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Previous work [Davidovits and Fisch, Phys. Rev. Lett. 116, 105004 (2016)] demonstrated that the compression
of a turbulent field can lead to a sudden viscous dissipation of turbulent kinetic energy (TKE), and that paper
suggested this mechanism could potentially be used to design new fast-ignition schemes for inertial confinement
fusion (ICF). We expand on previous work by accounting for finite Mach numbers, rather than relying on a
zero-Mach-limit assumption as previously done. The finite-Mach-number formulation is necessary to capture a
self-consistent feedback mechanism in which dissipated TKE increases the temperature of the system, which in
turn modifies the viscosity and thus the TKE dissipation itself. Direct numerical simulations with a tenth-order
accurate Padé scheme were carried out to analyze this self-consistent feedback loop for compressing turbulence.
Results show that, for finite Mach numbers, the sudden viscous dissipation of TKE still occurs, for both the
solenoidal and dilatational turbulent fields. As the domain is compressed, oscillations in dilatational TKE are
encountered due to the highly oscillatory nature of the pressure dilatation. An analysis of the source terms for
the internal energy shows that the mechanical-work term dominates the viscous turbulent dissipation. As a result,
the effect of the suddenly dissipated TKE on temperature is minimal for the Mach numbers tested. Moreover,
an analytical expression is derived that confirms the dissipated TKE does not significantly alter the temperature
evolution for low Mach numbers, regardless of compression speed. The self-consistent feedback mechanism is
thus quite weak for subsonic turbulence, which could limit its applicability for ICF.
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I. INTRODUCTION

The compression of a turbulent flow occurs in a broad array
of applications. Examples include one-dimensional compres-
sions in internal combustion engines [1] or across shock waves
[2], axisymmetric compressions in Z-pinches [3], spherically
symmetric compressions in inertial confinement fusion (ICF)
[4,5], and three-dimensional complex contractions in the in-
terstellar medium [6]. Moreover, the compression mechanism
often leads to complex turbulence dynamics, and the result-
ing evolution of turbulence can have a strong effect on the
overall behavior of the application under consideration. Thus,
increased levels of understanding and improved modeling
capabilities for this phenomenon are essential.

Numerous direct numerical simulations of compressing
turbulence have been previously carried out with the aim of
improving engineering turbulence models; see, for example,
Refs. [7–11]. These studies treated the fluid as a traditional
gas, for which the dependence of viscosity μ on temperature
T is given by μ ∼ T n, with n having a value of, or close
to, 3/4. On the other hand, Ref. [12] demonstrated, through
computational simulations, that when a power-law exponent
characteristic of weakly coupled plasmas is used, i.e., n =
5/2, a sudden viscous mechanism occurs which dissipates
the turbulent energy. Their results showed that a turbulent
field subjected to a continuous isotropic compression initially
creates an amplification of turbulent kinetic energy (TKE),
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until viscous scaling dominates and TKE is rapidly dissipated
into heat. It was thus proposed in Ref. [12] that the resulting
increases of temperature could be used to improve the ignition
conditions for ICF.

Subsequent work has expanded on the simulations of
Ref. [12]. The effect of ionization on the scaling of viscosity
was accounted for in Ref. [13]. For that study, the ionization
state Z was assumed to depend solely on temperature, and
thus the plasma viscosity μ ∼ T 5/2/Z4 was simplified to
the form μ ∼ T β . Their analysis of the evolution of the
energy spectrum showed that the sudden dissipation of TKE
occurs for β > 1 only. A TKE model that accounts for the
viscous dissipative mechanism for isotropic compressions is
presented in Ref. [14]. This model was validated against direct
numerical simulations and showed excellent agreement for
viscosity-power-law exponents greater than one. The model
was then used to estimate the partition of energy between the
turbulence and heat as the compression proceeds in time. A
two-point spectral model based on the EDQNM formulation
was used by Ref. [15], along with direct numerical simula-
tions, to reproduce the sudden viscous dissipation mechanism.
The lower computational cost of the EDQNM model allowed
for the analysis of high-Reynolds-number effects and thus the
identification of three distinct regimes: turbulent production,
nonlinear energy transfer, and viscous dissipation. Moreover,
the assumption of homogeneous turbulence was relaxed, and
a spherical inhomogeneous turbulent layer under compression
was simulated with both DNS and EDQNM closures. The
sudden dissipation of TKE was also observed for this new
case. Finally, in Ref. [16] a stability boundary for hot spot
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turbulence was derived to demarcate states of the compression
for which a decrease of TKE is guaranteed. Moreover, an
upper limit for the amount of TKE that can be generated
during a compression was proposed. This upper limit was then
compared to the internal thermal energy of the system.

The simulations of the sudden viscous dissipation mech-
anism previously conducted have relied on the zero-Mach-
limit assumption. Given a decomposition of the velocity Ui =
〈Ui〉 + ui , where 〈Ui〉 is the Reynolds-averaged mean flow
and ui the fluctuating velocity, the governing equations for
the fluctuations in the zero-Mach limit take the form [7]

∂ui

∂xi

= 0, (1)

〈ρ〉
(

∂ui

∂t
+ uj

∂ui

∂xj

)
= −∂P

∂xi

+ μ
∂2ui

∂xj ∂xj

+ fi. (2)

In the above, 〈ρ〉 is the Reynolds-averaged density, P the
pressure, μ the viscosity, and fi a forcing function that
accounts for the effect of the compression. The viscosity
depends on temperature and thus an a priori time evolution for
temperature needs to be provided. For an adiabatic isotropic
compression, this is

T = T0L
−2, (3)

where L is a characteristic length of the domain being com-
pressed and T0 the initial temperature.

The approach described above is suitable for demonstrat-
ing the sudden dissipation of TKE but does not capture the
self-consistent feedback mechanism mentioned in Ref. [12].
This mechanism begins with a self-consistent energy transfer
from the TKE towards the internal energy, as a result of the
sudden viscous dissipation. This, in turn, causes increased
temperatures that amplify the viscosity of the system. The
stronger values of viscosity then precipitate the viscous dis-
sipation of TKE, thus completing a feedback loop. In the
zero-Mach limit, an evolution equation for the internal energy
is not solved, and thus the effect of the dissipated TKE on the
internal energy and the viscosity cannot be reproduced in a
self-consistent fashion. It is expected that accounting for the
feedback mechanism would lead to viscous dissipations that
are more sudden or of increased intensity [12]. An alterna-
tive to the assumption of the zero-Mach limit is turbulence
belonging to the finite-Mach number regime. For this case,
fully coupled governing equations for density, velocity, and
energy are solved, which allows for an explicit accounting
of the forward transfer of dissipated TKE into heat, and the
subsequent effect of increased temperature and viscosity on
the dissipation. The focus of this study is the simulation of
turbulence in the finite-Mach number regime to investigate the
complex self-consistent feedback mechanism and thus further
assess the benefits of viscous dissipation for ICF and other
high-energy density applications.

The outline of the paper is as follows. Section II includes a
description of the governing equations for turbulence in the
finite-Mach number regime. The mechanisms that account
for the energy transfer between the TKE and the internal
energy are also discussed. In Sec. III details of the numerical
simulations, such as the discretization scheme and the creation
of realistic initial conditions, are included. The results of the

simulations are then provided in Sec. IV, which is divided into
two subsections. Section IV A focuses on the component of
the feedback mechanism related to the TKE. Thus, the evolu-
tion of the TKE, its budget, and spectra are analyzed in this
subsection. The component of the feedback loop associated
with the internal energy is then investigated in Sec. IV B,
where an analysis of the temperature evolution and sources
for the internal energy are included. Finally, the paper ends
with Sec. V, where concluding remarks and a discussion of
future work are provided.

II. GOVERNING EQUATIONS

A. Navier-Stokes equations for isotropic compressions

We denote Ũi and u′′
i as the Favre-averaged and Favre-

fluctuating velocities, respectively, so that Ui = Ũi + u′′
i [17].

In analogy to the zero-Mach-limit formulation of Ref. [12],
we analyze the effect of a compression on a statistically
homogeneous turbulent field u′′

i , where the compression is
achieved through a specified Favre-averaged mean flow Ũi .
The Favre-averaged velocity for homogeneous compressible
turbulence needs to be restricted to the form Ũi = Gijxj [9].
The deformation tensor Gij corresponding to an isotropic
compression is given in Refs. [7,9,12] and can be expressed as

Gij = L̇

L
δij , (4)

where L is a time-dependent characteristic length of the
compressed domain, and L̇ is the constant time rate of change
of L. Given this formalism, one can derive, as detailed in
Appendix A, a set of Navier-Stokes equations for the fluc-
tuating velocity undergoing mean-flow compression. These
equations, which are summarized below, constitute the finite-
Mach-number analog of the low-Mach-number Eqs. (1) to (3):

∂ρ

∂t
+ ∂ρu′′

i

∂xi

= f (ρ), (5)

∂ρu′′
i

∂t
+ ∂ρu′′

i u
′′
j

∂xj

= ∂σij

∂xj

+ f
(u)
i , (6)

∂ρEt

∂t
+ ∂ρEtu

′′
i

∂xi

= ∂u′′
i σij

∂xj

+ ∂

∂xj

(
κ

∂T

∂xj

)
+ f (e). (7)

In the above ρ is the density, u′′
i the Favre-fluctuating velocity,

and T the temperature. Et is the total energy, which is given
by Et = U + Kt , where U = CvT is the internal energy and
Kt = 1

2u′′
i u

′′
i is the kinetic energy associated with the turbulent

fluctuations. Cv is the specific heat at constant volume. The
stress tensor is given by

σij = −Pδij + 2μ

[
1

2

(
∂u′′

i

∂xj

+ ∂u′′
j

∂xi

)
− 1

3

∂u′′
k

∂xk

δij

]
, (8)

where P is the pressure and μ the viscosity. A power law
of the form μ = μ0(T/T0)n is used, where μ0 and T0 rep-
resent reference viscosity and temperature values, and n is the
power-law exponent. The thermal conductivity κ is computed
according to κ = μCp/Pr, where Cp is the specific heat
at constant pressure and Pr the Prandtl number. An ideal
equation of state P = ρRT is used, where R is the ideal gas
constant. The forcing functions f (ρ), f

(u)
i , and f (e) account
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for the effect of the mean compression on the density, velocity,
and total energy, respectively, and are defined as

f (ρ) = −2L̇ρ, (9)

f
(u)
i = −3L̇ρu′′

i , (10)

f (e) = −[2ρEt + ρu′′
i u

′′
i + 3P ]L̇. (11)

The equations above are suitable for numerical simulations
now that the compressive effect of the mean flow Ũi has been
abstracted into the three forcing functions above. These are
the equations solved for the current study.

B. Energy exchange for compressible turbulence

For turbulence in the finite-Mach-number regime, the
Helmholtz decomposition is often employed to express the
fluctuating velocity as u′′

i = u
′′(s)
i + u

′′(d )
i , where u

′′(s)
i and

u
′′(d )
i are the solenoidal and dilatational velocities, respec-

tively. The solenoidal component satisfies ∇ × u′′(s) = w
and ∇ · u′′(s) = 0, where w = ∇ × u′′ is the vorticity vector,
and the dilatational component satisfies ∇ × u′′(d ) = 0 and
∇ · u′′(d ) = d, where d = ∇ · u′′ is the dilatation.

Given this decomposition, two TKEs can be defined. These
are the solenoidal TKE

k(s) = 1
2

˜

u
′′(s)
i u

′′(s)
i (12)

and the dilatational TKE

k(d ) = 1
2

˜

u
′′(d )
i u

′′(d )
i . (13)

There are two additional energies in the system: the mean
kinetic energy

K̄ = 1
2 ŨiŨi (14)

and the mean internal energy

Ũ = CvT̃ . (15)

The governing equations for the solenoidal and dilatational
TKEs given a nonzero mean flow can be derived following the
procedure of Ref. [18]. Along with the evolution equations for
K̄ and Ũ , one can summarize the governing dynamics of the
four relevant energies for homogeneous turbulence as follows:

〈ρ〉dk(s)

dt
= A(s) + P (s) − 〈ρ〉ε (s), (16)

〈ρ〉dk(d )

dt
= A(d ) + P (d ) − 〈ρ〉ε (d ) + �d , (17)

〈ρ〉∂K̄

∂t
= −AK̄ − T (K̄ ) − W − P (s) − P (d ), (18)

〈ρ〉dŨ

dt
= W + 〈ρ〉ε (s) + 〈ρ〉ε (d ) − �d . (19)

Each of the sources in the evolution equations above is
defined in Table I. We note that the derivation of the evo-
lution equations for the four energies assumed a generic yet
isotropic deformation tensor Gij and neglected the averaged
heat flux since for homogeneous turbulence the averaged
temperature is uniform in space [9]. The intermode advection

TABLE I. Sources in the evolution equations for the solenoidal,
dilatational, mean, and internal energies. Superscripts α stand for
either s or d . τij represents the Favre-averaged Reynolds stresses
(τij = ũ′′

i u
′′
j ).

Name Symbol Definition

Intermode advection A(α) −〈 ∂
√

ρu′′
i
u′′
j

∂xj

√
ρu

′′(α)
i 〉 + 〈 ρu′′

i
u
′′(α)
i

2 d〉
Production P (α) − 2

3 〈ρ〉k(α)Gii

Solenoidal dissipation 〈ρ〉ε (s ) 〈μwiwi〉
Dilatational dissipation 〈ρ〉ε (d ) 4

3 〈μd2〉
Pressure dilatation �d 〈Pd〉
Mean kinetic AK̄ 〈ρ〉Ũj

∂K̄

∂xj

energy advection
Mean kinetic T (K̄ ) ∂

∂xj
(Ũi〈ρ〉τij + Ũj 〈P 〉)

energy transport
Mechanical work W −〈P 〉Gii

represents a transfer of energy from the solenoidal and dilata-
tional modes and thus satisfies A(s) = −A(d ). The production
terms transfer the compression energy stored in the mean
flow to the solenoidal and dilatational TKEs. The solenoidal
and dilatational dissipations then transfer energy stored in
the solenoidal and dilatational fields into heat. The pressure
dilatation represents a two-way energy transfer between the
mean internal energy and the dilatational TKE only, and the
mechanical work transfers energy of the compression directly
into heat. The mean-kinetic-energy advection and transport
are not identically zero, unlike the case for the other three
energies. These various energy-transfer mechanisms are de-
picted in Fig. 1. We note that each energy component has
a direct interaction with each of the other three energies.
We also note that the driver for the interactions is the mean
kinetic energy, since it has a predetermined time evolution
that emulates the compression of the system. The other three
energy components then respond in a self-consistent fash-
ion to the time evolution of the mean kinetic energy. The
self-consistent feedback mechanism for the sudden viscous
dissipation relies on these complex interactions and thus can
only be represented using the finite-Mach-number formula-
tion and not the low-Mach-number assumption.

Mean Kinetic
Energy

K̄ = 1
2UiUi

Solenoidal Turbulent
Kinetic Energy

Dilatational Turbulent
Kinetic EnergyMean Internal

Energy

U = CvT

P (s)

P (d)

ρ (d)

ρ (s)

k(d) =
1
2

u
(d)

i u
(d)

i

k(s) =
1
2

u
(s)

i u
(s)

i

FIG. 1. Schematic of energy transfer between the four energy
components: mean kinetic energy, mean internal energy, solenoidal
TKE, and dilatational TKE.
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FIG. 2. The dissipation spectrum, normalized by the Kolmogorov velocity uη = (εν )1/4, at the final time of the linearly forced simulation.
Plots using (a) a linear scale and (b) a log-log scale are included.

III. COMPUTATIONAL DETAILS

Direct numerical simulations of Eqs. (5) to (7) are carried
out with the Miranda code developed at the Lawrence Liver-
more National Laboratory. This solver employs a tenth-order
accurate Padé scheme [19] for the discretization of the spatial
derivatives, and a fourth-order, low-storage, five-step Runge-
Kutta solver [20] for the temporal derivatives. An eighth-order
compact filter is applied to the conserved variables ρ, ρu′′

i ,
and Et after each substep of the Runge-Kutta scheme, for the
purposes of stability.

Miranda relies on the artificial-fluid-property approach to
stabilize shock waves and contact discontinuities. Thus, an
artificial bulk viscosity β∗ is introduced in the definition of
the viscous stress tensor, and an artificial thermal conductivity
κ∗ is added to the thermal conductivity κ of the fluid. The
artificial bulk viscosity and artificial thermal conductivity are
computed as

β∗ = CβρD(d ), (20)

κ∗ = Cκρ
cv

T �t
D(T ). (21)

In the above, �t is the time step, the overbar denotes a
truncated-Gaussian filter, and D(·) is an eighth-order deriva-
tive operator defined as

D(·) = max

(∣∣∣∣ ∂8·
∂x8

∣∣∣∣�x10,

∣∣∣∣ ∂8·
∂y8

∣∣∣∣�y10,

∣∣∣∣ ∂8·
∂z8

∣∣∣∣�z10

)
. (22)

This operator strongly biases the artificial properties towards
high wave numbers. The coefficients Cβ = 0.07 and Cκ =
0.001 have been calibrated for simulations relevant to ICF;
see, for example, Refs. [4,21,22]. For further details or capa-
bilities of the code, the reader is referred to Ref. [23–25].

The computational domain consists of a cube of length
2π , with a uniform distribution of 2563 grid points. Periodic
boundary conditions are applied on all sides of the cube.
The ratio of specific heats has a value of γ = 5/3, and the
Prandtl number is set to Pr = 1. The gas constant is computed
as R = Ru/M , where the universal gas constant is Ru =
8.314474 × 107 (cgs units), and the molar mass used is that of
deuterium: M = 2.014102. Statistical quantities are obtained
by averaging over all nodes of the mesh.

The initial flow field is extracted from a simulation of
linearly forced compressible turbulence [26,27]. This prelim-
inary simulation is carried out for a duration of 18 initial
eddy-turnover times. The forcing coefficients introduced in
Ref. [26] require the specification of a priori values for the
solenoidal and dilatational dissipations. These two quantities
were obtained from specifying a total dissipation ε = ε (s) +
ε (d ) and a dissipation ratio ε (d )/ε (s). As was done for the
direct numerical simulations of Ref. [26], the value of the
total dissipation was chosen a priori so that the corresponding
Kolmogorov scale η = (ν3/ε)1/4 is sufficiently larger than
the grid spacing and thus sufficient resolution is achieved.
Using both a linear and a log-log scale, Fig. 2 shows the
dissipation spectrum for the final time of the preliminary
forced-turbulence simulation, and thus illustrates the range
of scales resolved on the mesh, i.e., 0 � κη � 2. This figure
shows that the simulations reproduce the long tail at high
wave numbers as it smoothly approaches a value of zero
[compare Fig. 2(a) with Fig. 6.16 of Ref. [28]], and a ficti-
tious energy pileup or unphysical rapid decay at the highest
wave numbers is avoided. This serves as further evidence
that the chosen combination of forcing coefficients and mesh
resolution appropriately capture all of the dissipative scales,
as should be the case for any direct numerical simulation.
The ratio of dissipations was set to ε (d )/ε (s) = 0.01. Simu-
lations of compressing turbulence that were initialized from
a linearly forced case with ε (d )/ε (s) = 1.0 were also carried
out. The results obtained with this larger initial dissipation
ratio are qualitatively similar to those with an initial condition
of ε (d )/ε (s) = 0.1, and the same conclusions regarding the
self-consistent feedback mechanism are obtained. Thus this
additional case is not included in this paper.

The turbulent Mach number and Taylor-scale Reynolds
number are defined as

Mt =
√

ũ′′
i u

′′
i

c̃
, (23)

Reλ =
(

20k2

3εν

)1/2

, (24)

where c = √
γRT is the speed of sound, and ν = 〈μ〉/〈ρ〉 is

the averaged kinematic viscosity. The extracted turbulent field
at the end of the linear forcing has Mt ≈ 0.65 and Reλ ≈ 70.
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FIG. 3. Evolution of (a) solenoidal and (b) dilatational TKE as a function of the size of the domain L. S∗
0 is the initial value of the shear

parameter S∗ = Sk/ε, where S = L̇/L. k
(s )
0 and k

(d )
0 are the initial values of k(s ) and k(d ), respectively. The initial length of the domain is

L = 1, which decreases as time progresses.

The corresponding ratio of dilatational to solenoidal TKE
is k(d )/k(s) = 0.033. For the linearly forced simulations, the
power-law exponent is set to the traditional fluid value of
n = 3/4. However, once the isotropic compression is applied
to the initial flow field, the power-law exponent is switched
to the value used in Ref. [12], n = 5/2, so as to reproduce
the sudden viscous dissipation mechanism. Thus, effects of
the stronger power-law scaling have been isolated to the
compressive phase only, and the linearly forced simulations
used the traditional fluid power-law exponent so as to have a
standard turbulent flow field as the initial condition.

Once the compression starts the small scales will dissi-
pate first, and only larger and larger scales will remain (see
Ref. [12] and Fig. 9). Thus, if the initial condition is well
resolved, then the flow field throughout the remainder of
the simulated time will be well resolved as well. Whereas
Ref. [12] stated that their simulations are initially under-
resolved, but quickly become resolved as the compression
progresses, for this case even the initial conditions are well re-
solved, as previously described. An additional indication that
the resolution improves as the compression proceeds is that
the ratio of artificial dissipation [27] to physical dissipation,
which has an already-low initial value of 0.016, decays rapidly
as the compression is initiated. Thus, the simulations are
mostly affected by physical rather than artificial dissipative
mechanisms, as should be the case for a properly refined direct
numerical simulation [25].

IV. RESULTS

The analysis of the self-consistent feedback mechanism is
divided into two subsections. The first focuses on the behavior
of the TKEs and the various mechanisms depicted in Fig. 1
that modulate their temporal evolution. The second half of
the analysis is centered around the resulting evolution of the
internal energy and the amplification of the temperature due
to the viscous dissipation.

A. Turbulent kinetic energies

1. Profile histories

The time evolution of the solenoidal and dilatational TKEs
are shown in Figs. 3(a) and 3(b), respectively. As done in
Ref. [12], rather than plotting the TKE evolution against time,
a parametrization in terms of the length of the domain L

is used, and thus time progresses from right to left. Also
equivalent to the results in Ref. [12], the TKE evolutions for
different compression speeds L̇ are shown. These different
cases are labeled by the initial value of the rapid-distortion
theory (RDT) parameter S∗ = Sk/ε, where S = L̇/L is the
inverse timescale of the compression, and k/ε is the timescale
of the turbulence. For sufficiently large values of S∗, the
compression is rapid enough that the nonlinear turbulence-
turbulence interactions are negligible, and the evolution of the
turbulence is described exactly by RDT [11,28].

As Fig. 3 shows, it is not only the solenoidal but also the
dilatational TKE that exhibits the sudden viscous dissipation
mechanism of Ref. [12]. Even though the compression speeds
used in this study are different from those of Ref. [12], there
is strong qualitative agreement with the previously published
results. The dilatational TKE is also in strong agreement with
RDT [11] for the fastest compression rates. A notable differ-
ence to highlight for this new case is that increasingly strong
oscillations of dilatational TKE appear as S∗

0 is decreased.
This highly oscillatory behavior is discussed further in Sec.
IV A 2. Additionally, the dilatational energy has not decayed
to values as low as those of the solenoidal TKE. For example,
at the last recorded instance in time, the solenoidal TKE has
decayed by more than three orders of magnitude for case S∗

0 =
500, whereas the dilatational TKE has decreased by less than
two orders of magnitude. Last, for the slowest compression
rate, the solenoidal and dilatational TKE diverge in their initial
behavior: whereas the dilatational TKE slightly increases until
it suddenly dissipates, the solenoidal TKE decreases from the
start. As will be described in Sec. IV A 2, this is most likely
due to the pressure dilatation acting as an energy source for
the dilatational TKE.
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FIG. 4. (a) Solenoidal TKE against the solenoidal shear parameter S∗
s = Sk(s )/ε (s ) and (b) dilatational TKE against dilatational shear

parameter S∗
d = Sk(d )/ε (d ). S∗

0 is the initial value of the shear parameter S∗ = Sk/ε, where S = L̇/L. k
(s )
0 and k

(d )
0 are the initial values of

k(s ) and k(d ), respectively. The vertical dashed line in (a) corresponds to the time at which P (s ) = 〈ρ〉ε (s ), and the vertical dashed line in (b)
corresponds to the time at which P (d ) = 〈ρ〉ε (d ). The dashed diagonal lines correspond to Eq. (25).

An alternate representation of the evolution of TKEs is
given in Figs. 4(a) and 4(b). In Fig. 4(a) the evolution of
the solenoidal TKE is parameterized by the solenoidal shear
parameter S∗

s = Sk(s)/ε (s), and in Fig. 4(b) the evolution
of the dilatational TKE is parameterized by the dilatational
shear parameter S∗

d = Sk(d )/ε (d ). The dashed vertical lines
correspond to the point in time at which production is equal
to dissipation, that is, the point at which P (s) = 〈ρ〉ε (s) for
Fig. 4(a) and P (d ) = 〈ρ〉ε (d ) for Fig. 4(b). The dashed di-
agonal lines correspond to the assumption of RDT scaling,
for which ε (α) ∼ (k(α) )3 for α = s, d; that is, assuming this
relationship between TKE and dissipation, the TKE can be
expressed as

k(α) = (k(α) )3/2

(k(α) )1/2
∼ (ε (α) )1/2

(k(α) )1/2
∼ S1/2 S∗

α
−1/2 (25)

for α = s, d. It is important to note that k(α) does not scale
simply as S∗

α
−1/2 since S also depends on time. However, the

dependence of S on time is given by the predetermined and
known compression history of the domain L.

Figure 4(a) shows that for compressions S∗
0 = 5.0, 50,

and 500, the initial increase in solenoidal TKE is in close
agreement with the RDT scaling of Eq. (25), which could
be beneficial for modeling purposes. Significant divergence
from the RDT scaling occurs once the vertical line at
which solenoidal production equals solenoidal dissipation is
reached. After this point, the solenoidal dissipation overtakes
the solenoidal production, and the turbulence decays. For
the S∗

0 = 0.50 case, the compression is slow enough that
the solenoidal production is never larger than the solenoidal
dissipation, and thus the entire curve is located to the left of
the vertical dashed line. Figure 4(b) shows a similar trend.
We first note that the rapid oscillations in the dilatational
profiles corresponding to slow compression speeds are also
evident in this figure. The agreement with the RDT scaling
still holds for the S∗

0 = 5.0, 50, and 500 cases, although, for
the S∗

0 = 5.0 case, this agreement is not as strong as that of
the corresponding solenoidal field. More importantly, the ver-
tical line at which dilatational production equals dilatational

dissipation no longer demarcates the domains of increasing
and decreasing turbulence for all four cases, since for S∗

0 = 50
the dilatational TKE keeps on increasing after this vertical line
is reached. Last, Fig. 4(b) shows that the decrease in energy is
slower than that observed in Fig. 4(a) for cases S∗

0 = 50 and
500. This suggests that the dilatational dissipation is acting
against an additional source of energy, which, as will be
shown in Sec. IV A 2, is the pressure dilatation.

2. Budgets

Figures 5 to 8 contain the TKE budget for the solenoidal
and dilatational fields. For the S∗

0 = 0.5 case shown in Fig. 5,
oscillations in the pressure dilatation and dilatational dissipa-
tion are observed. The magnitude of the oscillations in 〈ρ〉ε (d )

are significantly smaller than those of �d . We also note
that the oscillations of the pressure dilatation and dilatational
dissipation are correlated, with the dilatational dissipation
slightly lagging the pressure dilatation. Moreover, the oscil-
lations in k(d ) shown in Fig. 3(b) are also correlated with
�d , with k(d ) lagging behind �d . This serves as evidence that
pressure dilatation is responsible for the oscillatory behavior
of the dilatational TKE. The strong oscillatory nature of �d

has been observed elsewhere; see, for example, Refs. [18,29]
for the case of forced turbulence and Refs. [9,30] for sheared
turbulence. For the S∗

0 = 5.0 case shown in Fig. 6 the oscilla-
tions in �d and 〈ρ〉ε (d ) have been attenuated. Figures 7 and
8 show that as the compression speed is increased to S∗

0 = 50
and 500, �d and 〈ρ〉ε (d ) do not exhibit oscillations up to the
last simulated instance in time.

The dashed vertical lines in Figs. 6 to 8 indicate the
domain length at which the maximum value of solenoidal or
dilatational TKE is achieved. As the figures show, peak values
of TKE occur at larger domain lengths than peak values for
sources of the TKE. An additional behavior to highlight is
that for the faster compression speeds, peak values for the
dilatational TKE sources occur at smaller domain lengths than
those of the solenoidal energy. For example, for compression
speed S∗

0 = 50, peak values for the solenoidal dissipation
and production occur at L ≈ 0.04, whereas peak values for
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0.1 0.2 0.3 0.4 0.5 0.6

L

0

2

4

6

8 ×103

(b)

〈ρ〉ε(d)

P (d)

A(d)

FIG. 5. TKE budget for the (a) solenoidal and (b) dilatational flow fields, given S∗
0 = 0.5. The initial length of the domain is L = 1, which

decreases as time progresses. All terms have been normalized by ρ0U
3
0 /L0.

dilatational dissipation and pressure dilatation have not yet
occurred even by the last simulated time. This same lag in
peak values is observed for the S∗

0 = 500 compression.
Figures 5 to 8 also show that the pressure dilatation is either

skewed towards positive values, as is the case for S∗
0 = 0.5, or

is positive throughout the entire compression. This is further
exemplified by looking at Table II, which shows the integrated
values of the energy transfer mechanisms, from the initial to
the last available simulated time. All integrated values for the
pressure dilatation are positive. Thus, �d behaves more as
a source rather than a sink or a neutral term in the balance
of dilatational TKE. As a consequence, the dilatational dissi-
pation needs to counteract the effect of both the dilatational
production and pressure dilatation for the sudden viscous
dissipation to occur in the dilatational field. Given that for the
two fastest compressions the integrated contribution of �d is
almost as large as that of 〈ρ〉ε (d ), it is thus not unexpected
that the dilatational TKE decays at a slower rate than the
solenoidal TKE, as shown in Fig. 4.

3. Spectra

The energy spectra for the solenoidal and dilatational fields
are shown in Fig. 9, for the compression speed of S∗

0 = 5.0.

The profile obtained at L ≈ 0.10 corresponds to a time during
which the sudden viscous dissipation mechanism is taking
place, and the profile at L ≈ 0.04 to a time for which most
of the turbulence has already been dissipated. The shapes and
trends are similar for the solenoidal and dilatational spectra.
Additionally, these profiles are in qualitative agreement with
results shown in Ref. [12]. As the compression proceeds, the
energy in the higher modes decreases, whereas the energy in
the lower modes increases. The set of modes for which the
energy decreases expands as the compression progresses, and
eventually even the lower modes are dissipated, as shown by
the profile corresponding to L ≈ 0.04.

B. Internal energy

The temperature evolutions as a function of the domain
length are shown in Fig. 10 for all compression speeds. These
are also compared against the 1/L2 temperature scaling corre-
sponding to an adiabatic isentropic process with γ = 5/3, as
assumed in Ref. [12]. As the figure shows, the temperature
evolutions are in very close agreement with the adiabatic
scaling. This indicates that the terms in the mean internal
energy equation neglected under the assumption of adiabatic

0.05 0.10 0.15 0.20 0.25

L

0

2

4

6

8 ×106

(a)

0.05 0.10 0.15 0.20 0.25

L

0

2

4

6

8 ×106

(b)

FIG. 6. TKE budget for the (a) solenoidal and (b) dilatational flow fields, given S∗
0 = 5.0. The initial length of the domain is L = 1, which

decreases as time progresses. All terms have been normalized by ρ0U
3
0 /L0. The same legend as that of Fig. 5 applies to the plots above. The

vertical dashed line corresponds to the domain size at which peak solenoidal TKE (a) and peak dilatational TKE (b) are achieved.
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FIG. 7. TKE budget for the (a) solenoidal and (b) dilatational flow fields, given S∗
0 = 50. The initial length of the domain is L = 1, which

decreases as time progresses. All terms have been normalized by ρ0U
3
0 /L0. The same legend as that of Fig. 5 applies to the plots above. The

vertical dashed line corresponds to the domain size at which peak solenoidal TKE (a) and peak dilatational TKE (b) are achieved.

compression, namely, the solenoidal dissipation, dilatational
dissipation, and pressure dilatation, do not provide a strong
contribution towards the increase of temperature for the cur-
rent simulations.

The negligible effect of the dissipations and the pressure
dilatation is confirmed by comparing the source terms of the
mean internal energy, as is done in Fig. 11. These figures show
that, throughout the compression, the dominant source in the
mean internal-energy equation is the mechanical work, which
takes the form of W = −3〈P 〉L̇/L for the given isotropic
compression of Eq. (4). For all compression speeds tested, the
solenoidal dissipation, dilatational dissipation, and pressure
dilatation are eclipsed by the mechanical work at all times
during the compression. However, for the two fastest com-
pression rates, the peak values of the dilatational dissipation
and pressure dilatation are not achieved by the last-available
simulated instance in time. Nonetheless, as shown in Fig. 3,
by this last simulated instance in time the dilatational TKE
has already surpassed its peak value and has dissipated by
more than an order of magnitude, and it is thus unlikely
that the dilatational dissipation and pressure dilatation will

ever overtake the mechanical work. Since the mechanical
work overpowers the other sources of mean internal energy,
the simulation results should follow the idealized adiabatic
compression scalings. For the specific-heat ratio of γ = 5/3
and the assumption of an adiabatic compression, the mechan-
ical work scales as 1/L6, which is shown as black dots in
Fig. 11. As expected, this is in close agreement with the
actual mechanical work, given by the blue dashed-double-
dotted lines. The minor difference between the blue lines and
the black dots is due to the fact that the terms neglected
in an idealized adiabatic compression, such as the viscous
dissipation, thermal conduction, and pressure dilatation, are
not identically zero in the Miranda code.

The dominance of the mechanical work can be further
exemplified by considering the integrated values of the
mean internal energy sources, shown in Table II. The time-
integrated contribution towards the increase of temperature
due to mechanical work is at least three orders of magnitude
larger than the second most significant time-integrated source
term, namely, the solenoidal dissipation. A similar metric
for highlighting the dominance of the mechanical work is

0.01 0.02 0.03 0.04 0.05

L
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2

4

6

8 ×1012

(a)

0.01 0.02 0.03 0.04 0.05

L

0

2

4

6

8 ×1012

(b)

FIG. 8. TKE budget for the (a) solenoidal and (b) dilatational flow fields, given S∗
0 = 500. The initial length of the domain is L = 1, which

decreases as time progresses. All terms have been normalized by ρ0U
3
0 /L0. The same legend as that of Fig. 5 applies to the plots above. The

vertical dashed line corresponds to the domain size at which peak solenoidal TKE (a) and peak dilatational TKE (b) are achieved.
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TABLE II. Integrated energy sources given different compres-
sion speeds. All values are normalized by ρ0U

2
0 .

S∗
0 = 0.5 S∗

0 = 5.0 S∗
0 = 50 S∗

0 = 500

A(s ) 2.32 × 10−1 4.80 × 101 4.45 × 103 4.90 × 103

A(d ) −2.32 × 10−1 −4.80 × 101 −4.45 × 103 −4.90 × 103

P (s ) 2.89 × 101 3.08 × 103 1.97 × 105 1.03 × 107

P (d ) 2.80 × 100 1.57 × 102 1.39 × 104 3.23 × 105

〈ρ〉ε (s ) 1.46 × 102 1.54 × 104 9.82 × 105 5.07 × 107

〈ρ〉ε (d ) 1.87 × 101 1.07 × 103 3.24 × 105 6.59 × 106

�d 4.89 × 100 3.34 × 102 2.64 × 105 5.15 × 106

W 3.34 × 105 2.69 × 107 1.35 × 109 2.14 × 1010

the comparison of the time-integrated total contribution from
the TKEs to mean internal energy against the time-integrated
total contribution from the mean kinetic energy to the mean
internal energy. The ratio of these two factors for the four
cases S∗

0 = 0.50, 5.0, 50, and, 500 is 0.0005, 0.0006, 0.0008,
and 0.002, respectively.

Given that, for the parameters used in these simulations,
the dissipated turbulent kinetic energy does not significantly
increase the temperature of the system above the adiabatic
prediction, it is crucial to determine under which conditions
would the dissipated TKE actually lead to meaningful in-
creases in temperature. To do this, we make use of the relation

d

dt

(
Ũ + k

Ũ (a)

)
= 0, (26)

which is derived in Appendix B. Ũ (a) is the mean internal en-
ergy of the system given the idealized adiabatic compression
and is thus given by Ũ (a) = Ũ0L

−2, where Ũ0 is the initial
value of Ũ . Integrating from the initial time t0 to a final time
tf , one obtains

Ũ + k

Ũ (a)

∣∣∣∣
tf

= Ũ + k

Ũ (a)

∣∣∣∣
t0

= 1 + k0

Ũ0
= 1 + 5

9
M2

u,0. (27)

In the above we have made use of the definition of the
fluctuating Mach number [9]

Mu =
√

ũ′′
i u

′′
i

c(T̃ )
, (28)

whose initial value is denoted by Mu,0. We introduce T̃ (a) =
T̃0L

−2 as the temperature corresponding to an adiabatic com-
pression. If we define tf as the time by which all of the
turbulent kinetic energy has dissipated, and T̃f and T̃

(a)
f as

the temperatures T̃ and T̃ (a) at times t > tf , respectively, then
Eq. (27) can be expressed as

T̃f

T̃
(a)
f

= 1 + 5

9
M2

u,0. (29)

The above relation highlights a few notable aspects of the
compression mechanism. Given T̃0 and k0, Mu,0 is known,
which, along with values of L smaller than those correspond-
ing to the time tf , can be used in Eq. (29) to obtain the
temperature after the TKE has been fully dissipated. The sec-
ond aspect to highlight is that the temperature ratio T̃f /T̃

(a)
f

is independent of the compression speed. Thus, whether the
system is compressed slowly so that there is no sudden viscous
dissipation or the compression is rapid and thus the sudden
viscous dissipation occurs, the temperature obtained after
all the TKE has been depleted will always be of the same
proportion to the idealized adiabatic temperature.

For the simulations described in this paper, the initial
fluctuating Mach number immediately preceding the start of
the compression is Mu,0 = 0.651. Using Eq. (29), this gives
T̃f /T̃

(a)
f = 1.235. Table III lists this ratio computed from

simulation data available at the last simulated instance in time
for the four compression speeds. As the table shows, there
is strong agreement with the analytical value of 1.235. The
slightly lower ratio for the fastest compression is most likely
due to the fact that all of the TKE, especially the dilatational
TKE, has not yet fully dissipated into heat. Equation (29)
can now thus be used to predict under which conditions
the dissipated TKE would lead to meaningful increases in
temperature. For subsonic initial fluctuating Mach numbers,
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FIG. 9. Energy spectra for the (a) solenoidal and (b) dilatational TKE, at different times (or domain lengths) throughout the compression.
The spectra correspond to the S∗

0 = 5.0 case.
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FIG. 10. Evolution of temperature as a function of the size of the
domain. The initial temperature is denoted by T̃0.

the temperature post-TKE depletion can be up to about 1.5
times larger than that obtained with an adiabatic compression.
If supersonic Mach numbers are used, such as Mu,0 = 2
and 5, then the temperature post-TKE depletion would be
about 3 and 15 times larger, respectively, than for an adia-
batic compression. For highly supersonic turbulence such as
that encountered in the interstellar medium [31,32], a Mach

number of Mu,0 = 17 would lead to final temperatures about
160 times higher than those predicted assuming an adiabatic
scaling. As stated in Ref. [16], the hot spot of an ICF capsule
can be characterized by a turbulent Mach number Mt ≈ 0.4.
Using this value in Eq. (29) leads to T̃f /T̃

(a)
f ≈ 1.09. This

increase of temperature is minimal and is eclipsed by the
effect of the mechanical work. For example, if we assume
that the sudden viscous dissipation of TKE occurs at L = 0.1,
a small reduction of the domain size to L = 0.0958 would
already allow the mechanical work to generate an equivalent
increase in temperature. It is thus expected that only for
flow fields with large initial Mach numbers would the self-
consistent feedback mechanism lead to sudden dissipations
with significant effects.

V. CONCLUDING REMARKS

A sudden viscous dissipation of plasma turbulence un-
der compression was demonstrated in Ref. [12]. We expand
on this previous work by accounting for the self-consistent
feedback loop associated with this viscous mechanism. The
feedback loop entails a transfer of energy from the turbu-
lence towards the internal energy and the subsequent in-
creased temperatures and viscosities that in turn accelerate the
original dissipation of TKE. Although previous efforts have
reproduced the sudden dissipation of TKE, these do not
capture the subsequent effect of the dissipated energy on the

W

FIG. 11. Mean internal energy budget for the four compression speeds (a) S∗ = 0.5, (b) S∗ = 5.0, (c) S∗ = 50, and (d) S∗ = 500. The
initial length of the domain is L = 1, which decreases as time progresses. All terms have been normalized by ρ0U

3
0 /L0.
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TABLE III. Ratio T̃f /T̃
(a)
f obtained at the last simulated instance

in time.

S∗
0 = 0.50 S∗

0 = 5.0 S∗
0 = 50 S∗

0 = 500

T̃f

T̃
(a)
f

1.232 1.232 1.232 1.230

temperature and the consequences thereof. This limitation is
due to the use of the zero-Mach-limit assumption. To capture
the increase of internal energy resulting from the dissipated
TKE, and thus account for the entire self-consistent feedback
loop, direct numerical simulations have been carried out using
a finite-Mach number formulation that solves transport equa-
tions for the density, fluctuating velocity, and total energy. The
analysis of the self-consistent feedback loop was divided into
two parts: the first focused on the evolution of the solenoidal
and dilatational TKEs, and the second on the evolution of the
mean internal energy as it absorbs the dissipated TKE.

The first part of the analysis revealed new insights into
finite-Mach-number flow physics for this particular compres-
sion. The simulations show that not only the solenoidal but
also the dilatational TKE experiences the sudden viscous
dissipation. Although this outcome might initially seem ex-
pected, it is instead a somewhat subtle result given that the
time-integrated effect of the pressure dilatation is to transfer
energy from heat towards dilatational TKE, even for cases
when the pressure dilatation transfers energy in both direc-
tions on short time scales. Thus, the dilatational dissipation
has had to counteract both the dilatational production and
pressure dilatation for the sudden viscous dissipation of di-
latational TKE to take place. The simulations also showed
that both the solenoidal and dilatational modes do not evolve
in synchrony, since, for the largest compression speeds, peaks
in the sources for dilatational TKE occur well after those of
the solenoidal TKE. Finally, large oscillations in the temporal
evolution of dilatational TKE for slow compression rates are
observed, which are correlated with the highly oscillatory
nature of the pressure dilatation.

The second part of the analysis revealed that mechanical
work, which transforms energy from the mean flow to increase
heat, dominates all other sources of mean internal energy
for the turbulent Mach numbers chosen in this study. For all
instances in time, the mechanical work term is larger, often
by multiple orders of magnitude, than the solenoidal and
dilatational dissipation and the pressure dilatation. As a result,
the contribution of the dissipated TKE towards the increase
of temperature is minimal, and the temperature evolution
closely follows an adiabatic scaling. This validates previous
efforts [12–15] that relied on a fixed adiabatic scaling for the
temperature evolution.

So as to estimate for which parameters the suddenly dissi-
pated TKE would lead to a significant increase in temperature,
a simple analytical expression was derived for the ratio of
the temperature post-TKE depletion to the idealized adiabatic
temperature. This ratio depends on the initial fluctuating Mach
number only, indicating that the rate of compression does not
affect the magnitudes of the temperature post-TKE depletion.
The derived analytical expression confirms that for subsonic
initial fluctuating Mach numbers the true temperature of the

system can not be substantially larger than the adiabatic tem-
perature. To provide a point of reference, it was shown that all
of the suddenly dissipated TKE for an initial turbulent Mach
number characteristic of an ICF implosion would have an
equivalent effect as that of an adiabatic compression from L =
0.1 to only L = 0.0958. Scenarios where the the turbulence is
highly supersonic are thus required for the dissipated TKE to
have a significant contribution. It is still a matter of debate
whether hydrodynamic instabilities develop into turbulence
during a short-lived ICF implosion [4,33,34], let alone a
transition to significant turbulence intensities characteristic
of supersonic turbulence. Thus, the potential of the sudden
viscous dissipation mechanism to significantly enhance the
heating of the plasma by dissipating the inherent turbulence
could be limited for this application. Nonetheless, this vis-
cous mechanism could serve as an effective tool to diminish
detrimental turbulent mixing if hydrodynamic instabilities do
transition into a turbulent state. It is also crucial to highlight
that the finite-Mach-number framework chosen here, although
more general than the zero-Mach-number formalism, is still
missing physics relevant to ICF, such as nonideal equations
of state, radiation transport, multiple species, plasma viscosity
models, separate ion and electron temperatures, alpha heating,
and nonisotropic compressions, which could all affect the
conclusions reached herein. Thus, these factors need to be
explored to provide a definite assessment on the ability of
the sudden viscous dissipation mechanism to improve the
performance of ICF.
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APPENDIX A: DERIVATION OF THE
FINITE-MACH-NUMBER NAVIER-STOKES

EQUATIONS FOR ISOTROPIC MEAN COMPRESSION

The derivation of the governing equations used for the
computational simulations in this study is detailed below. This
derivation is divided into five distinct steps, each described in
the five subsections.

1. Compressible Navier-Stokes equations

The starting point are the Navier-Stokes equations for a
compressible fluid. Thus, the evolution of the density ρ =
ρ(t, x), velocity Ui = Ui (t, x) and total energy E = E(t, x)
is governed by

∂ρ

∂t
+ ∂ρUi

∂xi

= 0, (A1)

∂ρUi

∂t
+ ∂ρUiUj

∂xj

= ∂σij

∂xj

, (A2)

∂ρE

∂t
+ ∂ρEUj

∂xj

= ∂Uiσij

∂xj

+ ∂

∂xj

(
κ

∂T

∂xj

)
. (A3)
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Closure of the above is achieved with

σij = −Pδij + 2μ

[
1

2

(
∂Ui

∂xj

+ ∂Uj

∂xi

)
− 1

3

∂Uk

∂xk

δij

]
, (A4)

E = U + K, (A5)

U = CvT , K = 1

2
UiUi, (A6)

P = ρRT, (A7)

κ = μCp

Pr
, (A8)

μ = μ0

(
T

T0

)n

. (A9)

P = P (t, x) is the pressure, T = T (t, x) the temperature,
U = U (t, x) the internal energy, K = K (t, x) the kinetic
energy, μ = μ(t, x) the dynamic viscosity, and κ = κ (t, x)
the thermal conductivity. Cv, Cp, R, and Pr are the specific
heat at constant volume, the specific heat at constant pressure,
the ideal gas constant, and the Prandtl number, respectively.
For the power law of viscosity, μ0 and T0 represent reference
viscosity and temperature values, and n is the power-law
exponent.

2. Homogeneous turbulence

We summarize here and in the following subsection the
derivations carried out in Ref. [9] to obtain the governing
equations for homogeneous compressible turbulence. The
quantities 〈ρ〉 and 〈P 〉 are defined as Reynolds-averaged den-
sity and pressure, respectively, and Ũi as the Favre-averaged
velocity. Reference [9] showed that for turbulence to remain
homogeneous, necessary and sufficient conditions are that 〈ρ〉
and 〈P 〉 depend on t but not x, and that Ũi be given by

Ũi = Gijxj , (A10)

where Gij = ∂Ũi

∂xj
also depends only on t and not x. Given

the above assumptions, averaging of the momentum equation
shows that the evolution of Gij is dictated by

dGij

dt
+ GkjGik = 0. (A11)

Moreover, using the assumptions above and plugging in the
decomposition Ui = Ũi + u′′

i in Eqs. (A1) to (A4), Ref. [9]
derived the governing equations in terms of the fluctuating
velocity:

∂ρ

∂t
+ ∂ρ

∂xi

Gijxj + ∂ρu′′
i

∂xi

= f (ρ), (A12)

∂ρu′′
i

∂t
+ ∂ρu′′

i

∂xj

Gjkxk + ∂ρu′′
i u

′′
j

∂xj

= ∂σij

∂xj

+ f
(u)
i , (A13)

∂ρEt

∂t
+ ∂ρEt

∂xi

Gikxk + ∂ρEtu
′′
i

∂xi

= ∂u′′
i σij

∂xj

+ ∂

∂xj

(
κ

∂T

∂xj

)
+ f (e). (A14)

Closure of the above is achieved with

σij = −Pδij + 2μ

[
1

2

(
∂u′′

i

∂xj

+ ∂u′′
j

∂xi

)
− 1

3

∂u′′
k

∂xk

δij

]
+ 2μ

[
1

2
(Gij + Gji ) − 1

3
Giiδij

]
, (A15)

Et = U + Kt, (A16)

U = CvT , Kt = 1

2
u′′

i u
′′
i , (A17)

P = ρRT, (A18)

κ = μCp

Pr
, (A19)

μ = μ0

(
T

T0

)n

, (A20)

f (ρ) = −ρGii, (A21)

f
(u)
i = −ρu′′

jGij − ρu′′
i Gjj , (A22)

f (e) = −ρEtGii − ρu′′
i u

′′
jGij + Gijσij . (A23)

3. Rogallo transformation

As is typically done for simulations of homogeneous
turbulence (see, for example, Refs. [9,35]) one can refor-
mulate the equations using a deforming reference frame—
referred to here as the Rogallo reference frame—to eliminate
those terms in Eqs. (A12) to (A14) that have an explicit
dependence on position. The variables in the Rogallo refer-
ence frame are denoted as ρ̊ = ρ̊(t, x̊), ů′′ = ů′′(t, x̊), P̊ =
P̊ (t, x̊), T̊ = T̊ (t, x̊). The relationship between the variables
in the original reference frame and the Rogallo reference
frame is

ρ = ρ̊(t, f ), u′′
i = ů′′

i (t, f ), P = P̊ (t, f ), T = T̊ (t, f ),

(A24)

where fi = Aijxj . Aij is referred to as the coordinate-
transformation tensor, it depends on t only and is defined so
as to satisfy

dAij

dt
+ AikGkj = 0. (A25)

Using this transformation, the governing equations in the
Rogallo reference frame are

∂ρ̊

∂t
+ ∂ρ̊ů′′

i

∂x̊j

Aji = f̊ (ρ), (A26)

∂ρ̊ů′′
i

∂t
+ ∂ρ̊ů′′

i ů
′′
j

∂x̊k

Akj = ∂σ̊ij

∂x̊k

Akj + f̊
(u)
i , (A27)

∂ρ̊E̊t

∂t
+ ∂ρ̊E̊t ů

′′
i

∂x̊j

Aji

= ∂ů′′
i σ̊ij

∂x̊k

Akj + ∂

∂x̊l

(
κ̊

∂T̊

∂x̊k

)
AkjAlj + f̊ (e). (A28)
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Closure of the above is achieved with

σ̊ij = −P̊ δij + 2μ̊

[
1

2

(
∂ů′′

i

∂x̊n

Anj+
∂ů′′

j

∂x̊n

Ani

)
− 1

3

∂ů′′
k

∂x̊n

Ankδij

]
+ 2μ̊

[
+1

2
(Gij + Gji ) − 1

3
Giiδij

]
, (A29)

E̊t = Ů + K̊t , (A30)

Ů = CvT̊ K̊t = 1

2
ů′′

i ů
′′
i , (A31)

P̊ = ρ̊RT̊ , (A32)

κ̊ = μ̊Cp

Pr
, (A33)

μ̊ = μ0

(
T̊

T0

)n

, (A34)

f̊ (ρ) = −ρ̊Gii, (A35)

f̊
(u)
i = −ρ̊ů′′

jGij − ρ̊ů′′
i Gjj , (A36)

f̊ (e) = −ρ̊E̊tGii − ρ̊ů′′
i ů

′′
jGij + Gij σ̊ij . (A37)

4. Isotropic compression

The mean flow deformation for isotropic compression is
given in Refs. [7,9,12] and can be expressed as

Gij = L̇

L
δij , (A38)

where L̇ is constant and thus L = 1 + L̇t . The corresponding
coordinate transformation tensor is

Aij = 1

L
δij . (A39)

Thus, using the above in Eqs. (A26) to (A28), we obtain

∂ρ̊

∂t
+ ∂ρ̊ů′′

i

∂x̊i

1

L
= f̊ (ρ), (A40)

∂ρ̊ů′′
i

∂t
+ ∂ρ̊ů′′

i ů
′′
j

∂x̊j

1

L
= ∂σ̊ij

∂x̊j

1

L
+ f̊

(u)
i , (A41)

∂ρ̊E̊t

∂t
+ ∂ρ̊E̊t ů

′′
i

∂x̊i

1

L
= ∂ů′′

i σ̊ij

∂x̊j

1

L
+ ∂

∂x̊j

(
κ̊

∂T̊

∂x̊j

)
1

L2
+ f̊ (e).

(A42)

Closure of the above is achieved with

σ̊ij = −P̊ δij + 2μ̊

[
1

2

(
∂ů′′

i

∂x̊j

1

L
+ ∂ů′′

j

∂x̊i

1

L

)
− 1

3

∂ů′′
k

∂x̊k

1

L
δij

]
,

(A43)

E̊t = Ů + K̊t , (A44)

Ů = CvT̊ K̊t = 1

2
ů′′

i ů
′′
i , (A45)

P̊ = ρ̊RT̊ , (A46)

κ̊ = μ̊Cp

Pr
, (A47)

μ = μ0

(
T̊

T0

)n

, (A48)

f̊ (ρ) = −3ρ̊
L̇

L
, (A49)

f̊
(u)
i = −4ρ̊ů′′

i

L̇

L
, (A50)

f̊ (e) = −3ρ̊E̊t

L̇

L
− ρ̊ů′′

i ů
′′
i

L̇

L
− 3P̊

L̇

L
. (A51)

5. Rescaling

An additional transformation can be performed so that,
as the simulation advances in time, division by very small
values of L is avoided. The analog of this rescaling for
the zero-Mach limit is detailed in Ref. [12] and in the
Appendix of Ref. [13]. The new rescaled flow variables are
ρ̂ = ρ̂(t̂ , x̊), û′′

i = û′′
i (t̂ , x̊), P̂ = P̂ (t̂ , x̊), and T̂ = T̂ (t̂ , x̊).

Their relation to the original variables is

ρ̊ = ρ̂(g, x̊)L−1, ů′′
i = û′′

i (g, x̊),

P̊ = P̂ (g, x̊)L−1, T̊ = T̂ (g, x̊), (A52)

where g = g(t ) is defined by dg

dt
= L−1.

Using this rescaling, the governing equations become

∂ρ̂

∂t̂
+ ∂ρ̂û′′

i

∂x̊i

= f̂ (ρ), (A53)

∂ρ̂û′′
i

∂ t̂
+ ∂ρ̂û′′

i û
′′
j

∂x̊j

= ∂σ̂ij

∂x̊j

+ f̂
(u)
i , (A54)

∂ρ̂Êt

∂ t̂
+ ∂ρ̂Êt û

′′
i

∂x̊i

= ∂û′′
i σ̂ij

∂x̊j

+ ∂

∂x̊j

(
κ̂

∂T̂

∂x̊j

)
+ f̂ (e). (A55)

Closure of the above is achieved with

σ̂ij = −P̂ δij + 2μ̂

[
1

2

(
∂û′′

i

∂x̊j

+ ∂û′′
j

∂x̊i

)
− 1

3

∂û′′
k

∂x̊k

δij

]
, (A56)

Êt = Û + K̂t , (A57)

Û = CvT̂ , K̂t = 1

2
û′′

i û
′′
i , (A58)

P̂ = ρ̂RT̂ , (A59)

κ̂ = μ̂Cp

Pr
, (A60)

μ̂ = μ0

(
T̂

T0

)n

, (A61)

f̂ (ρ) = −2L̇ρ̂, (A62)

f̂
(u)
i = −3L̇ρ̂û′′

i , (A63)

f̂ (e) = −[2ρ̂Êt + ρ̂û′′
i û

′′
i + 3P̂ ]L̇. (A64)
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The last issue to be addressed is the time t̂ that corresponds
to L = 0. Solving dg

dt
= L−1 leads to

g = − 1

2Vb

ln(L). (A65)

Since we evaluated the equations at time t = g−1(t̂ ), we have

t̂ = − 1

2Vb

ln(L). (A66)

Thus, L = 0 corresponds to t̂ → ∞. However, it is not ex-
pected that the simulation will need to proceed up to infinity,
and that instead the viscous instability would kick in prior to
this limit.

APPENDIX B: PROOF OF TIME INVARIANCE FOR THE
ENERGY RATIO ( ˜U + k)/ ˜U (a)

The chain rule applied to the time derivative of the energy
ratio gives

d

dt

(
Ũ + k

Ũ (a)

)
= d

dt
(Ũ + k)

1

Ũ (a)
+ (Ũ + k)

d

dt

(
1

Ũ (a)

)
.

(B1)

Given the definition of the adiabatic internal energy Ũ (a) =
Ũ0L

−2, we have

d

dt

(
1

Ũ (a)

)
= 2LL̇

Ũ0
. (B2)

Using Eqs. (16), (17), and (19), one obtains

d

dt
(Ũ + k) = W + P

〈ρ〉 , (B3)

where P is the total production P (s) + P (d ). Given the de-
formation tensor Gij used for isotropic compressions, W =
−3〈P 〉L̇/L and P = −2〈ρ〉kL̇/L. Using the equation of state
〈P 〉 = 〈ρ〉RT̃ , the definition of the internal energy Ũ = CvT̃ ,
and the specific heat ratio γ = 5/3, we have

d

dt

(
Ũ + k

) = −2Ũ
L̇

L
− 2k

L̇

L
. (B4)

We note that the equation above corresponds to Eq. (26) in
Ref. [14]. Using Eqs. (B2) and (B4) in Eq. (B1), we can show
that

d

dt

(
Ũ + k

Ũ (a)

)
= −2Ũ

L̇L

Ũ0
− 2k

L̇L

Ũ0
+ 2Ũ

LL̇

Ũ0
+ 2k

LL̇

Ũ0
= 0.

(B5)
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