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Relative importance of initial conditions on outflows from multiple fans
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Generation of homogeneous isotropic turbulence was attempted using an innovative “multifan wind tunnel”
with 99 fans installed. The driving method used is based on a principle that the shear layers generated between
outflows from the adjacent ducts lead to turbulent flow downstream. First, a signal composed of two frequency
components is set, and then it is fed to all the fans for three kinds of arrangements of phases. Here, parameter
N is introduced as the number of phases used for the 99 fans, which represents a variety of emanated shear
layers. Furthermore, S is introduced as a measure of shear magnitude at the inlet of the test section. Relative
importance of the initial conditions (N and S) in the development of turbulence was investigated. To estimate the
contribution from naturally induced turbulence, we numerically decomposed the resulting velocity fluctuations
into the periodic and nonperiodic component. Energy spectra for three values of N were calculated using
nonperiodic data. The inertial subrange of a gradient of −5/3 widens with increasing N . The value S is the
largest for N = 2, but the turbulence intensity of the nonperiodic component is the largest for N = 99. Hence, it
might be suggested that the shear magnitude at the inlet of the test section is not as important as the variety of
shear layers for effective generation of high-Reynolds-number turbulence.
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I. INTRODUCTION

The effects of initial conditions (i.e., the conditions under
which the turbulence was produced) on the development of
turbulence have been investigated by placing different kinds
of turbulence generators at the inlet of the test section. This
issue is of fundamental interest in physical understanding of
turbulence as well as in engineering applications.

A rectangular passive grid [1,2] is the most classical tur-
bulence generator. Using such a grid, approximately homo-
geneous isotropic turbulence (HIT) can be easily generated.
Hence, even in recent years, many experiments using the static
grids were conducted to get a clear picture of development of
homogeneous isotropic turbulence [3–9]. However, since the
turbulence Reynolds number is low without the Kolmogorov
inertial subrange, it is insufficient for verification of turbu-
lence theory.

Wind tunnel experiments on the turbulence generated by
fractal grids have provided much detailed data. Hurst and
Vassilicos [10] showed that fractal grids generate higher
Reynolds number, probably due to increased turbulence in-
tensity, than the conventional rectangular grids. Seoud and
Vassilicos [11] showed that fractal grid turbulence does not
take a constant value of turbulence energy dissipation rate to-
ward the downstream direction. These studies provide detailed
characteristics of turbulence for a certain type of grid, but it
seems difficult to generalize the results to other cases, because
different geometries naturally lead to different turbulence
characteristics.
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The passive grids can produce approximately homoge-
neous isotropic turbulence only with relatively moderate
Reynolds numbers. Makita [12] devised an active grid and
realized a high-Reynolds-number turbulence. Using a sim-
ilar grid, Mydlarski and Warhaft [13] examined the high-
Reynolds-number asymptotic behavior of the turbulence.
Building a large wind tunnel with an active grid installed,
Hearst and Lavoie [14] investigated the evolution of turbu-
lence generated by three kinds of wing geometries. For the
method using an active grid, turbulence is produced by a com-
bination of static grid and dynamic wings. The influence of the
stirring protocol on the generated turbulence was reported in
Refs. [15–19].

The principle of turbulence generation using the multifan
wind tunnel (MFWT) is different from that of the grid-
generated turbulence. Respective fans produce outflows cor-
responding to the time-varying input signals. The signals are
defined by frequencies, amplitudes, and phase differences.
Hence, combinations of these parameters can create different
turbulent flows. Ozono and Ikeda [20] assumed an input
signal composed of 40 frequency components and randomly
assigned 99 phases to each fan. Within a relatively short
distance, high-Reynolds-number turbulence with two decades
of inertial subrange was obtained, where Reλ ≈ 750. Here,
Reλ is defined by Reλ = u′λ/ν; u′ is the root-mean square
(r.m.s.) value of streamwise velocity fluctuations, λ is the
Taylor microscale, and ν is the kinematic viscosity. The mode
is referred to as “random-phase mode” hereafter. In some
studies, using the Makita-style active grids, comparable Reλ

was achieved (e.g., Kang et al. [21], Reλ = 716; Larssen
and Devenport [22], Reλ = 1362). Variations of the random
driving mode were considered in Ref. [15] with a highest Tay-
lor Reynolds number Reλ = 200. A stirring protocol from a
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FIG. 1. Experimental setup. (a) A perspective view of the test section and the coordinate system of the multifan type wind tunnel (MFWT).
(b) Side view and driving mechanism of the MFWT.

stochastic model in Ref. [18] resulted in a very large Reynolds
number (Reλ ≈ 2000). The response to periodic stirring with
Reλ ≈ 500 was studied in Ref. [17], while a stirring protocol
derived from a turbulence model gave a largest Reλ ≈ 900
[19].

To identify the minimum number of frequency compo-
nents required to promote efficient turbulent development,
we applied the random-phase mode with an input signal
composed of two frequency components. The two frequencies
are defined as f1 = n1 f0 and f2 = n2 f0, where f0 is the basic
frequency and n1 and n2 mutually prime [23]. It was confirmed
that the evolution of turbulence to equilibrium was relatively
slow, but in sufficiently downstream region, the measurements
show characteristics of fully developed turbulence (Reλ ≈
750) similar to the case using 40 frequency components [20].

In the present study, we use three kinds of arrangements of
phases, i.e., N = 2, 3, and 99, where N indicates the number
of phases used for the 99 fans. Furthermore, S is introduced
as a measure of shear magnitude based on the spatiotemporal
average of velocity differences of adjacent outflows. Relative
importance of the initial conditions (i.e., N and S) in the
development of turbulence is investigated.

II. EXPERIMENTAL APPARATUS AND METHODS

A. Experimental apparatus

A schematic of the MFWT in the University of Miyazaki
is shown in Fig. 1 [24,25]. Experiments are conducted in
the MFWT, which has a test section with a cross-section
of 1.80 m × 2.54 m and a length of 15.5 m. This tunnel
is equipped with an array of 99 small fans (9 columns ×
11 rows) whose diameter is 276 mm. The fans are directly
connected to AC 200V servomotors, and the rotation rate can
be controlled individually via a single personal computer. The
airflow generated by the fans passes through ducts with the
contraction ratio 1 : 1.8, and honeycombs (212 mm in length
and 30 mm in diameter), and is finally discharged into the test
section. If the velocities from the adjacent ducts are different,
shear layers are expected to develop and interact each other.
This should lead to evolution of turbulence. As shown in
Fig. 1(b), the sizes at the exit of the ducts are MY = 282 mm
in width and MZ = 164 mm in height. The thickness of the
duct walls is 3 mm, which is much smaller than MY and MZ .

The origin of the coordinate system is the center of the
test section, and the flow velocities (U + u, v, w) are in
the streamwise (X ), spanwise (Y ), and vertical (Z) direction,

respectively. Here, U is the mean velocity and u, v, and w

are the velocity fluctuations. Measurement positions are rep-
resented in a nondimensional form as (X/MD, Y/MY , Z/MZ ),
where MD = (MY × MZ )1/2 = 215 mm.

Measurements of instantaneous velocity are made with
a constant-temperature hot-wire anemometer (KANOMAX,
System-7000). X-wire probes (Model-1241) or I-wire probes
(Model-1210) are mounted on a traverser, which is used to
shift the sensors to a required position. The data are sampled
at a frequency of 5 kHz, with an analog cutoff filter at 2 kHz.
The diameter of the wires is nominally 5.0 μm and the sensing
length l = 1.0 mm. The Taylor scale λ and the Kolmogorov
length scale η are 13 and 0.31 mm, respectively. Thus, our
measurements resolve to around 3 η. Spectra shown in Figs. 8
and 12 are estimated by taking arithmetic means over 54
spectra obtained from the sampling number of 204 800. To
estimate the uncertainty of hot-wire anemometry, we used
a conventional method including the t test. Recently, the
uncertainty was systematically assessed [26]. Further study in
this direction might be required for the future.

B. Input signals and driving methods

The input signal used is composed of two frequency com-
ponents as follows:

uin = u′
in(sin2π f1t + sin2π f2t ) + Uin, (1)

where u′
in is the r.m.s. value of the input signal and set to u′

in =
1 m/s. Note that the subscript “in” denotes the input signal.
The mean streamwise velocity is set to Uin = 4.67 m/s, so that
the total flow rate of the cross section is 21.4 m3/s in any case.

The frequencies of the input signal used in the present
study were determined to satisfy the following limit. In a
preliminary experiment, we examined a frequency response
of the wind tunnel by using a sinusoidal signal, where the
response is defined by the ratio of the measured amplitude
(output) to the input one. It is found that for frequencies
beyond 1 Hz, the response decays considerably. Thus 0.72 Hz
is selected as the higher frequency f2. According to a study by
Gotoh and Watanabe [27], energy transfer by the interaction
between eddies of different scales occurs particularly for a
scale ratio around 2. Hence, the lower frequency f1 is set to
0.36 Hz.

First, integers are assigned to all the fans as shown in
Figs. 2. Hence, the input signals are given as follows:

uin(t ) =⇒ uin(t + ψn) (n = 1, . . . , N ), (2)
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FIG. 2. Arrangement of n and the coordinate axes. (a) N = 2, (b) N = 5, (c) N = 99.

where the phases are defined by ψn = (n − 1) × T0/N . Here,
T0 is the period of the lowest frequency component among
the waves involved in the input signal. For this experiment,
T0 = 1/ f1 = 2.78 s. N is the total number of the phases used.

We examined three kinds of arrangements of phases (N =
2, 5, and 99). They are shown in a matrix form in Fig. 2. To
determine how to assign integers n to every fan, we make two
general rules:

Rule 1: A set of integers from 1 to N are arranged, in
which no restrictions are imposed on the order. Random
arrangement is permitted. For instance, in the case of N = 5,
(2,1,3,4,5), (2,5,3,1,4), etc. are possible. The N-sequence is
periodically repeated until the total number of integers reaches
99. Therefore, N is the period of the 99-sequence.

Rule 2: A partial sequence with nine elements is selected
from the above sequence, and is substituted into the matrix
row by row so that all adjacent numbers should be different
horizontally and vertically.

The two rules are introduced to determine an arrangement
of n as automatically as possible. By Rule 1, two-dimensional
array of n is reduced to one-dimensional sequence, and
thereby parameter N can be defined. According to N , in the
present paper, three sequences are given as follows:

1, 2, 1, 2, 1, 2, . . . (for N = 2), (3a)

1, 2, 3, 4, 5, 1, 2, 3, . . . (for N = 5), (3b)

57, 31, 6 . . . 94, 68, 7 (for N = 99). (3c)

The case N = 99 does not seem to be periodic, but can be
interpreted as a period of 99. Rule 2 provides the way to
satisfy the condition that all adjacent numbers should be
different horizontally and vertically, which is essential to
produce shear layers. To satisfy Rule 2, for N = 2 and 5,
the way of assigning is not automatic, but the condition can
be satisfied by a suitable shift row by row. For N = 2, the
signals of adjacent fans are out of phase with each other.
A sequence for the N = 99 case is obtained from a random
number generator of PC, and an arrangement of 99 integers
can be determined automatically by assigning the sequence
from the upper left to lower right.

Parameter N does not uniquely determine “variety” of
shear layers. At present, we have no theory available to

quantify “variety” of an array of numbers as shown in Fig. 2.
Since large N indicates many different states of shear layers
are injected, it should be reasonable to say that a flow state
with larger N has more variety.

Figure 3 illustrates the relationship between the input sig-
nals (right) and the shear layers (left) generated at the outlet of
the ducts. The two input signals are fed to two adjacent fans,
Fan1 and Fan2. Although the two input signals have the same
waveform, they are shifted by a phase ψn. Hence, at a time
t , a difference in outflow velocity occurs between ©1 and ©2 .
The two signals cause instantaneous velocities u1 and u2 at the
outlet, and then the difference δ(t ) = u1 − u2 leads to a shear
layer.

Here, we attempt to estimate quantitatively the magnitude
of shears. In a planar mixing layer between two fluids flow,
δ/ν, i.e., the Reynolds number per unit length, has been used
as a parameter [28]. In the present experiment, ν is neglected
since a single fluid is used. To specify the global state of
shears, we introduce the shear magnitude S as follows:

S = 1

UT0
∑

∂Mk

∑
k∈Bnd

∂Mk

∫ To

0
|δk (t )|dt, (4)

where ∂Mk denotes the boundary lengths at the outlet of a
duct (i.e., My and Mz) and “k ∈ Bnd” indicates the sum over
all the boundaries, except for those along the tunnel walls.

FIG. 3. Sketch of the mechanism of generating unsteady shears.
Assume two signals shifted by ψn are fed to two fans, named Fan1
and Fan2. At a time t , a difference in velocity occurs. This difference
leads to a difference between blowing velocities u1 and u2, thereby
causing a shear layer.
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FIG. 4. Indices assigned to each fan. The region surrounded by a
red line shows the range used for estimating Sc. Here, Sc is introduced
to confirm whether the local shear magnitude around the central duct
is close to the average shear magnitude. The indices correspond to
(i, j) of Eqs. (A1) and (A2) in the Appendix.

Since the velocity difference δ depends on the boundaries, the
subscript k is used as δk . Equation (4) is a nondimensional
form of the spatiotemporal integral of the velocity differences
between adjacent outflows.

Since measurements are conducted mainly along the cen-
terline of the wind tunnel, the results might be influenced by
local upstream conditions around the central duct. Therefore,
the local shear magnitude around the central duct should be
comparable to the shear magnitude over the cross section. Sc

is defined similarly to Eq. (4):

Sc = 1

UT0
∑

∂Mk

∑
k∈Local

∂Mk

∫ To

0
|δk (t )|dt . (5)

Sc means the local magnitude of shear generated between a
central duct [(6,5) in Fig. 4] and four adjacent ducts around it.
“k ∈ Local” indicates the sum over four boundaries.

The results of Eqs. (4) and (5) are shown in Table I. The
local value Sc is close to the global average value S for
any N . Therefore, the present results cannot be attributed to
the extremely biased (i.e., much larger or smaller than the
average) local shear magnitude. For the case of N = 99, we
examined seven kinds of different combinations other than the
combination shown in Fig. 2(c). It was confirmed that S and
Sc fall within the range of 20.8 � S � 21.5 and 19.2 � Sc �

TABLE I. Comparison between S and Sc for each N . S and Sc

are defined by Eqs. (4) and (5), respectively. S represents the shear
magnitude averaged over the cross section at the inlet, while Sc the
local one.

N S Sc

2 30.4 30.4
5 26.1 25.9
99 21.3 21.5

22.5, which shows a ±2% variation in S and Sc. For details of
Eqs. (4) and (5), see the Appendix.

III. RESULTS

A. Characteristics of raw data

In this section, we examine the evolution of turbulence
characteristics using raw data. For each case of N = 2, 5,
and 99, the vertical profile of mean velocity U at Y/MY =
0 is presented at some downstream distances in Fig. 5(a).
In the central core region (3.0 � Z/MZ � 8.0), the inho-
mogeneity of mean velocity is 3% at X/MD = 37.2 and
2% at X/MD = 51.2. Here, the inhomogeneity is defined as
max|(ai − a0)/a0|, where ai is some physical value at any po-
sition and a0 is the averaged value over ai. Vertical homogene-
ity is found to be acceptable for X/MD � 37.2. Figure 5(b)
shows the variation of the streamwise mean velocity along the
centerline of the tunnel. The estimates of the measurement
uncertainties are provided as error bars and are calculated
for the 95% confidence interval. The error bars are almost
invisible for X/MD > 20, since the uncertainty is contained
within the symbol size. The test section of the MFWT has no
gradient of the walls in the downstream direction. For such
a wind tunnel, in general, the streamwise mean velocity in
the core region is somewhat accelerated owing to growth of
boundary layers on the walls. This probably holds true for the
present case. However, the acceleration is small enough for
X/MD > 40.

The time traces of streamwise velocity measured at the
farthest downstream location (X/MD = 60.5) are shown along
with that of the input signal in Fig. 6(a). In the analysis, the
input time trace is shifted until the cross-correlation coeffi-
cient between the input and measured one reaches the highest
[Fig. 6(b)]. Here, the cross-correlation coefficient C(	t ) is
defined as

C(	t ) = uin(t )u(t + 	t )

u(t )2
, (6)

where 	t is the time-lag. The correlation peaks appear at
intervals of 	t = 1/ f1 = 2.78 s. The peak values of N = 2,
5, and 99 are 0.48, 0.35, and 0.18, respectively [indicated by
arrows in Fig. 6(b)], thus indicating the time traces are better
correlated, as N decreases. For N = 2, fine-scale fluctuations
are less apparent, and it appears that large-scale periodicity
remains. As the number of phases N increases (i.e., N = 5 and
99), fine-scale fluctuations in the measurements are amplified,
thus suggesting that the transition to turbulence is promoted.

The streamwise evolution of the ratio u′/v′, as a measure of
anisotropy, is presented in Fig. 7, where error bars are shown.
Immediately downstream of the inlet of the test section, the
range of the error bars is relatively large, but for X/MD > 20
it was at most 4% of the average for any N . The isotropy
ratio u′/v′ decreases rapidly with downstream distance, and it
remains roughly constant from X/MD = 40. Comparing u′/v′
at the farthest downstream location (i.e., X/MD = 60.5), u′/v′
is closer to unity with increasing N . The case of N = 2 shows
a large anisotropy of u′/v′ = 3.2. This relatively large value
should result from the persistent wave, which originates from
forcing as observed in the time trace (Fig. 6).
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FIG. 5. Spatial variations of average velocity U . (a) Vertical variations. (b) Streamwise variations.

The black lines in Fig. 8 show power spectra of the
streamwise velocity fluctuation calculated from the raw data
at X/MD = 60.5. There are numerous peaks for the three cases
of N (N = 2, 5, 99). Some studies pointed out that when
forcing with two frequencies f1 and f2 are applied to a flow,
the turbulent energy will be transported to linear combinations
of f1 and f2, α f1 + β f2, where α and β are integers [29,30].
Therefore, when two frequencies of forcing are related by
f2 = 2 f1, energy would be transported to frequencies that are
integral multiples of f1. It is evident from Fig. 8 that most
peaks at lower frequencies are multiples of f1.

It is found that as N increases, fine-scale fluctuations
were more pronounced (Fig. 6), and the isotropy was more
improved (Fig. 7). From the power spectra in Fig. 8, however,
numerous sharp peaks were observed. It was confirmed that
the frequencies corresponding to the peaks were integral
multiples of f1. Evidently, the periodic components, which
originates from the input, remain even sufficiently down-
stream. Thus, of primary interest is the way in which the
relative contribution of nonperiodic components to the total
turbulence kinetic energy varies with downstream distance.

B. Partition of turbulent kinetic energy

In this section, we examine how the characteristics of
nonperiodic components change with N , by eliminating

periodic components from the raw data. The streamwise ve-
locity fluctuation u is assumed to be decomposed as follows:

u = uθ + us, (7)

where uθ and us are the periodic and the nonperiodic compo-
nents, respectively. For the purpose of facilitating decompo-
sition of periodic and nonperiodic components, we selected
the two frequencies f1 and f2 satisfying the relation 2 f1 = f2,
and thereby the fine peaks can be conveniently identified.
The decomposition was conducted by the following method.
First, Fourier components are calculated with a fast Fourier
transform (FFT). Next, the Fourier components at integral
multiples of f1 were eliminated. The peak values were re-
placed by linearly interpolated values to make a smooth
Fourier spectral curve. Finally, inverse Fourier transform of
this spectrum yielded a reduced time trace, where periodic
components are eliminated. When v was also decomposed
using the same procedure, the periodic components of v were
much smaller than the nonperiodic one. Therefore, the raw
data were used in its original form.

The power spectra estimated by using the reduced time
trace are shown by red lines in Fig. 8. It is evident that
the input frequency components and their harmonics are
removed. An example of decomposition in time domain is
shown in Fig. 9. Evidently, the nonperiodic component us
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FIG. 6. (a) Comparison of the time traces of velocity fluctuations u(black) at X/MD = 60.5 and Y/MY = Z/MZ = 0 with the input signal
uin(red). (b) Cross-correlation coefficient of the input signal and the turbulent velocity at X/MD = 60.5. As the input signal is shifted in phase,
the correlation coefficient reaches a maximum [indicated by the arrow in Fig. 6(b)], when the signal is fixed and displayed in the Fig. 6(a).
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FIG. 7. Streamwise development of anisotropy.

seems to fluctuate about a level denoting u = 0 m/s, with
periodic components eliminated. From these results (Figs. 8
and 9), indicating the proposed numerical analysis using FFT
transform is valid for the decomposition.

Figure 10(a) shows the streamwise variation of turbulence
intensity, u′

s/U and v′/U . Here, u′
s shows the r.m.s. values

of us. For any N , beyond a broad maximum at X/MD ≈
20 − 40, both u′

s/U and v′/U decay downstream monoton-
ically. Comparing intensity for different N at a fixed down-
stream location, both u′

s/U and v′/U become larger with
increasing N .

Using u′
s, a modified isotropy ratio u′

s/v can be defined.
Figure 10(b) shows the streamwise variation of u′

s/v
′, where

error bars are included. Except for a region close to the
inlet of the test section, the measurement uncertainty is very
small. For N = 5 and 99, the isotropy ratio asymptotes to
approximately 1.1 at the farthest downstream region, while
for N = 2 somewhat undulation is perceived for X/MD > 30.

The turbulence Reynolds number for us is defined by

Reλs = u′
sλ

ν
. (8)

FIG. 9. Typical example of decomposition of u into uθ and us.
A time trace u is taken from data for N = 2 at X/MD = 4.6. An
extracted component us seems to fluctuate about a level of u = 0 m/s.

Here, λ is the Taylor’s microscale and it is calculated by

λ2 = U 2u′
s
2
/(

∂us

∂t

)2

, (9)

where Taylor’s hypothesis is used, and the overbar denotes
the time average. Figure 11 shows the streamwise variation of
the turbulence Reynolds number Reλs. Figure 5(b) shows the
mean velocity significantly changes at upstream region, but
it is relatively constant for X/MD > 40. Hence, the estimate
using Taylor’s hypothesis is valid for X/MD > 40. It should
be worth pointing out that the turbulence Reynolds number
increases with increasing N , for a fixed downstream location.

Figure 12 shows the energy spectra for us. The energy
spectra E (k) and the wave number k are nondimensionalized
by the energy unit (εν5)1/4 and η, respectively. Here, the
energy dissipation rate ε is calculated on the assumption of
local isotropy, as follows:

ε = 15νu′2
s

λ2
. (10)

FIG. 8. Comparison of power spectra of the streamwise velocity fluctuation at X/MD = 60.5. (a) N = 2, (b) N = 5, (c) N = 99. The black
line is from the raw data, and the red line is obtained by removing the peaks.
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FIG. 10. Characteristics of u′
s. (a) Streamwise variation of intensity. (b) Streamwise variation of isotropy.

From Fig. 12, these energy spectra collapse in the region
with a slope of −5/3 corresponding to Kolmogorov’s inertial
subrange. The inertial subrange extends more widely to lower
wave numbers, as N increases. In other words, the forcing
energy is transported from the input wave numbers to a wider
range of wave numbers, as N increases.

Comparing the peak values at input frequencies f1 and
f2 in Fig. 8, the values for N = 2 is appreciably larger than
those of N = 5 and 99. This means the periodic components,
which originate from forcing, persist far downstream. Thus,
it is expected that the energy transfer from the forcing to the
nonperiodic components is significantly less for N = 2 than
for the other cases. This is supported by the fact that the
intensity of N = 2 is smaller than those of N = 5 and 99, as
shown in Fig. 10(a).

Figures 10 and 12 indicate that as N becomes larger, turbu-
lence develops more fully in the far downstream region. Here,
the “fully developed turbulence” means the flow composed
of a wide range of length scales, from the integral scale to
Kolmogorov’s microscale.

Further insight into the development of turbulence might
be gained by examining the streamwise change in the contri-
bution of the periodic and nonperiodic components. Since we
define u(t ) as uθ + us [i.e., Eq. (7)], the kinetic energy can be
decomposed as follows:

〈u2〉 = 〈(uθ + us)2〉 = 〈
u2

θ

〉 + 2〈uθ us〉 + 〈
u2

s

〉
. (11)

FIG. 11. Streamwise variation of the Taylor-microscale
Reynolds number Reλs.

We confirmed that the cross term 2〈uθ us〉 becomes sufficiently
small relative to other terms for X/MD > 30 downstream as
shown in Fig. 14. Hence, it does not affect the subsequent
discussion.

Figure 13 shows the streamwise variation of the turbu-
lence kinetic energy, q2 = u′2 + v′2 + w′2, and the periodic
components, u′2

θ . Here, we estimated the turbulent energy by
using q2 = u′2 + 2v′2 on the assumption of axial symmetry.
The difference between q2 and u′2

θ is nearly equal to the total
energy of nonperiodic components, i.e., u′2

s + v′2 + w′2. In
the figure, this difference corresponds to the width between
solid and open symbols. Comparing the differences for the
three cases of N at a fixed location, we can find that the
difference widens with increasing N at least for X/MD > 20.
This supports the view that turbulence develops more rapidly
with increasing N .

As seen in Fig. 13, the turbulent energy decays to a small
value, so that the partition of energy becomes unclear. To show
it more clearly, a stacked bar chart normalized by the total
energy is employed in Fig. 14. For all the cases of N , u′2

θ

decreases downstream, but, by contrast, u′2
s increases. For N =

2, u′
θ

2 persists and occupies a substantial part even farthest
downstream, but for N = 5 and 99, the periodic component

FIG. 12. Comparison of energy spectra at X/MD = 60.5. Nonpe-
riodic data us are used in the analysis.
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FIG. 13. Streamwise variation of u′
θ

2 and q2. The difference
between q2 and u′2

θ is nearly equal to the total energy of nonperiodic
components, i.e., u′2

s + v′2 + w′2.

u′
θ

2 rapidly decays. Also visible is a feature common to N = 5
and 99 in Fig. 14. The sum of u′2

s and u′2
θ stays almost con-

stant for X/MD > 20. This indicates the exchange of energy
between u′2

s and u′2
θ , while balancing energy ratios in each

direction. The periodic component is mainly transferred to
the nonperiodic component for X/MD > 20, and an increase
in N promotes the energy exchange. Furthermore, Fig. 14
suggests that a simple sinusoidal forcing of relatively small
amplitude plays a role of “marker,” which indicates an extent
the influence of initial conditions reaches.

For the case of N = 2, the signals from any pair of the
adjacent fans are out of phase with each other, as shown in
Fig. 2(a). According to Table I, the shear amplitude S for
N = 2 is 16% larger than that for N = 5, and 43% larger
than that for N = 99. If the energy transfer from the periodic
to the nonperiodic component depends only on the shear
amplitude S at the inlet, the case of N = 2 will be the most
effective for turbulent development. However, as shown in
Figs. 10 and 12, the transfer from periodic to nonperiodic
component increases with increasing N . This suggests that

what is important for effective development of turbulence is
“variety” of shear layers rather than “amplitude” of shear at
the inlet.

From the more enhanced development of turbulence for
larger N , we infer the flow dynamics immediately downstream
of the inlet. For the case of N = 2, the velocity difference δ

between the outflows from the adjacent ducts has only one
kind of functional form (sign is not considered), because the
outflows from the adjacent ducts are all out of phase with each
other. However, as N increases, the velocity difference could
have many kinds of functional forms, which implies that a
large number of different shear layers are discharged into the
flow.

For the case of N = 99, δ(t ) differs from one duct bound-
ary to another. Additionally, the velocity differences are
time-varying. Therefore, the shear layers could have various
strengths from various positions in a variety of directions at
the inlet. Initially, these shear layers lead to a number of
laminar vortices, probably due to the pairing of eddies caused
by K-H instability [28], or interaction between two shear
layers that can be seen in the wake of bluff bodies. While
convecting downstream, the vortices evolve into turbulence, as
they interact and mingle. For grid-generated turbulence, shear
layers which peel off the bars are of similar strength. Hence,
the resulting eddies are generally of a single scale. However,
the random-phase driving mode proposed here could create
a wide variety of eddy scales from the initial. This may
contribute to the effective development of turbulence.

IV. CONCLUSIONS

Generation of homogeneous isotropic turbulence was at-
tempted using an innovative “multifan wind tunnel” with 99
fans installed. First, a signal composed of two frequency com-
ponents is assumed and then fed to all the fans for three kinds
of arrangements of phases. Here, parameter N is introduced as
the number of phases used for the 99 fans, which represents
variety of emanated shear layers. Furthermore, S is introduced
as a measure of shear magnitude at the inlet of the test section.
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FIG. 14. Partition of turbulent energy. Hatched region, u′
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The relative importance of the initial conditions (N and S) in
the development of turbulence was investigated.

(i) The input signal and its corresponding time trace mea-
sured downstream were compared. As N increases, fine-scale
fluctuations in the trace are amplified, thus suggesting that the
transition to turbulence is promoted.

(ii) Measured time traces were decomposed into periodic
component uθ , and nonperiodic component us by a numerical
analysis using the Fourier transform. Using only nonperi-
odic component, we re-estimated turbulence intensity and

spectrum, and found that the modified spectrum make the
inertial subrange wider as N becomes larger.

(iii) Although the shear amplitude S defined at the inlet
of the test section is the largest when N = 2, the turbulence
intensity and the width of the inertial subrange of power
spectrum in the nonperiodic component are the largest for
N = 99. This result suggests that what is important for ef-
fective generation of mature turbulence is spatiotemporal “va-
riety” of shear layers rather than “amplitude” of shear at the
inlet.

APPENDIX

The detail of the shear amplitude S defined by Eq. (4) is as follows:

S = 1

(NzMz + NyMy)UT0

⎡
⎣NzMz

11∑
i=1

8∑
j=1

∫ To

0
|uin(i, j + 1) − uin(i, j)|dt + NyMy

10∑
i=1

9∑
j=1

∫ T0

0
|uin(i + 1, j) − uin(i, j)|dt

⎤
⎦.

(A1)

Here, Ny and Nz show the number of boundaries of ducts for y and z directions, respectively (Ny = 90, Nz = 88). The indices i,
j in the above equation corresponds to (i, j) in Fig. 4. S shows the spatiotemporal average of the differences between adjacent
outflow velocities over all boundaries at the outlet of the ducts.

Details of the local shear Sc occurring around the central duct defined by Eq. (5) are as follows:

Sc = 1

(2Mz + 2My)UT0

[
My

∫ T0

0
|uin(6, 5) − uin(5, 5)|dt + Mz

∫ T0

0
|uin(6, 5) − uin(6, 4)|dt

+ My

∫ T0

0
|uin(7, 5) − uin(6, 5)|dt + Mz

∫ T0

0
|uin(6, 6) − uin(6, 5)|dt

]
. (A2)

Sc shows the spatiotemporal average of the velocity differences between the central fan and the four surrounding adjacent fans
at the outlet of the ducts.
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