)

where

δρ̃
(0)
gkω = δρ

(0)
gkω + i

ω + iνch

∑
α=e,i

ναgδρ
(0)
αkω, (24)

χ̃g (k, ω) = χg (k, ω) + i

ω + iνch

∑
α=e,i

ναgχα (k, ω). (25)

Thus,

δφkω = 4πδρ
(0)
kω

k2ε(k, ω)
, (26)

where

δρ
(0)
kω =

∑
α=e,i,g

δρ
(0)
αkω + i

ω + iνch

∑
α=e,i

ναgδρ
(0)
αkω, (27)

ε(k, ω) = 1+
∑

α=e,i,g

χα (k, ω) + i

ω + iνch

∑
α=e,i

ναgχα (k, ω).

(28)

We see that the dielectric permittivity of dusty plasma in
the present description differs from the dielectric permittivity
given by the multicomponent model

εmc(k, ω) = 1 +
∑

α=e,i,g

χα (k, ω) (29)

by the presence of the last term in (28), which is the renor-
malized susceptibility of grains generated by the charging
processes. Furthermore, in calculations of plasma particle
dielectric response, collisions with grains should be taken into
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account on an equal footing with the collisions with neutrals,
i.e., να = ναn + ναg .

IV. FLUCTUATION SPECTRA

In this section we calculate the electron density correlation
function 〈δρ2

e 〉kω. We start from the electron density fluctua-
tions and it follows from Eqs. (20) and (26) that

δρekω = δρ
(0)
ekω − χe(k, ω)

ε(k, ω)
δρ

(0)
kω , (30)

and using (27) we get

δρekω = δρ
(0)
ekω − χe(k, ω)

ε(k, ω)

[ ∑
α=e,i

(
1 + iναg

ω + iνch

)
δρ

(0)
αkω

+ δρ
(0)
gkω

]
. (31)

Finally,

〈
δρ2

e

〉
kω

=
∣∣∣∣1 − χe(k, ω)

ε(k, ω)

(
1 + iνeg

ω + iνch

)∣∣∣∣
2〈
δρ (0)2

e

〉
kω

+
∣∣∣∣χe(k, ω)

ε(k, ω)

(
1 + iνig

ω + iνch

)∣∣∣∣
2〈
δρ

(0)2
i

〉
kω

+
∣∣∣∣χe(k, ω)

ε(k, ω)

∣∣∣∣
2〈
δρ (0)2

g

〉
kω

(32)

the electron density correlation function is expressed in terms
of χα (k, ω) and 〈δρ (0)2

α 〉kω〈
δρ (0)2

α

〉
kω

= e2
αnα

∫
dv

∫
dv′Wαkω(v, v′)f0α (v′) + c.c.

(33)

in the equilibrium state [2,3,11]

〈
δρ (0)2

α

〉
kω

= Tαk2

2πω
Imχα (k, ω). (34)

Neglecting the grain charge variations, i.e., putting the fre-
quencies νch and ναg equal to zero in (32), one obtains

〈
δρ2

e

〉
kω

=
∣∣∣∣1− χe(k, ω)

εmc(k, ω)

∣∣∣∣
2〈
δρ (0)2

e

〉
kω

+
∣∣∣∣ χe(k, ω)

εmc(k, ω)

∣∣∣∣
2〈
δρ

(0)2
i

〉
kω

+
∣∣∣∣ χe(k, ω)

εmc(k, ω)

∣∣∣∣
2〈
δρ (0)2

g

〉
kω

, (35)

the electron density correlation function in the multicompo-
nent model. The ion density correlation function is found in
the same way.

For the dielectric susceptibility of collisional plasma we
use the results obtained [36] on the basis of kinetic equations
with the BGK collision integral

χα (k, ω) = k2
Dα

k2

(ω + iνα )W (zα )

ω + iναW (zα )
, (36)

where zα = (ω + iνα )/kvT α and W (z) is the plasma disper-
sion function [2]

W (z) = 1 − ze−z2/2
∫ z

0
dy ey2/2 + i

√
π

2
ze−z2/2. (37)

V. RESULTS OF NUMERICAL CALCULATIONS

Now let us consider the results of numerical calculations
of electron density fluctuation spectra obtained on the basis
of formula (32). There are several parameters in (32) we
should discuss in more detail. The charging frequency νch

[Eq. (10)] is the sum of electron and ion charging frequencies
that are the derivatives of corresponding charging currents
given by Eqs. (11) and (12). Their explicit expressions and
dependencies on ion mean free path are presented in Ref. [31].
It was found there that in a nonisothermal plasma charging
frequency να

ch is of the order of the ion plasma frequency
ωpi = 4πe2ni/Ti , hence the grain charge fluctuations can
influence the electron density fluctuations in this frequency
domain. The electron and ion charging frequencies vs νin/ωpi

in isothermal (τ = 1) plasma are shown in Fig. 1. One can see
that the charging frequency strongly depends on the grain size
and is higher for the bigger grains.

The charging currents are the functions of parameter α

[Eq. (16)], which can be referred to as the normalized grain
charge, which, in turn, is determined by the condition of zero
total current on the grain surface [Eq. (8)]. Thus, the grain
charge is found from the equation

ne

ni

μ exp(−α) = IWCI SC

IWC + I SC
, (38)

where μ = vT e/vT i = √
τmi/me.

The ratio ne/ni in Eq. (38) is defined by a quasineutrality
condition, which in the case of dusty plasma has the form

eene + eini + egng = 0. (39)

For singly charged ions

ne

ni

= 1 − P, P = egng

eeni

, (40)

where P is the Havnes parameter, which describes the part of
the electron charge collected by dust. The Havnes parameter is

FIG. 1. Electron (dashed lines) and ion (solid lines) charging fre-
quencies να

ch/ωpi vs ion-neutral collision frequency νin in isothermal
(τ = 1) argon plasma for a/λD = 1, 0.15, 0.01.
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FIG. 2. Ion-grain collision frequency νig/ωpi vs ion-neutral col-
lision frequency in isothermal (τ = 1) argon plasma for P = 0.5
(solid lines) and P = 0.8 (dashed lines), a/λD = 1, 0.15, 0.01.

found in the normalized expression for electron susceptibility

χe(k, ω) = 1 − P

τ k̃2

(ω̃ + iν̃e )W (ze )

ω̃ + iν̃eW (ze )
, (41)

where

τ = Te

Ti

, k̃ = k

kDi

, ω̃ = ω

ωpi

, ν̃e = νe

ωpe

, ze = ω̃ + iν̃e

μk̃
.

(42)

The frequency of collisions between ions (electrons) and
grains ναn, which is the part of effective collision frequency
να = ναn + ναg , is also defined by the charging currents
[Eq. (22)]. The value of νig depends considerably on the grain
size and can be dominant in the effective collision frequency
as well as negligible (see Fig. 2). The relation νig = (1 −
P )νeg between electron and ion frequencies follows from (22)
in the stationary state.

We performed the calculations for argon dusty plasma
with various values of grain size akD , Havnes parameter P ,
and ion-neutral collision frequency νin for both isothermal
τ = 1 and nonisothermal τ > 1 plasmas. Since the plasma
frequency of grains is much smaller than ion plasma fre-
quency, the motion of grains does not affect the fluctuations
in this frequency domain and the last terms in (32) and
(35) are neglected as well as χg (k, ω) in (28) and (29). The
electron-neutral collision frequency νen can be expressed via
ion frequency. The simple relation ναn = vT ασαnn, where σα

is the scattering cross section, is valid for a weakly ionized
plasma. Thus, the electron collision frequency is related to
ion frequency through the expression νe = νiμ(σe/σi ). The
scattering cross section of Ar+ ions with an energy of 0.1 eV
on Ar atoms is about 157 Å2 and it decreases with the increase
of energy (Table 7 in Ref. [37]). The scattering cross section
of electrons on argon atoms has the minimum of ≈0.1 Å2 for
the energy of ≈0.2 eV, and for ≈2.5 eV it is ≈3 Å2 ( Fig. 4
in Ref. [38]). Therefore, we can assume that σe/σi ≈ 0.02
for nonisothermal plasma and this value was used in our
computations.

FIG. 3. Normalized electron density correlation spectra
〈δn2

α〉kωωpi/ni in ordinary nonisothermal (τ = 100) argon plasma
for νin/ωpi = 0, 2 × 10−4, 5 × 10−4, 1 × 10−3, 2 × 10−3;
k/kDi = 0.1.

Summarizing, we can highlight the main factors included
in our description that influence the fluctuation spectra of
electron density in dusty plasma:

(i) The grain charge variations are described by the last
term in (28) and corresponding terms in (32) that contain νch

and ναg .
(ii) The plasma particle collisions with neutrals and grains

define the plasma particle effective collision frequencies να =
ναn + ναg , which influence the susceptibility of electrons and
ions [Eq. (36)].

(iii) The decrease of the electron to ion density ratio in
dusty plasma influences the stationary grain charge α [see
Eq. (38)] and electron susceptibility (41).

In order to clarify separately the input of the second factor,
we start from considering the electron density correlation
function given by (35) and να = ναn in (36), i.e., we start
by studying the influence of ion-neutral collisions on elec-
tron density fluctuations in ordinary plasma. Figure 3 shows
that the intensity of fluctuations in nonisothermal (τ = 100)
plasma is sensitive to ion collisions with neutrals. Even for
small values of νin/ωpi the fluctuations are considerably
suppressed.

Concerning the last factor, it is known that the decrease
of ne/ni results in the increase of dust ion-acoustic wave
eigenfrequency and therefore the fluctuation maxima are also
displaced in higher frequencies [31,39]. This effect is illus-
trated by Fig. 4, where the fluctuation spectra are obtained
using the expressions for ordinary collisional plasma, but with
ne/ni = 1 − P . Besides the fluctuation maximum shift, its
decrease is also observed. It can be explained by the decrease
of 〈δρ (0)2

e 〉kω via decrease of electron susceptibility [Eq. (41)],
since it is proportional to 1 − P .

In order to see the isolated effect of the dust charge
variability (first factor), we, initially, “turn on” both second
and third factors. Namely, the collisions of plasma particles
with grains are included into effective collision frequency
να = ναn + ναg in the (36), but for electron density correlation
function formula (35) is still used (dashed line in Fig. 4). For
a/λD = 0.15 and P = 0.2, 0.5 the collision frequencies of
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FIG. 4. Normalized electron density correlation spectra
〈δn2

α〉kωωpi/ni in ordinary nonisothermal (τ = 100) argon plasma
for νin/ωpi = 0.02, k/kDi = 0.1, P = 0, 0.2, 0.5. Dashed line
corresponds to Eq. (35) and plasma particle susceptibility (36)
including collisions with grains να = ναn + ναg , a/λD = 0.15.
Dotted line corresponds to Eq. (32).

ions with grains equal to νig/ωpi ≈ 0.015 and 0.035 corre-
sponding, thus they are of the order of ion-neutral collision
frequency νin/ωpi = 0.02. As expected, the increase of ion
collisionality leads to decrease of fluctuation intensity. Fi-
nally, we include into consideration the grain charge variation
(dotted line in Fig. 4), which means that we calculate the
electron density correlation function using formula (32) with
dielectric permittivity (28). One can conclude that the varia-
tions of the grain charge leads to enhancement of the electron
density fluctuations as compared to the dashed line, but they

FIG. 5. Normalized electron density correlation spectra
〈δn2

α〉kωωpi/ni in nonisothermal (τ = 100) argon plasma for
νin = 0.02ωpi , a/λD = 0.15, k/kDi = 0.05, 0.1, 0.2, P = 0, 0.2,

0.5; a/λD = 0.01 (dotted line) and a/λD = 1 (dashed line). Insert
is the maximum value of normalized electron correlation function
vs k/kDi .

FIG. 6. Normalized electron density correlation spectra
〈δn2

α〉kωωpi/ni in nonisothermal (τ = 10) argon plasma for
k/kDi = 0.1, νin/ωpi = 0.02, 0.1, 0.5, 2, P = 0 (solid lines), and
P = 0.5; a/λD = 0.15 (dashed line).

are considerably suppressed as compared to multicomponent
description (solid line).

The fluctuation spectra in strongly nonisothermal (τ =
100) plasma, which are presented in Fig. 5, show that posi-
tions and intensities of maxima depend on the wave number
k/kDi and coincide with the eigenfrequency of ion-acoustic
waves in collisional dusty plasma (see Fig. 7 in Ref. [31]).
The presence of grains leads to the shift of fluctuation maxima
toward higher frequencies and to the decrease of fluctuation
intensity. It was already mentioned that the increase of the
eigenfrequency of the ion-acoustic wave is caused by the
decrease of electron to ion density ratio ne/ni . This assertion
is confirmed by the curves in Fig. 5 corresponding to k/kDi =

FIG. 7. Normalized electron density correlation spectra
〈δn2

α〉kωωpi/ni in isothermal (τ = 1) argon plasma for
νin = 0.02ωpi , a/λD = 0.15, k/kDi = 0.05, 0.1, 0.2, and
P = 0, 0.2, 0.5.
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FIG. 8. Normalized electron density correlation spectra
〈δn2

α〉kωωpi/ni in isothermal (τ = 1) argon plasma for
νin = 0.02ωpi , k/kDi = 0.1, P = 0, 0.5, 0.8, a/λD = 0.01 (dashed
lines), and a/λD = 1 (solid lines).

0.05, P = 0.2, and different values of grain size a/λD =
0.01, 0.15, 1. The values of collision νig and charging να

ch
frequencies for a/λD = 0.01 are much less than for a/λD = 1
(see Figs. 1 and 2; or see Figs. 2 and 5 in Ref. [31]). As
a consequence the fluctuations are less suppressed in the
presence of small grains than of a big one, but the value of
the shift depends almost entirely on the Havnes parameter.

The insert in Fig. 5 shows that the highest intensity of
fluctuations is at k/kDi ≈ 0.05 and the increase of the Havnes
parameter leads to a decrease of the fluctuation intensity in all
wave-number domains under consideration.

The transformation of fluctuation spectra in an ordinary
nonisothermal plasma (τ = 10) with the increase of ion
collisionality is shown in Fig. 6. With growing of νin/ωpi ,
the fluctuations decrease, but then the fluctuation maxima
grow at ω = 0. The presence of dust grains also increases
the ion effective collision frequency νi = νin + νig due to
collisions between ions and grains. For example, νig/ωpi =
0.028 for P = 0.5, akD = 0.15 and νin/ωpi = 0.02, thus
νi/ωpi = 0.048 and fluctuations are also suppressed. But the
maximum value of the electron density correlation in dusty
plasma is approximately equal to that in ordinary plasma with
νin = 0.1. It means that the influence of dust on fluctuation
spectra cannot be described only by the increase of ion colli-
sionality. Also, the maximum is shifted to a higher frequency.
As already mentioned, the increase of fluctuation frequency is
provided by the decrease of ne/ni .

The fluctuation spectra in isothermal plasma (see Fig. 7)
differ from that in nonisothermal one: the maxima are broader
and situated at the lower frequencies. The presence of grains

suppresses the fluctuations but not so efficiently as in the case
of nonisothermal plasma. Figure 8 illustrates the influence of
the grain size on the fluctuations in isothermal plasma. Since
νig and νch for a/λD = 0.01 are much less than for a/λD = 1
(see Figs. 1 and 2), the presence of grains of different sizes
change the fluctuation spectra differently, even if the Havnes
parameter is the same.

As it was mentioned above, we have omitted the last term
in (32) and χg (k, ω) in (28) in our calculations. It means
we considered immovable grains. That is the reason why the
maxima corresponding to collective fluctuations of the grains
(dust acoustic resonances) are not observed in the region of
grain plasma frequency ωpg 	 ωpi in Figs. 6–8.

VI. CONCLUSIONS

Electron density correlation spectra are strongly affected
by the presence of grains with variable charge. The main
factors of this influence are the decrease of the electron to ion
density ratio, increase of ion collisionality due to collisions
with grains, and grain charge variations.

In the case of nonisothermal plasmas the positions of
the ion-acoustic resonances and their intensities depend on
the grain density (Havnes parameter). The decrease of the
electron to ion density ratio ne/ni in dusty plasma leads to
the shift of fluctuation maxima to higher frequencies and to
the decrease of fluctuations due to decrease of electron sus-
ceptibility. The increase of ion effective collision frequency
additionally suppresses the electron density correlations. The
variations of grain charges themselves enhance the electron
density fluctuations, but, in summary, the fluctuations in dusty
plasma are considerably suppressed. This effect depends on
the grain size and is more pronounced for bigger grains since
the ion-grain collision frequency is proportional to the square
of the grain radius.

The presence of grains increases the effective ion colli-
sion frequency, but the resulting influence on the fluctuation
spectra is different from that in ordinary plasma with the
same ion-neutral collision frequency. Particularly, the increase
of ion-neutral collisionality in ordinary plasma can lead to
suppression of ion-acoustic resonance and growth of the max-
imum near the zero frequency that is not observed in dusty
plasma. In the case of isothermal plasmas the presence of
grains results in even more crucial changes. At large densities
(the Havnes parameter exceeds 0.5) of small (a/λD = 0.01)
grains the ion-acoustic maxima become visible.
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