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We present an analysis of a Hall-magnetohydrodynamics model of the magnetospheric plasma with finite
Larmor radius effect. Through a bifurcation analysis of the resultant nonlinear system, we show that this
nonlinear model does not possess a limit cycle, which rules out regular periodic oscillations with constant
amplitude. However, it does result in a train of magnetosonic solitons, localized in space, with amplitudes
increasing in time, which are largely in agreement with what is usually observed in the magnetopause region.
We call these oscillations aperiodic magnetospheric oscillations. We emphasize that most of the train of solitary
oscillations observed by the Cluster fleet and other spacecrafts do not have constant amplitudes: they either
continuously increase or decrease. These train of solitons with nonconstant amplitudes is a primary solution of

our model.
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I. INTRODUCTION

Solitary waves, most commonly known as solitons, are
nonlinear oscillatory structures which are routinely observed
in near-earth plasmas and in the boundary layers of the earth’s
magnetosphere [1,2]. Since its demonstration by Scott Russel
in 1844, solitons have now become one of the most widely
studied phenomena in fluids including plasmas. Though soli-
tons can be found in a controlled laboratory as well as in var-
ious natural situations, space plasma is such an environment,
where observations of solitary oscillations have become easier
due to advances in space exploration. The space-borne exper-
iments have now provided us with valuable information about
different regions of the magnetosphere and their physics.
Many magnetosonic solitons are reported to be observed by
Cluster spacecrafts near the bowshock-magnetopause cross-
ing, magnetosheath, and cusp region of the magnetosphere.
One of the first series of observations of magnetosonic soli-
tons was by the Cluster spacecraft in 2002 [3-5].

Regarding the magnetic oscillations in the magnetopause
and magnetosheath regions, we have only limited knowledge
about them, and the origin and behavior of these oscillations
are not yet fully understood. These oscillations seem to be
nonlinear and quasistatic in nature and are usually present
with ion temperature anisotropy with 7;; > T;; with an an-
ticorrelation with density fluctuation [6-8]. The size of these
oscillatory structures are within a few ion Larmor radii. In
most of the cases, these oscillations have nonconstant ampli-
tudes and are seen as a train of solitons (localized in space)
with either continuously increasing or decreasing amplitudes.
The usual interpretation of these structures is considered as
nonlinear saturation of the mirror instability, which satisfies
the mirror instability condition [9]
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where B, is the perpendicular plasma 8. As we can see that
the mirror instability requires a temperature anisotropy with a
sufficiently large 8. It is a zero-frequency instability which is
driven by wave-particle resonance. Apparently, similar oscil-
lations are also observed in other planetary magnetospheres
[10] and cometary environments [11]. However, it has been
shown that these train of magnetic pulses can also be inter-
preted as slow-mode magnetosonic solitons resulting out of
a Hall-magnetohydrodynamics (MHD) plasma model [12].
Other authors have tried to explain these oscillations as a solu-
tion of MHD plasma equations, with mirror mode instability
as the trigger mechanism [13]. Theoretical studies have re-
vealed that many underlying physical phenomena can govern
the formation of these structures. One such phenomenon is the
finite Larmor radius (FLR) effect, which can play an important
role in the formation of structures in the current layer of the
magnetotail and magnetopause region as well as the cusp
region. Apparently the effects which take place within the
scale length of ion Larmor radii are called FLR effects.
Primarily, the FLR effect enters the ideal MHD equations
through the electron pressure term in the generalized Ohm’s
law, which becomes important when spatial scale length L
becomes comparable to the ion Larmor radius ry [14]:
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Physically, L represents the plasma or field line inhomo-
geneities [1]. Plasma expansion across different plasma lay-
ers leads to formation of filamentary structures where FLR
effects become important. In the magnetopause layer, spec-
ular reflection of solar wind plasma causes formation of a
boundary layer which is about ~10r, thick [15], where the
FLR effects are supposed to be responsible for formation of
microstructures [15,16].

In this work, we analyze the Hall-MHD model of these
oscillations with the FLR effect, which leads to a nonlinear
dynamical model that can produce such a train of solitons with
nonconstant amplitudes. In Sec. II we put forward our plasma
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model, where we have incorporated the FLR term through
the generalized Ohm’ s law. In Sec. III we outline a general
approach where the equations are reduced to two differential
equations that describes the flow of plasma. In Sec. IV we
present a nonlinear dynamical analysis of the problem with
and without the FLR effect. In Sec. V we compare our findings
with observational data from the Cluster spacecrafts. Finally
in Sec. VI we summarize and conclude our work.

II. THE PLASMA MODEL

We consider the basic Hall-MHD equations with finite
Larmor radius term [17]
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where P is the anisotropic plasma pressure and p, is the
electron pressure. The other symbols have their usual mean-
ings. Various electron and ion parameters and the single-fluid
quantities are given by
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The unit vectors b; are the components of the magnetic
field vector (B/B). For plasma pressure, we use Stasiewicz’s
polybaric pressure equations [18]
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where

a,=py/pL—1 (13)

is the pressure anisotropy parameter, which is assumed to be
constant. It should be noted here that this pressure model
belongs to a more general class of polybaric pressure model
with variable anisotropy
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where (y,, k,) are the anisotropy indices. This model has been
successfully applied to various magnetosonic oscillations in
different regions of magnetosphere with 0.5 <y < 2 and
k ranging from 0 to —2. These pressure equations provide

TABLE 1. Plasma parameters for the event shown in Fig. 4(a).

Alfvén velocity V4~ 100km/s

Ion inertial length A &~ 40km
Plasma g B =20

Electron 8 B. ~ 0.3

Plasma (ion) velocity V; = (—60,0, —110) km/s
Structure velocity (magnitude) U = —48km/s

Direction normal nn = (0.853, —0.288, 0.436)

an effective approximation for the observed data for mag-
netospheric plasma boundaries and can model various types
of particle-field energy exchange [18]. In MHD, simplified
expressions for anisotropic pressure can be obtained by as-
suming a small ion gyroradius (compared to the scale of the
plasma), so that the perpendicular velocity can be effectively
controlled by the adiabatic invariant w [19] resulting in a
reduction of kinetic variables in the guiding center Vlasov
theory, and the pressure expressions become

1
m=§m/ﬂ&w, (15)
P = m,-/ﬁ(u” —v-b)du. (16)

The CGL double adiabatic equations are the result of the
above expressions with the assumptions that the system must
evolve very slowly, so that u% oc uB is entirely determined
by the adiabatic invariant u, resulting in p; & N vi « NB.
However, when the FLR effects become important, one cannot
ensure the invariance of y, and the approximations leading to
CGL equations break down. This is what exactly happens in
the magnetopause region as the observed data do not conform
to the CGL theory, but rather obey a more general polybaric
pressure equations such as given in Eqgs. (11) and (12). The
fact that the perpendicular pressure p; o« NY B“ signifies that
n x vi /B is no longer an adiabatic invariant. Besides, we
also note that in CGL-type models, the anisotropy parameter
a, is not a constant. This, however, requires that the magnetic
field B should depend on density rather strongly, which is not
supported by observational data, at least in the magnetopause
region [12]. So, it is sensible to assume that the kinetic effects
keep the anisotropy at a constant level. This also simplifies our
physical model, though a variable anisotropy can very well be
treated in the present framework, which, however, will make
the analytical treatment of the underlying dynamical model
impossible.

As the measured average plasma pressure (the ion pres-
sure) in the magnetopause region is about 70-100 times more
than the electron pressure (see Table I), the anisotropy in elec-
tron pressure is not expected to play a significant role and is
assumed to be isotropic, although a more general anisotropic
electron pressure will not change the general outcome of the
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The quantities with subscript “0” denote their corresponding
values at equilibrium. The above equations are closed by
Maxwell’s equations:

V x B =puol, (18)
oB

VXE=——, (19)
ot

V-B=0. (20)

In what follows, as the temperature remains constant, we
absorb it in the definition of p,.

III. PERTURBATION AND REDUCTION

We now consider a general electromagnetic perturbation of
the system in a frame moving with the wave in the x direction,
so that with respect to the wave, we have d/dt = 0. All other
quantities are assumed to be dependent on x, so that 9/dy =
d/0z = 0. The equilibrium magnetic field is assumed to be in
the x-z plane (By, = 0),

By = XBycosa + 2By sin«, 21

at an angle « to the x direction. The equilibrium flow velocity
is also assumed to be in x direction, v = vpx. Far from
the perturbation at x — oo, the plasma density N = Ny, the
equilibrium density. Note that at co the flow velocity becomes
the equilibrium velocity.

From the time-independent continuity equation, we now
have

Nv, = Nyvg = const. 22)
Faraday’s law implies that
VxE=0, (23)

from which we get E, = E, = const. The divergence-free
magnetic field implies that B, = B,y = const. From Am-
pere’s law, we have
1
J=—V xB. (24)
H“o
We now normalize the density by its equilibrium value, n —
N/Ny and define the normalized velocity as M4 = vg/va,
which is the Alfvén Mach number, and the Alfvén velocity

v4 1s given as
B
vy = . (25)
toNom;

The plasma g is defined as the ratio of the plasma pressure
(perpendicular) to the magnetic pressure at equilibrium state:

_ Plio
B2/(2410)

Note that through Eq. (22), we have vy/v, = n, where n
is the dimensionless density. We further define the normal-
ized magnetic field as b = B /By with b, = b,y = const and
by = 1.

B (26)

The x component of the momentum equation, Eq. (4) can
now be written as

ov 1 o d
Nmjvy— = ——— (B + B}) — —P.,, 27
Mt Z/Loax( v+ ) ox @7)
where
b, by
P =p1r+(py—p)——- (28)

Integrating Eq. (27), we have

1
Nmjv; = —— (B} + B?) — P, + C, 29
m;v; 2#0( T+ BZ) + (29)
where we have utilized the condition that Nv, = const and C
is the integration constant, which is evaluated by imposing the
boundary conditions at x — oo,

1
C = Nom,v} + E(B\Z,O + B%) + Puo, (30)
o By
where
Pivo = pio+ (Pjo — PLo)biy- 31)

With these expressions, Eq. (29) can be expressed as
2MA(n~ = D)+B (Y b —1)+b* — 14+b%pa, (b — 1)
=0. (32)

The transverse components (i.e., y and z components) of
Ohm’s law (5) are respectively given by

1 oB 1 dp.

—Bow—~=E, B —v.B,———, (33
eN [ O 9x y V250 — Ve B eN 0x (33)
! B 9B E,+v.B B (34)
X0 — Uy — Uy Dxp-
eN g 0 %9x ‘ 4 y=x0

In equilibrium (or at x — o0), Ohm’s law (5) can be written
as

1
Eo+vox Bo=——+Vpe (35)
eN()
as the equilibrium current density vanishes. The transverse
components of the above equation yield

Ey = EyO = UxoBzo, (36)

E,=E=0. (37)

From the transverse components of the momentum equation,
we have

vy 1 0B, 0
Nm;vy— = — By y—— — —P,,, (38)
ox Lo ox ox

av, 1 0B, d
Nm;jvy — = — Byo— — —Py.. (39)
0x o 9x 0x
Integrating the above equations and evaluating the corre-

sponding integration constants at oo, we can solve for v, . as

vy = —(Bx()By - MOIP)X}’)’ (40)
m; N vy Lo
1
v, = —[BxO(Bz — Bz()) - /L()(sz - szO)]~ (41)
m; N vy fio
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‘We note that

b, b
P,, = — R 42
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b, b
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.= (py PJ_)b A (43)

from which we can see that

Pyyo =0, Pyo=(pjo— Pio)bxobo. (44)
Using Egs. (40)-(44) in Eqgs. (33) and (34), we can finally
write
1 db, b n(, 1 5
— =byln——|1-za
M, ox T M2 27
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where M, = M4 /b,o, and the length x is normalized by
the inertial ion length A; = v4/w, Wwith w,; = eBy/m; as
the ion gyro-frequency. The FLR effects are incorporated to
the above model through g,, the ratio of electron pressure to
the magnetic pressure

_ Pe0
B/ (u0)
When B, — 0, we recover Stasiewicz’s equations [12]. The

above coupled differential equations can be termed as struc-
ture equations of the system that describes the flow of plasma.

Be (47)

IV. DYNAMICAL ANALYSIS

We now consider the possible oscillations of b,  in space
as determined by Eqgs. (45)—(46). Consider the dynamical
model represented by these equations but without the FLR
effect, which reduces the model to

Lab, n (1,
— = n——|1—-=a
M, ax T m2 277

n 1 _
(e )]

= f(by, by), (43)
1 b n 1
I S _ _ Y k—2
M. ox —by|:1 e <1 2ap,3n b )]
= g(by, by). (49)

The equilibrium points of the above dynamical system are
given by the condition b, ,/dx = 0. We note that the func-
tions f and g can be expressed entirely in terms of b, ;, as n
can be expressed in terms of b, . by Eq. (32). We can see from
Eq. (49) that g(by, b;) = 0 requires either of the following

’ ey
i f\ | ;ﬂ | &

x

FIG. 1. Oscillations in b, without the FLR effect. The initial
points, respectively, for the largest to the smallest amplitudes are
(by,b,) =(0,0.7),(0,0.9), and (0,1.2).

conditions to be satisfied:
by =0

n 1 -

Surely, the second condition is too restrictive and cannot be
maintained for all values of n, 8, ap, ¥, k, M, and b and has
to be discarded as a possible solution, which leaves the only
feasible condition for equilibrium as (b, b;) = (0, b}), where
b%(#0) is to be determined. A linearization of the system
around this equilibrium point yields the following Jacobian

[20]:
af/0b; _(0 [
8é"/abZ)(o,b;) B (gy O>, Gb

J:<Wmm

9g/dby

where f;, g, are nonzero functions of b;. We recall that the
behavior of a nonlinear dynamical model can be inferred
pretty accurately in the vicinity of the equilibrium points from
the behavior of the corresponding linearized system [20]. The
key to the behavior of the linearized model lies in the trace
(7) and determinant (A) of the corresponding Jacobian J; the
unstable and stable orbits lie on the either side of the parabola
defined by the equation

2 —4A =0 (52)

in the A-t plane [20]. For unstable orbits, we need (A >
0, T > 0) while stable orbits require (A > 0, 7 < 0). We have
saddle points for A < 0. If we have A > O and t = 0, we have
what is known as centers, defined by a set of infinite number
of periodic orbits for different initial points in the phase plane
(by, b;) [20]. It is now obvious from Eq. (51) that we have a
set of an infinite number of periodic orbits for the dynamical
system represented by Eqs. (48) and (49) for different initial
points in the phase plane (b,, b.), as determined by the trace
(which is zero). This situation is physically not favorable as
different initial points in the (b, b,) plane push the solution
of Egs. (48) and (49) into different periodic orbits which may
have arbitrarily small or large amplitudes, whereas practically
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we do not see oscillations with such arbitrary amplitudes. A
few such oscillations are shown in Fig. 1, which are generated
with different initial points.

A. FLR effect

We now linearize our dynamical equations about the equi-
librium point (b,, b;) = (0, b) with the FLR term taken into
account [Egs. (45) and (46)]. Note that these equations involve

J

both n and dn/dx, which need to be expressed in terms of by, ,
and b/\ . before Egs. (45) and (46) can be solved.

Both n and dn/9dx can be expressed in terms of b, . using
Egs. (27) and (32). We note that Eq. (32) is an algebraic
equation which admits more than one solution of n. In order
to see which solution is viable, we simplify the mathematics
by assuming y ~ 1 (which is very close to the adiabatic value
of 5/3). This transforms Eq. (32) to a quadratic equation in
n, of which we choose the solution by applying the boundary
conditions at x — oo, whenb — 1l andn — 1:

n = 4MIA (D (14 2M5 + B + a, Bb7) — b* — [b*(1 — b> +2M3 + B + a, Bb%,)" — 86> BMA (b* + a,b?) ) °] 7",
(53)
dn  2n* + BB n?(apbl (k —2) + b*k) 9b
ox  2M2 — Bbn(apby +b7)  ox

(54)

The particular solution for # is fixed from the boundary conditions that at co, b — 1 and n — 1. Note that the equilibrium
points of Egs. (45) and (46) remain the same as before and are not affected by the inclusion of the FLR term. As noted before,
the stability of the equilibrium points is determined by the form of the Jacobian J. The trace of the linearized Jacobian for

arbitrary « can be written as

)= B (22) (23 + bRy = 2)][Bbin. {k + ayblo( —2)/82) + 207 55
©4AMAb2 \ by [BbEn2(1 + apb?y/b2) — 2M3 ] ’
which reduces to the following expression for k = 0:
3 (b (b2 — b2 /DAY [2M3 + b2 -2
Te()) oo = oom (ﬁ)(  ZapPnbuo/P)[2MA ¥ bt~ 2)] (56)
2M3b2 \ by [Bn2(1 + a,b?,/b?) — 2M7]

where (n,, b,) = (n, b)|(0,;,;). A reduction, say for the positivity condition for the trace, Tr(J) > 0 from expression (55) yields
any of the following groups of conditions to be satisfied simultaneously:

a, < 0,

with the assumption that ¥k < 0. We note that experimental
observations fix « within a probable range of —2 and 0 [18].
Within a probable set of realistic physical parameters, all of
the above conditions can be satisfied so that Tr(J) can be
either made positive or negative resulting in unstable and
stable oscillations. It is worth noting that we do not have an
infinite set of periodic orbits. These equations exhibit a wide
variety of dynamical variations, which we describe in the next
section.

B. Bifurcations and stability: Nonexistence of limit cycle

In order to examine the bifurcations of the dynamical
model, we rely on the physical data from various satellite-
based experiments from the magnetopause region of the
earth’s magnetosphere where the FLR effects are supposed
to be dominant. In what follows, all the sets of data that are
used are from the Cluster data repository. As an example, we
consider the stability of the equilibrium points of Egs. (48)

b2,
|ap| < Lv
b;

1 12
2 |bx0|<1 - Eaplg> s

a, < 0,

(57)

2M? b2\
oz A<1+a,,¢0> :

pb* b;

and (49) for « = 0. The behavior of the dynamical model for
nonzero k is shown in Sec. V when we compare our results
with observations.

We now prove that this system does not posses a limit
cycle. We note, however, that this conclusion of ours cannot
be rigorously proved mathematically, owing to the complexity
of the system (see below the conjectures). A limit cycle is an
isolated and stable periodic orbit of a nonlinear dynamical
system, so that all nearby trajectories are attracted to the
limit cycle, and irrespective of any perturbations, the oscil-
lations always tend to settle down on the limit cycle [20].
Physically, a limit cycle behavior indicates a reproducible and
consistent periodic oscillations of a dynamical system and
indicates the fundamental oscillatory behavior of the system.
Mathematically, existence of a limit cycle indicates presence
of self-consistent stable oscillations as a fundamental behavior
of the underlying physical system. In this case, however, this
does not happen. It is worth noting here that a solid analytical
mathematical proof for nonexistence of a limit cycle in a
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FIG. 2. Nullclines (a), (b) of Egs. (45) and (46) in the (b, b, ) plane for different values of o showing the equilibrium points of the system
(the intersections of b, with the b, = 0 line). (c) The position of the equilibrium points are shown with the stream plot of the flow in the (b,, b,)
plane for the case o« = 82°. The three intersections of the flows with the central horizontal line indicates the corresponding equilibrium points.

region R, rather than existence, is a potentially difficult issue,
especially for a complex system like the one as described by
Egs. (45) and (46). So we adopt a three-pronged strategy to
prove our conjecture.

Consider now a set of probable but arbitrary physical pa-
rameters as f = 10, ¢ = 82,a, = —0.1, and B, = 0.2. Note
that the value of B, does not affect the behavior of the
equilibrium points. For M4 = 0.1, the system has three
equilibrium points at (b,, b;) = (0, —2.685), (0, 0.032), and
(0,0.99), among which the first two are stable sinks (an inward
spiraling orbit) and the third one is a saddle point. So depend-
ing on the initial starting value, the solution of the equations
always goes away from the stable periodic orbit (when the
FLR effects were absent), and the oscillations always decay
and spiral down to settle down on one of the sinks. If we now
increase the value of M 4 to 0.2, we observe a complete change
of behavior of the equilibrium points. The equilibrium points
are now (b, b;) = (0, —0.495), (0, —0.0185), and (0,0.99).
The first one now has become a saddle point, while the last
two points are now unstable sources (an outward-spiraling
orbit). It is interesting to note that the third point, the value
of which does not depend on My, changes its behavior. So

a supercritical Hopf bifurcation occurs at b, ~ 0, which can
also be degenerate [21]. In Fig. 2 we show this behavior with
the parameter «.

Note that when a supercritical degenerate Hopf bifurcation
occurs, the dynamical system, following the bifurcation, may
show multiple limit cycles (closed and isolated periodic or-
bits) or may have a limit cycle at co. The first one is generally
called a supercritical degenerate Hopf bifurcation of the first
kind, and the second one is called a supercritical degenerate
Hopf bifurcation of the second kind [21]. In our case, the
numerical phase portrait show that our system (45) and (46)
may undergo a supercritical degenerate Hopf bifurcation of
the second kind (see Fig. 3). It can be noted here that the
existence of a supercritical Hopf bifurcation is not limited to
any specific set of parameters such as k = 0. As we show in
Fig. 3(b), a similar bifurcation occurs even for « # 0.

1. The numerically calculated phase portrait

We note that when the dynamical system is analytically
not treatable, a numerically calculated phase portrait can in-
dicate the overall flow behavior of the system for the relevant
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FIG. 3. (a) The stream plot of Eqgs. (45) and (46) in the b,-b, plane is shown for a realistic parameter set. The solid line shows the overall
flow pattern. (b) The progression of behaviors of the equilibrium points of Eqs. (45)—(46) for the same set of parameters (see Sec. V) in the

(k-b,) plane. The arrow indicates the Hopf bifurcation point.

parameter regime. In Fig. 3(a) we have shown the stream
plot of the flow vectors of Egs. (45) and (46) in the realistic
parameter regime. The Hopf bifurcation occurs near b, = 0
and the oscillations of interest begin around the point indi-
cated by b, > 0. The solid orange line shows the overall flow
behavior. As can be seen, the oscillation begins around b, > 0
and increases in amplitude until it is caught by the unstable
spiral, created at b, ~ 0 following the Hopf bifurcation. The
flow then goes away from the unstable equilibrium point to
infinity, and the orbits may converge at oo (which, however,
cannot be proved rigorously). So our first conjecture is the
following:

Conjecture 1: In the physically relevant parameter regime
of b, > 0, the system represented by Eqs. (45) and (46) does
not seem to have any stable closed orbit until (b, b;) becomes
very large.

2. Bendixson-Dulac criterion

The Bendixson-Dulac criterion [22-24] state that for any
two functions f(x,y), g(x,y) with continuous and simply
connected derivatives df/dx and dg/dy in a region R, if we
can find an arbitrary function ¢(x, y) such that

0 0
D(x,y) = a(¢f)+5(¢g)#0in73, (58)

then the system

x'=fx,y)
y =g(x,y) (59)

does not possess any closed orbit in R. We note, however,
that the Bendixson-Dulac criteria do not indicate what hap-
pens when D(x, y) = 0. For the system Egs. (45) and (46),
however the equivalent function D(b,, b;) is too complex to
be reduced algebraically and the criteria to be proved analyti-
cally. So, we consider its asymptotic behavior at (b, b,) — 00

choosing ¢(x,y) =1,

bo (b, 1
Dby, b)p poosoo = dMs—| = + —
(y z)|by,bZ oo Abxo (b?+b3)

[Mf, + bfo<%a,,ﬂ - 1>] (60)

and we see that
limh),,bzeoop(bya bz) = O»

which leads to the second conjecture.

Conjecture 2: The system represented by Eqs. (45) and
(46) can posses a closed orbit at co in the (by, b;) space, thus
supporting the first conjecture.

It should be noted that through the Bendixson-Dulac crite-
ria, we cannot rule out the nonexistence of closed orbit in the
finite (by, b;) plane.

3. The index theory

As per index theory [25], we know that the index of a
closed trajectory of a two-dimensional planer system indicates
the global behavior of its trajectories. As shown in Fig. 3(a),
the indices I of the fixed points at b, > 0,b, =0, and
b, < 0 are, respectively, +1, +1, and —1, of which the first
two are sources and the last one is a saddle point. From the
phase portrait, we see that closed trajectories (a limit cycle)
around the first two fixed points are not possible because the
trajectories around the first fixed point are carried away by the
trajectories of the second and the trajectories of the second one
are swept by the third one, which is a saddle point. A closed
orbit is also not possible enclosing the first two fixed points
because the indices of both add to 42, but a closed orbit must
have an index of +1, according the theory of index. If there
is any closed orbit in the b, — b, plane, it must enclose all
the three fixed points as the indices of all three add to +1.
However, this requires b, to be necessarily oscillating around
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FIG. 4. Oscillations of the geomagnetic field B as detected by Cluster spacecraft 1 on February 3, 2002 (a) between 08:30:00 and 09:15:00
hours (UT). The dashed lines indicate the divisions of groups of solitons, and the arrows indicate few individual solitons. (b) The plot of the
corresponding power spectrum density P( f) of these oscillations, plotted against the sampling frequency f, which shows no detectable linear

wave train.

b, = 0, which does not fall in the parameter regime of interest.
This leads us to the final and third conjecture:

Conjecture 3: The system represented by Eqs. (45) and
(46) cannot have any closed orbit around a fixed point in the
region where b, > 0, and if there is any closed orbit, it must
be at b, ; — oo.

So, from these three conjectures, we can finally conclude
that the system represented by Eqgs. (45) and (46) does not
have a closed periodic orbit (i.e., a limit cycle) in the finite
region of interest where b, > 0. All these analyses indicate
that the system undergoes a supercritical degenerate Hopf
bifurcation of the second kind at b, = 0.

V. NUMERICAL RESULTS AND OBSERVATIONS

In this section, we put forward our analysis of unstable
(or stable) oscillations in the perspective of experimental
observations, namely, observations by the fleet of Cluster
spacecrafts. In Fig. 4 we show a section of such oscillations,
which was observed by Cluster spacecraft 1 on February 3,
2002, in the magnetopause region. We emphasize that these

oscillations do not indicate existence of any periodicity, which
is confirmed by the power spectrum analysis shown alongside
in Fig. 4(b), where the value of spectral density P(f) does
not show any periodicity for any frequency f. This is a strong
indication that these oscillations are groups of train of solitary
waves generated nonlinearly in the magnetopause region. We
have indicated a few such soliton peaks with arrows in the
figure. An inspection of these oscillations also reveals the
existence of several such groups of solitons (indicated by
the dashed vertical lines in the figure), with progressively
increasing magnitudes. We also note here that modeling these
groups of solitons requires |« | ~ O as higher values of x cause
the oscillations to die (see Fig. 3). Our test case is the train
of solitons shown in the shaded region from 08:59:00 and
09:03:00 hours. The plasma parameters as detected by the
spacecraft are given in Table I and in Fig. 5. The measure-
ments of different parameters (as observed by the spacecrafts)
are given in the Geocentric Solar Ecliptic (GSE) coordinate.
The actual position of the Cluster fleet during the event in
question is shown in Fig. 6, reproduced in scale with the help
of NASA’s 4D Orbit Viewer. As can be seen, during 08:00:00

—20 ——— —— 60
EoL Via (km/s) |
~120 (a) _ (b)
T e e, w0
4 B,
=20 i,
i B, ‘
7 — M [ [ 0 FV“'\ fwM A ”\(\‘\M\,‘_ ,,M‘vlv)/\j
~0.05 ——T—— e ——————] \/
—0.25 |- i
C 7 5
7055 P S S S S B — 1 1 |
08:59:00 09:00:00 09:01:00 09:02:00 09:03:00  08:59:00 09:00:00 09:01:00 09:02:00 09:03:00
Time (UT) Time (UT)

FIG. 5. (a) Alfvén velocity V,, ion inertial length, A; plasma 8, and pressure anisotropic parameter a, as detected by Cluster spacecraft 1
corresponding to the event shown in Fig. 4(a). (b) The field variation after an MVA analysis.
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Bow Shock

Cluster Orbit

Magnetopause

FIG. 6. Position of the Cluster spacecrafts between 08:00:00 and
09:00:00 hours (UT) on February 3, 2002, as shown by the red arrow
(reproduced in scale with the help of NASA’s 4D Orbit Viewer). The
figure is drawn with earth at the center in the GSE coordinates.

and 09:00:00 hours (UT), the Cluster fleet was just crossing
the magnetopause, where we expect to see the effect of FLR
on the solitary oscillations.

The pressure anisotropy parameter a, is determined from
the ion temperature data measured by the Cluster Ion
Spectrometer (CIS) [26]. The CIS data also determine the
plasma velocity (as measured from ion flow data) V; =
(=60, 0, —110) km/s. From a time-shift measurement of the
four Cluster spacecrafts, the velocity of the nonlinear struc-
ture can be determined as U = (—40, 13.8, —20) km/s. This
determines the structure velocity with respect to the plasma
along the x direction as V; = |V;, — U,| = 20km/s, which
determines the Alfvén Mach number as M4 = V;/ V4 ~ 0.2.
We perform a minimum variance analysis (MVA) [27] on
these data with respect to B,, which determines the direction
of propagation of the structure along the x direction, from
which we find the propagation angle o &~ —83°. The result
of the MVA analysis is shown in Fig. 5(b).

In Fig. 7 we show the numerical solution of Egs. (45)
and (46) for the parameter regime of Fig. 5 and Table I. In

—0.5 I I I I I
0 20 40 60 80 100 120

Fig. 7(a) we show the numerical solution, while in Fig. 7(b)
we superimpose the numerical solution on the solution for
our test case. Note that in the numerical calculation, the y
axis is normalized to the ambient (average) magnetic field
strength By ~ 30nT while the x axis is normalized with the
ion inertial length and the x = [0, 120] corresponds to the
time range of ~220s from 08:59:02 to 09:03:00 (UT). As we
can see that the numerical solutions can produce a similar train
of solitons corresponding to the observed oscillations, which
are largely in agreement. We note here that with different
parameters, Eqgs. (45) and (46) can also produce oscillations
with decreasing amplitudes. It should be noted here that these
numerical solutions are not expected to produce exactly what
is observed experimentally because the oscillations picked
up by the on-board instruments will also contain effects of
microturbulence and magnetic reconnection [28]. However,
what we see is that it can describe the overall behavior of these
magnetosonic oscillations, which are mathematically within
the realistic values of parameters.

To show the parameter space of the nonlinear domain,
we perform a linear perturbation analysis of Eqs. (45) and
(46). Assume a small perturbation of the dynamical quantities
f — fo+6f, where fy and 6f are, respectively, the equilib-
rium and perturbed parts and f = (b, b;, n). The resultant
semilinearized perturbed equations are given by [12]

19 1 ) 1
Eaab} = 6bzﬁ3(1 — Mx) 1— Eap,B +bz()5n
1 o 19
—bzoz—wa,,ﬁtsnyéb — B, I oo,
(61)
1 0 1 1
Ea_xabz = —W 1 — Eapﬁ (Sby + (Sby, (62)

where the last two terms of Eq. (61) are to be linearized.
Considering the perturbation to be an oscillation in space of
the form §f ~ e'** (where k is the linear wave number), the

60 T T T
(b)
40
=
E20 .
o
0+ 4
920 I I I
0 60 120 180 240
Time (s)

FIG. 7. A numerical solution of Egs. (45) and (46) for the parameter regime shown in Fig. 5 and Table 1.
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FIG. 8. Domain of nonlinear oscillations of Egs. (45) and (46) in
the M4-cosa plane for 8 = 20. The plasma parameters are taken
from the Cluster observations (see Table I) a, = —0.2, 8, = 0.3
with y = 1 and « = 0. The value of |k| is color coded from black
(small |k]) to red (large |k|).

resultant linear dispersion relation can be written as

Ab J/apﬂ ikp.
oy [P\ T S5 ) T
(By —2M3) 2M? ) 2M,
1 1
+ o arB(l+ kbl = 20%) — -
2 +1=0 (63)
apf—2(1-m2) 7
with
A =2+ Bi +a,pb (i — 2). (64)

The domain of linear oscillation of the system is now deter-
mined by the region of parameter space where solutions of
k from Eq. (63) are real. Subsequently, the nonlinear domain
is determined by purely imaginary solutions of k, which is
shown in Fig. 8. As can be seen from Fig. 8, the oscillations
shown in Fig. 5 and Table I are within the nonlinear domain.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have presented a nonlinear dynamical
model based on the Hall-MHD equations with the FLR effect.
The FLR term is incorporated into the analysis through the
generalized Ohm’s law. The ion pressure is modeled with the
polybaric pressure equations, which is a generalized form of
equation of state—a good and pliable approximation to the
observed measurements [18]. The electron inertia is, however,

neglected in the generalized Ohm’s law. The electron pressure
is assumed to be isotropic. This modified Hall-MHD model
can be reduced to two nonlinear coupled differential equations
which describe the magnetosonic structures in its rest frame.

Through a bifurcation analysis of the resultant system,
we have shown that this nonlinear model does not posses
a limit cycle, which rules out regular periodic oscillations
with constant amplitude. However, it does result in a train
of magnetosonic solitons with amplitudes increasing in time,
which are largely in agreement with what is usually observed
in the magnetopause region. These oscillations can be called
aperiodic in space. We emphasize that most of the train
of solitary oscillations observed by the Cluster fleet and
other spacecrafts do not have constant amplitudes: they either
continuously increase or decrease. These trains of solitons
with nonconstant amplitudes are a primary solution of our
model. We also note that our model can reproduce train of
solitons with either increasing or decreasing amplitudes in
proper parameter space. It can be noted here that though these
oscillations are thought to be a result of mirror-modes kinetic
oscillations, it has been shown that similar oscillations can
also result out of a Hall-MHD plasma model, which does not
require a kinetic approach.

The numerical results obtained in this paper are for relevant
parameter regimes reported by the Cluster spacecrafts and
resultant oscillations show the same trend as the observed
ones.
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