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Microscopic determination of macroscopic boundary conditions in Newtonian liquids
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We study boundary conditions applied to the macroscopic dynamics of Newtonian liquids from the view of
microscopic particle systems. We assume the existence of microscopic boundary conditions that are uniquely
determined from a microscopic description of the fluid and the wall. By using molecular dynamical simulations,
we examine a possible form of the microscopic boundary conditions. In the macroscopic limit, we may introduce
a scaled velocity field by ignoring the higher-order terms in the velocity field that is calculated from the
microscopic boundary condition and standard fluid mechanics. We define macroscopic boundary conditions
as the boundary conditions that are imposed on the scaled velocity field. The macroscopic boundary conditions
contain a few phenomenological parameters for an amount of slip, which are related to a functional form of
the given microscopic boundary condition. By considering two macroscopic limits of the nonequilibrium steady
state, we propose two different frameworks for determining macroscopic boundary conditions.
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I. INTRODUCTION

Over the past two decades boundary conditions on solid
surfaces have been a focus of study in the field of fluid
dynamics [1–4]. This focus stems from the remarkable devel-
opments of experimental techniques for nano- and microscale
systems showing the breakdown of the stick boundary con-
dition, specifically, that a fluid at a solid surface has no
velocity relative to it [5–20]. Even Newtonian liquids slip on
a solid surface and the boundary condition is far more com-
plicated than conventionally thought. From improvements
in experimental techniques and developments in molecular
dynamical simulations, many possible boundary conditions
for Newtonian liquids have been discovered [21–41]. The
question “What is the most appropriate boundary condition of
Newtonian liquids at solid surfaces?” has attracted a great deal
of attention because of its fundamental physical interests and
practicality in small-scale fluid dynamics. However, there are
only a few attempts at studying the boundary condition from
the perspective of microscopic physical laws. When we con-
sider the next application of these experimental and numerical
results, it is important to give a microscopic foundation of
the boundary condition and comprehensively organize these
results.

Since the 19th century, the possibility of the breakdown of
the stick boundary condition has been discussed. At the center
of this discussion, the partial slip boundary condition and the
slip length were introduced by Navier [42]. In the partial slip
boundary condition the slip velocity of the fluid at the wall
vs is linearly proportional to the shear rate at the wall γ̇ as
[43–45]

vs = bγ̇ , (1)

where the proportionality constant b is the slip length. The
slip length represents the distance at which the fluid velocity
extrapolates to zero beyond the surface of the wall. In Navier’s
partial slip boundary condition, it is assumed that the slip

length does not depend on the shear rate [42,46]. By the
mid-20th century, the slip length had not been experimentally
confirmed and the stick boundary condition had been applied
successfully to quantitatively explain numerous macroscopic
experiments [43,47]. However, in the 21st century, sensitive
and sophisticated numerical simulations and laboratory ex-
periments of Newtonian liquids in confined geometries have
revealed the existence of the slip length and, as a result,
the Navier’s partial slip boundary condition has been recog-
nized as a more appropriate and practical boundary condition
[4,21,25,26,29,30]. Much effort has been devoted to the in-
vestigation of factors affecting the slip length such as surface
roughness [36,48–53] and wettability [4,54,55].

Further intensive research have discovered the shear de-
pendence of the slip length. The shear-rate-dependent slip
was initially intimated in computer simulations at high shear
rates [37–41] and was reported in laboratory experiments
[19,23,24,27]. These studies indicate that the slip length is
independent of the shear rate only when the shear rate is small
enough [34].

Based on these achievements, research on boundary con-
ditions is expected to move to a new stage. The shear depen-
dence of the slip length is obviously a breakdown of Navier’s
partial slip boundary condition. As advances in experimen-
tal techniques replaced the stick boundary condition with
Navier’s partial slip boundary condition as the fundamental
boundary condition, more advanced experimental technique
will replace Navier’s partial slip boundary condition with
a more fundamental boundary condition. At this time, the
microscopic foundation of boundary conditions is of practical
importance. Thus, the first problem we are tasked with is
“to determine the microscopic boundary condition from the
viewpoint of microscopic particle systems.”

Here, even if we obtain a microscopic boundary condition,
the boundary conditions we conventionally used for a macro-
scopic description are still worthwhile. Such macroscopic
boundary conditions have been applied to obtain satisfactory
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results from the macroscopic point of view in many situations.
Therefore, whenever we impose an extent of the measurement
accuracy from the macroscopic point of view, the system
can be characterized by the macroscopic boundary condition
rather than the microscopic boundary condition. We should
define this measurement accuracy as a mathematical concept
so that we can connect the macroscopic boundary condition
with the microscopic boundary condition. Thus, the second
problem we tackle is “to derive the macroscopic boundary
conditions from the microscopic boundary condition by for-
mulating proper macroscopic limits.”

In this paper, we propose a framework to organize the
macroscopic boundary conditions for a simple case, specif-
ically, uniform shear flow. The starting point should be the
microscopic boundary condition. Since it is unknown, we first
introduce a tentative fundamental boundary condition that is
consistent with results obtained previously in numerical sim-
ulations and laboratory experiments. For this purpose, we use
molecular dynamical simulation. Then we introduce the mea-
surement accuracy in the uniform shear flow as a mathemat-
ical concept. By using this framework, we discuss what kind
of boundary conditions should be used in a given situation.

The key idea is to introduce a relation between the mea-
surement accuracy and the system-size dependence of the
velocity fields in the infinite volume limit of the uniform
shear flow. By ignoring the higher terms of the velocity fields
in the system size, we formulate the measurement accuracy.
Then we can obtain the macroscopic boundary condition that
satisfies the required measurement accuracy. We notice that
the macroscopic boundary conditions depend on the choice
of the infinite volume limit of the uniform shear flow and the
order of terms to be left. We develop two different frameworks
of the macroscopic boundary conditions by considering two
different infinite volume limits of the uniform shear flow.

The remainder of this paper is organized as follows. In
Sec. II, the setup of our model is introduced. We explain the
problems to be studied in this paper in terms of our setup.
In Sec. III, we describe the determination of the microscopic
boundary condition by using the molecular dynamical simu-
lations. In Sec. IV, we determine the macroscopic boundary
conditions based on the microscopic boundary condition. The
Secs. V and VI are devoted to a brief summary and discussion.

II. SETUP AND QUESTION

A. Model

We introduce a model for studying boundary conditions for
fluid dynamics. A schematic illustration is shown in Fig. 1.
The fluid consists of N particles that are confined to an Lx ×
Ly × Lz cubic box. We impose periodic boundary conditions
along the x and y directions and introduce two parallel walls
so as to confine particles in the z direction. We represent
the two walls as potential forces acting on the particles. Let
(r i , pi ), (i = 1, 2, . . . , N ), be the position and momentum of
the ith particle. The Hamiltonian of the system is given by

H =
N∑

i=1

p2
i

2m
+ U

[
(r i )

N
i=1

]
(2)

FIG. 1. Schematic illustration of our model.

with

U
[
(r i )

N
i=1

] ≡
∑
i<j

VFF(|r i − rj |)

+
N∑

i=1

UBW(r i ) +
N∑

i=1

UTW(r i ). (3)

VFF(r ) describes an interaction potential between two parti-
cles. UBW(r ) and UTW(r ) represent a z = 0 wall potential and
a z = Lz wall potential, respectively. In region B near the z =
Lz wall, which is given by [0, Lx] × [0, Ly] × [L,Lz], we
apply the Langevin thermostat and the external force f along
the x axis. We assume that UTW(r ) has nonzero value only in
region B. Then, the particles obey the Langevin equation

m
d2rα

i

dt2
= −

∑
j ( �=i)

∂VFF(|r i − rj |)
∂rα

i

−
N∑

i=1

∂UBW(r i )

∂rα
i

(4)

for z ∈ [0, L], and

m
d2rα

i

dt2
= −

∑
j ( �=i)

∂VFF(|r i − rj |)
∂rα

i

−
N∑

i=1

∂UTW(r i )

∂rα
i

+ f α − ζ
drα

i

dt
+ ξα

i (t ) (5)

for z ∈ [L,Lz], where f = (f, 0, 0), ξ i represents thermal
noise satisfying〈

ξα
i (t )ξβ

j (t ′)
〉 = 2ζkBT δij δ

αβδ(t − t ′), (6)

where kB is the Boltzmann constant, T the temperature of the
thermostat, and ζ the friction coefficient.

B. Observed quantity

We concentrate on the velocity vector field and stress
tensor field in the steady state. This subsection summarizes
the definition of these quantities. Let ρ̂(r; �t ), π̂ a (r; �t ),
and Ĵ ab(r; �t ) denote the microscopic mass density, mo-
mentum density and momentum current density at a given
point r , respectively, for a given microscopic configura-
tion �t ≡ [r1(t ), . . . , rN (t ), p1(t ), . . . , pN (t )] at time t ; see
Appendix A for details of these definitions. We consider the
temporal and spatial average of these microscopic fields. In
particular, we consider the z dependence of the averaged local
quantities. We perform spatial average in the slab with bin
width �z at the center z and temporal average for a time
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interval τ in the steady state. For example, the averaged mass
density at any z is given by

ρ(z) = 〈ρ̂(z)〉ss = 1

τ

∫ τ

0
dt

1

LxLy

∫ Lx

0
dx

∫ Ly

0
dy

× 1

�z

∫ z+�z/2

z−�z/2
dzρ̂(r; �t ), (7)

where the system is assumed to be in steady state at t = 0.
Similarly, we give the averaged momentum density πa (z) and
momentum current J ab(z). Then, we define velocity va (z) and
stress σab(z) at z as

va (z) = πa (z)

ρ(z)
, (8)

σab(z) = −J ab(z) + ρ(z)va (z)vb(z). (9)

We assume that the velocity field is parallel to the x direction
sufficiently far away from the wall. We focus on vx (z) and
σxz(z).

C. Problem

This subsection explains the problem to be studied in the
remainder of this paper in terms of the quantities defined
above.

We refer to the region sufficiently far from the walls as
the bulk. Our chief concern is the velocity and stress profiles
(vx (z), σ xz(z)) of the bulk in the steady state. Fluid mechanics
is the theory for describing the macroscopic behaviors of these
quantities. For our setup, the constitutive equation is given by

σxz = η
dvx

dz
(10)

except for a region near the walls, where η is a dynamical
viscous coefficient. Then, we extrapolate the velocity field in
the bulk to the whole region [0, Lx] × [0, Ly] × [0, L] while
retaining the relation (10). Let the extrapolated velocity at z =
L be given by

vx (L) = U. (11)

Since we obtain any U by controlling the external force f in
our setup, we may treat U as a parameter. Then we focus on
the boundary condition at the z = 0 wall. Because forces are
balanced in the steady state, the shear stress is independent of
the z coordinate:

σxz(z) = σxz = const. (12)

From (10), (11), and (12), we characterize the extrapolated
velocity field by

vx (z) = σxz

η
(z − L) + U, (13)

where η is assumed to be known. When we observe stress
σxz, we obtain the extrapolated velocity field by using (13)
with η and U . Thus, if a boundary condition determines
the extrapolated velocity field vx (z), the boundary condition
should be related to σxz, which we express as σxz(U ) with η

fixed. We emphasize that we study the extrapolated velocity
field instead of the real velocity field, because our main

concern is (vx (z), σ xz(z)) in the bulk, and not the real velocity
field near the walls. Hereafter, for simplicity, we refer to the
extrapolated velocity field as the velocity field.

We remark that the boundary condition may depend on the
measurement accuracy or the scale of interest. For example,
there is a case that finite |vx (0)| cannot be observed for a
given accuracy in an investigation for a phenomenon. σxz(U )
should be determined in accordance with the required accu-
racy of vx (z). We refer to such boundary conditions as the
macroscopic boundary condition. Moreover, it is reasonable to
conjecture that there is a boundary condition determined only
by the microscopic setup, independent of the scale of interest.
If we demand greater accuracy in vx (z), then we should
use this microscopic boundary condition. In this paper, we
explore the most appropriate microscopic boundary condition
and study the macroscopic boundary condition based on the
appropriate condition.

III. MOLECULAR DYNAMICAL SIMULATION

A. Preliminaries

We perform numerical simulations with the following po-
tentials in (3). First, the interaction between two particles
VFF(r ) is given by the truncated Lennard-Jones potential with
a cut-off length rc:

VFF(r ) ≡ 4ε

[(σ

r

)12
− c

(σ

r

)6
+ C

(2)
FF r2 + C

(0)
FF

]
(14)

for r < rc and VFF(r ) = 0 otherwise. C
(2)
FF and C

(0)
FF are de-

termined by the condition VFF(rc ) = 0 and V ′
FF(rc ) = 0 [56].

Second, the z = 0 wall consists of Nw material points, which
are fixed on the square lattice in the z = 0 plane. The lattice
constant is denoted by a. Let qi (i = 1, 2, . . . , Nw ) be the po-
sition of the material points. The interaction potential between
a material point and a fluid particle VBW(r ) is given by the
same form as (14) with εBW, σBW and cBW. Then, UBW(r ) is
expressed by

UBW(r ) ≡
Nw∑
j=1

VBW(|r − qj |), (15)

where σBW is given by

σBW ≡ a + σ

2
(16)

so that the lattice constant a is treated as the diameter of
the particles constituting the z = 0 wall. Finally, the potential
between the z = Lz wall and a fluid particle is given by

UTW(r ) = 4εTW

[( σTW

Lz − z

)12
−

( σTW

Lz − z

)6

+C
(2)
TW(Lz − z)2 + C

(0)
TW

]
(17)

for z > Lz − rc; otherwise, UTW(r ) = 0.
In numerical simulations, all the quantities are converted

to dimensionless forms by setting m = σ = ε = 1. We fix
Lx = 30.0σ, Ly = 30.0σ, Lz = 24.0σ, and L = 20.0σ. The
particle number is set to N = 16200, which corresponds to
particle number density ρ = 0.75σ−3. The temperature and
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FIG. 2. Velocity profiles for the applied force f = 2.0. The
wall parameters are chosen as (a, cBW ) = (0.5, 0.6) (blue), (0.6,1.0)
(orange), and (0.7,1.0) (green). Inset: linear fits of the velocity profile
away from the walls.

the friction coefficient of the Langevin thermostat are set to
kBT /ε = 1.1 and ζ = 1.0

√
εm/σ , respectively. The potential

parameters are fixed to c = 1.0, εTW/ε = εBW/ε = 0.6, and
σTW/σ = 1.0. The cutoff distance is set to rc = 2.5σ. Then,
we characterize the z = 0 wall by the value of a and cBW.

B. Microscopic boundary condition

We study the behavior near the z = 0 wall. Figure 2 shows
examples of the velocity profile in the steady state, with f =
2.0 and (a, cBW) = (0.5, 0.6), (0.6, 1.0), and (0.7, 1.0). The
velocity profiles in 3 � z � 15 (inset of Fig. 2) are well fitted
linearly. This suggests that uniform shear flow appears in the
region 3 � z � 15. Therefore, we identify this region with the
bulk. Figure 3 shows the shear stress as a function of shear
rate in the bulk. From Fig. 3, we find that (10) holds and η is
independent of wall parameters. We note that η is independent
of the shear rate in the shear rate range used in this paper.

We consider the boundary condition at z = 0 that is
consistent with the velocity profiles measured above. The

0.00 0.05 0.10 0.15
γ̇w

0.0

0.1

0.2

σ
x
z

FIG. 3. Stress tensor as a function of shear rate. The applied
force f is varied from 0.2 to 4.8. The wall parameters are cho-
sen as (a, cBW ) = (0.5, 0.6) (blue), (0.6,1.0) (orange), and (0.7,1.0)
(green).
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FIG. 4. Plot of g(uw ). The wall parameters and the applied force
are chosen as a = 0.5, cBW = 0.6, and 0.2 � f � 4.8, which is the
same as Fig. 3.

observation in Sec. II C suggests that the microscopic bound-
ary condition is expressed in terms of the shear stress σxz as
a function of the fluid velocity. By noting that the boundary
condition is expected to be locally given, we find that the
simplest boundary condition is given by

σxz = g(uw ), (18)

where uw is the slip velocity extracted from the extrapolated
velocity field. In Fig. 4, we plot g(uw ) for the wall with
(a, cBW) = (0.5, 0.6) as f increases from 0.2 to 4.8. We next
show that the velocity field vx (z) is uniquely determined when
g(uw ) is given, which is a necessary condition for a boundary
condition. By combining (13) with (18), we obtain

η
U − uw

L
= g(uw ). (19)

By solving (19), we obtain uw. Given uw, vx (z) is written as

vx (z) = U − uw

L
z + uw. (20)

Therefore, we interpret (18) to be a microscopic boundary
condition with g(uw ), the functional form of which is specific
to details of the wall and particles.

We remark on some equivalent expressions of (18). We first
note that the previous studies [34,42–45] proposed a boundary
condition

vx |z=0 = b
∂vx

∂z

∣∣∣∣
z=0

, (21)

instead of (18), where b corresponds to the slip length. We
note that the slip length b may depend on the macroscopic
velocity field. By using (10), (11), and (21), we find that the
velocity field is expressed in terms of the slip length b as

vx (z) = U

L + b
(z + b). (22)

By fitting the velocity profile vx (z) measured in numerical
simulations to (22), we obtain the slip length b. The slip length
as a function of uw, b(uw ), is equivalent to the microscopic
boundary condition (18). This is because (10) and (18) lead to
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FIG. 5. Slip length as a function of local velocity at the z = 0
wall, uw (left-hand side), and local shear rate at the z = 0 wall, γ̇w

(right-hand side). The parameter settings are the same as those in
Fig. 4.

(21) with

b(uw ) = ηuw

g(uw )
. (23)

As other cases, some previous studies considered the slip
length b as a function of shear rate near the wall, γ̇w

[37,38,52]. We rewrite (21) in terms of γ̇w as

U − γ̇wL = b(γ̇w )γ̇w. (24)

If b(γ̇w ) is given, then we calculate γ̇w as a function of U

and L by solving (24). By recalling uw = U − γ̇wL and by
comparing (18) to (24), we construct b(γ̇w ) from g(uw ) as

b(γ̇w ) = h(ηγ̇w )

γ̇w

(25)

where h(σxz) is the multivalued function that yields possible
values of uw satisfying (18) for a given σxz. Equation (25)
implies that (18) and (21) with b(γ̇w ) are equivalent.

In Fig. 5, we plot b as a function of uw and γ̇w for the
same parameters as Fig. 4. From Figs. 4 and 5, we find
that the microscopic boundary condition exhibits a nonlinear
behavior. Specifically, Fig. 5 indicates that the slip length
depends nonlinearly on uw or γ̇w and reaches a value more
than ten times the system size. This behavior is consistent
with some experimental results [1–4]. We remark that the
previous numerical simulations [37–39] found a critical shear
rate γ̇c at which b(γ̇w ) diverges as γ̇w → γ̇c. We conjecture
that the results of our simulation are consistent with that of the
previous studies. From the right-hand side of Fig. 5, we find
that db(γ̇w )/dγ̇w diverges. We consider that the divergence
of b(γ̇w ) reported in the previous studies corresponds to the
divergence of db(γ̇w )/dγ̇w in our simulation. In Appendix B,
we demonstrate the correspondence between our simulation
and the previous studies by focusing on the scaling law as
γ̇w → γ̇c reported in some studies [37–39].

In Sec. IV C, we shall focus on the nonlinear behavior
of the microscopic boundary condition, particularly on the
existence of the maximum of g(uw ). The point of b(uw ) that
corresponds to the maximum point of g(uw ) is calculated from
(23). We find that this point of g(uw ) has a simple graphical
interpretation in contrast to that of b(uw ) (see Fig. 4 and the
left-hand side of Fig. 5). Also, the corresponding point in
b(γ̇w ) is the point that the first derivative in γ̇w, db(γ̇w )/dγ̇w,

diverges (see Appendix B). The divergence of db(γ̇w )/dγ̇w

provides this point in b(γ̇w ) with a simple graphical interpreta-
tion. Therefore, we expect that g(uw ) or b(γ̇w ) is more useful
than b(uw ) for the discussion using graphs. Furthermore,
using b(γ̇w ) is more mathematically inconvenient than g(uw )
because b(γ̇w ) is a two-valued function in γ̇w. Therefore, in
the reminder of this paper, we use (18) with given g(uw ) as
the microscopic boundary condition.

IV. MACROSCOPIC BOUNDARY CONDITION

The microscopic boundary condition is uniquely deter-
mined from the microscopic description of the fluid and the
wall. That is, g(uw ) is uniquely determined from a given
microscopic model. As we change the scale of interest from
the microscopic to the macroscopic, we may use the macro-
scopic boundary condition instead of the microscopic bound-
ary condition. In this section, we study how the macroscopic
boundary condition appears, depending on the choice of the
scale of interest. For this, we introduce how to choose the
scale of interest as a mathematical concept.

A. Choice of the scale of interest

We focus on the L dependence of the velocity field v̄x (z̄)
as a function of z̄ ≡ z/L:

v̄x (z̄) = (U − uw )z̄ + uw, (26)

where we have used (20). We introduce the scaled velocity
field by ignoring higher-order terms of v̄x (z̄) in L depending
on the scale of interest. The macroscopic boundary condition
is determined so that the scaled velocity field is obtained in
the standard fluid dynamics. We notice that the macroscopic
boundary condition depends on the choice of the terms re-
tained in the scaled velocity field. From (26), we find that
the L dependence of v̄x (z̄) is determined from that of U and
uw. This implies that the macroscopic boundary condition is
related to the L dependence of uw. As described in Sec. III B,
we obtain uw by solving (19). Because the L dependence of
uw is connected to the functional form of g(uw ) through (19),
we can define the macroscopic boundary condition by the L

dependence of uw or the functional form of g(uw ).
In the remainder of this section, we consider two macro-

scopic limits in the nonequilibrium steady state that is sub-
jected to the uniform shear flow. In each macroscopic limit,
we study the macroscopic boundary condition.

B. Macroscopic boundary condition: quasiequilibrium limit

The first macroscopic limit is the quasiequilibrium limit:

L → ∞, U = const, ρ = const. (27)

We focus on the O(L−1) terms of the velocity fields v̄x (z̄) as
the scale of interest. In this section, � indicates equality up to
o(L−1) terms.

We define three boundary conditions by noting the L

dependence of uw in the quasiequilibrium limit (27): stick
boundary condition uw = o(L−1), partial slip boundary con-
dition uw = O(L−1), and perfect slip boundary condition
Luw → ∞. Then, the stick boundary condition uw = o(L−1)
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(a) (b)

FIG. 6. Schematic graph of y = g(uw ) and y = η(U − uw )/L. The intersection of these graphs corresponds to the solution of (19):
(a) behavior of the solution in the quasiequilibrium limit and (b) behavior of the solution in the hydrodynamic limit.

implies

v̄x (z̄) � Uz̄, (28)

which is consistent with the standard stick boundary condition
in hydrodynamics.

We consider a relationship between the L dependence of
uw and the functional form of g(uw ). We focus on the case
in which the functional form of g(uw ) is given by Fig. 6. In
Fig. 6(a), we present the two graphs y = g(uw ) and

y = η
U − uw

L
. (29)

The intersection of the two graphs corresponds to the solution
of (19). Since U is fixed and ηU/L approaches 0 in the
quasiequilibrium limit (27), the L dependence of the solution
is determined by the behavior of y = g(uw ) near y = 0 [see
Fig. 6(a)]. Then, we consider the three cases of the behavior
of y = g(uw ) near y = 0.

First, let g(uw ) be expanded around uw = 0 as

g(uw ) = g1uw + 1

2
g2u

2
w + · · · . (30)

We assume g(0) = 0 so that the fluid exerts no force on the
wall if uw = 0. We consider the case g1 �= 0. By substituting
(30) into (19) and solving for uw, we obtain

uw � η

g1

U

L
. (31)

As uw is of order L−1, we find that g(uw ) with g1 �= 0
corresponds to the partial slip boundary condition.

We next consider the case g1 = 0 and g2 �= 0. By the
similar calculation, we obtain

uw = O(L−1/2) (32)

in the quasiequilibrium limit (27). Therefore, we find that
g(uw ) with g1 = 0 and g2 �= 0 corresponds to the perfect slip
boundary condition.

Finally, let the first derivative of g(uw ) diverge at uw = 0,
as in, for instance,

g(uw ) � ua
w (33)

near uw = 0, where 0 < a < 1. By solving (19), we obtain

uw = O(L−1/a ) (34)

in the quasiequilibrium limit (27), which corresponds to
the stick boundary condition. These results indicate that the

boundary condition is determined only by the analyticity of
g(uw ) in uw = 0.

We remark that the relationship between the boundary
condition defined above and the slip length. We consider the
case satisfying the partial slip boundary condition. Since we
need to know the linear term of g(uw ) to obtain (31), we
rewrite (19) as

∂vx

∂z

∣∣∣∣
z=0

= 1

b1
vx

∣∣∣∣
z=0

(35)

with

b1 ≡ η

g1
. (36)

We keep in mind that o(L−1) terms of v̄x (z̄) are irrelevant
for the solutions of the Navier-Stokes equation with boundary
condition (35). That is, although the form of the bound-
ary condition (35) is the same as Navier’s partial slip boundary
condition, i.e., constant slip length, these boundary conditions
are different in whether we impose an extent of v̄x (z̄) to be
focused. Similarly, we may rewrite the perfect slip boundary
condition in the form (35). For example, for g1 = 0 and g2 �=
0, we rewrite (19) as

∂vx

∂z

∣∣∣∣
z=0

= 1

b2
vx

∣∣∣∣
z=0

(37)

with

b2 ≡ 2η

g2vx |z=0
, (38)

which implies that we need to treat the macroscopic-
velocity-field-dependent slip length. We note that b2 → ∞ as
vx |z=0 → ∞. This divergence stems from the L dependence
of uw given by (32).

In summary, when we focus on the O(L−1) terms of v̄(z̄) in
the quasiequilibrium limit (27), we impose the stick boundary
condition uw = 0, the partial slip boundary condition (35), or
the perfect slip boundary condition (37) in accordance with
the analyticity of g(uw ) at uw = 0.

C. Macroscopic boundary condition: hydrodynamic limit

The second macroscopic limit is the hydrodynamic limit:

L → ∞,
U

L
= const, ρ = const. (39)
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(a) (b)

FIG. 7. Schematic graph of y = g(uw ) and y = η(U − uw )/L. The intersection of these graphs corresponds to the solution in (19):
(a) behavior of the solution for ηU/L satisfying (44) in the hydrodynamic limit and (b) behavior of the solution for ηU/L satisfying (45)
in the hydrodynamic limit

We focus on the O(L) terms of the velocity fields v̄x (z̄) as
the scale of interest. In this section, � indicates equality up to
o(L) terms.

We introduce two boundary conditions, stick and perfect
slip, in terms of the L dependence of uw; they are defined
respectively as

uw = o(L), (40)

and

uw = O(L) (41)

in the hydrodynamic limit (39). By recalling (26), we obtain

v̄x (z̄) � Uz̄ (42)

for the stick boundary condition (40). Therefore, we confirm
that the stick boundary condition is consistent with the stan-
dard stick boundary condition in hydrodynamics.

We focus on a relationship between the L dependence
of uw and the functional form of g(uw ). As in the case of
Sec. IV B, we consider the case in which the functional form
of g(uw ) is given by Fig. 6. In Fig. 6(b), we present the asymp-
totic behavior of the solution of (19) in the hydrodynamic limit
(39), which is in contrast to Fig. 6(a) in the quasiequilibrium
limit (27). By noting that ηU/L is fixed and U goes to infinity
in the hydrodynamic limit (39), we find that uw approaches
finite value u∗

w [see Fig. 6(b)]. u∗
w is given by the solution of

the equation

η
U

L
= g(u∗

w ). (43)

When the behavior of g(uw ) is not obtained beyond a linear
response regime in uw, it is difficult to determine a concrete
value for u∗

w. Nevertheless, we find u∗
w to be of order L0 from

Fig. 6(b). This corresponds to the stick boundary condition.
Next, we consider the case in which g(uw ) has a max-

imum gmax. We then find that the L dependence of uw is
classified into two cases depending on ηU/L. We consider the
functional form of g(uw ) given by Fig. 7. Figure 7 presents
the schematic graph of y = η(U − uw )/L and y = g(uw ).
g(uw ) has a maximum value gmax at infinity uw → ∞. The
intersection of the two graphs corresponds to the solution of
(19). In Fig. 7(a), we present the asymptotic behavior of the

solution of (19) for

η
U

L
< gmax. (44)

From Fig. 7(a), we find that uw approaches finite value u∗
w

independent of L, which corresponds to the stick boundary
condition.

In Fig. 7(b), we present the asymptotic behavior of the
solution of (19) for

η
U

L
� gmax. (45)

From Fig. 7(b), we find that uw goes to infinity in the hydro-
dynamic limit (39). O(L) terms of uw are given by

uw � U − L
gmax

η
(46)

in the hydrodynamic limit (39), which corresponds to the
perfect slip boundary condition. Note that (46) is rewritten in
terms of the shear stress as

σxz � gmax. (47)

When gmax = 0, (47) corresponds to the standard perfect slip
boundary condition imposed on the solutions of the Euler
equation. These results indicate that the boundary condition
depends on the behavior of g(uw ) over the entire range, i.e.,
the existence of the maximum.

Finally, we consider the case that g(uw ) is given by Fig. 4.
We conjecture that the functional form of g(uw ) in Fig. 4 is
given by Fig. 8. That is, g(uw ) has a maximum value gmax

at uw = u
arg
w and approaches a constant value g∞ � gmax as

uw → ∞.

FIG. 8. Schematic image of g(uw ) for the wall a = 0.5, cFS = 0.6.
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By a similar procedure to that in Fig. 7, we find that there
are three solutions of (19) depending on ηU/L. First, when
the following inequality is satisfied

η
U

L
< g∞, (48)

the solution of (19) approaches finite value u∗
w in the hydro-

dynamic limit (39), which is given by (43). This implies that
the stick boundary condition applies. Second, when

g∞ � η
U

L
� gmax (49)

holds, (19) has three solutions in the hydrodynamic limit (39).
In the hydrodynamic limit (39), the two smaller solutions ap-
proach finite values, whereas the largest solution diverges. We
consider that all three solutions are physically realizable. In
particular, we anticipate that when the external force increases
sufficiently slowly from 0 to the appropriate value, the small-
est solution is realized. Since the smallest solution approaches
a finite value in the hydrodynamic limit (39), this solution
corresponds to the stick boundary condition. Finally, when

gmax < η
U

L
(50)

holds, (19) has one solution, which goes to infinity in the
hydrodynamic limit (39). This corresponds to the perfect slip
boundary condition, which, in terms of shear stress, is written

σxz � g∞. (51)

In summary, when we focus on the O(L) terms of v̄(z̄)
in the hydrodynamic limit (39), we impose either the stick
boundary condition uw = 0 or the perfect slip boundary con-
dition (47) [or (51)] in accordance with the behavior of g(uw )
over its entire range.

V. SUMMARY

In this paper, we proposed the boundary conditions ap-
propriate for macroscopic hydrodynamics. The key idea of
our study was to separate the microscopic boundary con-
dition, which is uniquely determined from the microscopic
description of the fluid and the wall, and the macroscopic
boundary condition, which depends on the scale of interest.
We studied the macroscopic boundary conditions based on the
microscopic boundary condition and the macroscopic limits
for nonequilibrium steady states.

We used (18) as the microscopic boundary condition,
because (18) is the simplest boundary condition satisfying
locality. Here, g(uw ) is uniquely determined from the micro-
scopic parameters of the fluid and the wall. We showed that
g(uw ) has maximum value for our model using the molecular
dynamical simulation.

With ignoring higher terms of v̄x (z̄) in L, we introduced
the scaled velocity field that depends on the scale of interest.
The macroscopic boundary condition is determined so that the
standard fluid dynamics with it gives the scaled velocity field.
We proposed two frameworks for determining the macro-
scopic boundary conditions by defining two macroscopic
limits.

The first macroscopic limit is the quasiequilibrium limit.
By focusing on the O(L−1) terms of the velocity fields v̄x (z̄),

we constructed a framework to describe the macroscopic
boundary condition comprising three boundary conditions:
stick, partial slip, and perfect slip. We showed that the bound-
ary conditions are determined only by the analyticity of g(uw )
at uw = 0. Then, we may classify the boundary conditions
in terms of the uw dependence of the slip length. The stick
boundary condition corresponds to b = 0. The partial slip
boundary condition corresponds to the uw-independent fi-
nite slip length: (35) with (36). The perfect slip boundary
condition corresponds to the uw-dependent slip length: (37)
with (38).

The second macroscopic limit is the hydrodynamic limit.
By focusing on the O(L) terms of the velocity fields v̄x (z̄),
we established a framework for the macroscopic boundary
condition that contains two boundary conditions: stick and
perfect slip. We showed that the boundary conditions are
related to the behavior of g(uw ) over the entire range such
as gmax and g∞. We applied this framework to three cases
with g(uw ) of the form given by Figs. 6, 7 and 8. When
g(uw ) is given by Fig. 7, the stick boundary condition uw = 0
is realized in the case ηU/L < gmax, whereas the perfect
slip boundary condition σxz = gmax is realized in the case
ηU/L > gmax.

VI. DISCUSSION

Let us remark on the macroscopic boundary condition for
systems with more general geometries in the hydrodynamic
limit. The result in Sec. IV C contains the configuration-
dependent quantity ηU/L. We conjecture that, by replac-
ing U/L with the shear rate assuming the stick boundary
condition, the discussion in Sec. IV C also applies to more
general configurations. Based on this conjecture, we obtain
the framework in the hydrodynamic limit when g(uw ) is
given by Fig. 7. Specifically, we start by assuming the stick
boundary condition:

v · τ |s = 0, (52)

where τ is the tangential vector of the surface and the sub-
script s represents the evaluation at the surface. When

σ ij τinj |s � gmax (53)

holds, where the left-hand side is calculated on the stick
boundary condition, we apply the perfect boundary condition

σ ij τinj |s = gmax, (54)

where n is the normal vector of the surface.
Our concept of the macroscopic boundary condition may

be applied to laboratory experiments. Recently, the slip phe-
nomena were confirmed to be important for nano- and mi-
croscale systems [1–4]. One of the reasons why the slip length
is regarded as an important quantity in small systems is that
the observations are done with the high accuracy for such sys-
tems. We consider that the framework of the quasiequilibrium
limit is useful to explain phenomena in such small systems,
because we can calculate O(L−1) terms of uw/U by using one
given parameter g1 as shown in (31). This is in contrast to the
framework established under the hydrodynamic limit, which
requires more information about g(uw ) to calculate O(L−1)
terms of uw/U as shown in (43). As L is increased with
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U fixed and observations are done with lower accuracy, we
may ignore even O(L−1) terms of the velocity fields v̄x (z̄) in
the quasiequilibrium limit. However, when U is sufficiently
large, we consider that the slip phenomena are important even
for such large systems. In general, when we apply a high
shear stress to a fluid, we may observe the slip length of the
order of micrometers with the nonlinearity [19,27,37–41]. In
such situations, we consider it useful to apply the framework
established under the hydrodynamic limit, because it is the
simplest framework to extract nonlinear behavior of g(uw ).

As a related study, Priezjev et al. reported the shear-rate de-
pendence of slip length in the shear flow of polymer melts past
atomically smooth surfaces [38–40]. By using the molecular
dynamical simulation, they demonstrated that gmax decreases
with increasing the chain length and is nearly independent of
the chain length beyond 10 bead-spring units [38]. It was also
found that the onset of the nonlinear regime of polymer melts
is observed at lower shear rates than that of simple liquids
[40]. We expect that the macroscopic boundary condition is
useful at high shear rates in these systems. In order to realize
a macroscopic slip in realistic systems beyond small systems
in a laboratory, it is important to quantitatively evaluate gmax,
g∞, and u

arg
w of various type of fluid under realistic settings.

Particularly, for the dilute gases, the slip phenomena have
been studied theoretically and experimentally. It was found
that when the Knudsen number is on the order of 0.001 or
larger, non-negligible slip occurs [57,58]. Recent experiments
reported the slip length of 500 nm [59]. The microscopic
boundary condition for the gas flow has been discussed by
numerous researchers and various slip boundary conditions
have been proposed in the literature [57]. They are more
complicated than the microscopic boundary condition (18)
assumed in this paper. Therefore, it is difficult to apply the
results obtained in this paper to the gas flow. However, we
consider that the idea to introduce the macroscopic boundary
conditions is still useful, because the relatively complicated
boundary conditions are expressed as simpler boundary con-
ditions with a few parameters characterizing an amount of
slip and nonlinearity. Developing the macroscopic boundary
condition for the gas flow is the next problem.
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APPENDIX A: EXPRESSION OF MICROSCOPIC DENSITY
FIELDS AND MICROSCOPIC CURRENTS

The microscopic mass density field ρ̂(r; �) and the micro-
scopic momentum density field π̂ a (r; �) are defined as

ρ̂(r; �) ≡
∑

i

mδ(r − r i ), (A1)

π̂ a (r; �) ≡
∑

i

pa
i δ(r − r i ). (A2)

We assume that the z = 0 wall consists of Nw material points
and UBW (r i ) is given by (15). Then, π̂ a (r,�) satisfies the

continuity equation [60–62]

∂π̂a (r; �t )

∂t
+ ∂Ĵ ab(r; �t )

∂rb
= 0 (A3)

in 0 < z < L, where the microscopic momentum current
Ĵ ab(r; �) is given by

Ĵ ab(r; �) ≡ Ĵ ab
b (r; �) + Ĵ ab

w (r; �) (A4)

with

Ĵ ab
b (r; �) ≡

∑
i

pa
i p

b
i

m
δ(r − r i )

+
∑
i<j

F a
ij

(
rb
i − rb

j

)
D(r; r i , rj ), (A5)

Ĵ ab
w (r; �) ≡

N∑
i=1

Nw∑
j=1

Fwa
ij

(
rb
i − qb

j

)
D(r; r i , qj ), (A6)

where we have used the definition of the following quantities:

D(r; r i , rj ) ≡
∫ 1

0
dξδ(r − r i − (rj − r i )ξ ), (A7)

Fa
ij ≡ −∂VFF(|r i − rj |)

∂ra
i

, (A8)

Fwa
ij ≡ −∂VBW(|r i − qj |)

∂ra
i

. (A9)

In the numerical simulation, the averaged density fields
are calculated by spatially and temporally averaging the
microscopic density fields [e.g., (7)]. These quantities are
expressed as

ρ(z) = 1

τ

∫ τ

0
dt

1

LxLy�z

∑
i

m�(r i (t );Rz), (A10)

πa (z) = 1

τ

∫ τ

0
dt

1

LxLy�z

∑
i

pa
i �(r i (t );Rz), (A11)

J ab
b (z) = 1

τ

∫ τ

0
dt

1

LxLy�z

[ ∑
i

pa
i (t )pb

i (t )

m
�(r i (t );Rz)

+
∑
i<j

F a
ij (t )

(
rb
i (t ) − rb

j (t )
)
D(r i (t ), rj (t );Rz)

]
,

(A12)

FIG. 9. Schematic image of D(r i , rj ;Rz ). D(r i , rj ;Rz ) is
given as the ratio of black line and red dotted line.
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and

J ab
w (z) = 1

τ

∫ τ

0
dt

1

LxLy�z

[ N∑
i=1

Nw∑
j=1

Fwa
ij (t )

(
rb
i (t ) − rb

j (t )
)
D(r i (t ), rj (t );Rz)

]
(A13)

with

Rz = [0, Lx] × [0, Ly] ×
[
z − �z

2
, z + �z

2

]
, (A14)

�(r;Rz) =
{

0 r �∈ Rz,

1 r ∈ Rz,
(A15)

and

D(r i , rj ;Rz) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 r i ∈ Rz−�z and rj ∈ Rz−�z,

zjd/zij r i ∈ Rz−�z and rj ∈ Rz,

(zij − zid − zju)/zij r i ∈ Rz−�z and rj ∈ Rz+�z,

zid/zij r i ∈ Rzand rj ∈ Rz−�z,

1 r i ∈ Rz and rj ∈ Rz,

ziu/zij r i ∈ Rzand rj ∈ Rz+�z,

(zij − zjd − ziu)/zij r i ∈ Rz+�zand rj ∈ Rz−�z,

zju/zij r i ∈ Rz+�zand rj ∈ Rz,

0 r i ∈ Rz+�zand rj ∈ Rz+�z,

(A16)

where rij = |r i − rj |, zij = |zi − zj |, zid = |zi − (z −
�z/2)| and ziu = |zi − (z + �z/2)|. Here we give the
graphical interpretation of D(r i , rj ;Rz) in Fig. 9.

APPENDIX B: SCALING LAW AT HIGH SHEAR RATES

In Sec. III, we gave an example for which g(uw ) has a
maximum (see Fig. 4). We conjecture that the functional form
of g(uw ) is given by Fig. 8. With this conjecture, we con-
sidered the macroscopic boundary condition in Sec. IV C. As
explained in Sec. III B, the previous studies [37–39] reported
the behavior that b(γ̇w ) diverges at γ̇w → γ̇c and provided the
scaling law for simple liquids

b(γ̇w )

b∗ =
(

1 − γ̇w

γ̇c

)− 1
2

(B1)

near the critical value γ̇c, where b∗ is a constant. In this
Appendix, we show that, under some assumptions, g(uw ) of
the type shown in Fig. 8 satisfies the scaling law (B1). That
is, our simulations are consistent with the previous studies in
terms of scaling behavior.

As U increases from 0, uw increases and g goes up a slope
of g(uw ) to reach gmax (see Fig. 8). We assume that u

arg
w is

sufficiently large so that uw cannot reach u
arg
w within numerical

simulations. Then, we restrict ourselves to uw < u
arg
w . Since

g(uw ) is a bijective function in uw < u
arg
w , we rewrite (25) in

terms of the inverse function of g(uw ) as

g−1(ηγ̇w ) = b(γ̇w )γ̇w. (B2)

We introduce the critical shear rate γ̇c by

γ̇c = gmax

η
. (B3)

By noting that g−1(ηγ̇c ) = u
arg
w , we obtain

dg−1(ηγ̇w )

dγ̇w

∣∣∣∣
γ̇c

=
(

dg(uw )

duw

∣∣∣∣
u

arg
w

)−1

= ∞. (B4)

From (B2) and (B4), we find that γ̇c is the point for which the
first derivative of b(γ̇w ) in γ̇w, db(γ̇w )/dγ̇w diverges.

If we regard u
arg
w as infinity, then we conjecture that g(uw )

can be expanded around uw = u
arg
w as

g(uw ) = gmax −
(

1

u4
w

d2g

du2
w

)
u

arg
w

1

u2
w

+ · · · . (B5)

Equation (B5) means that g(uw ) has no singular point near
uw = u

arg
w . By using (B2), (B3), and (B5), we find that b(γ̇w )

is given by

b(γ̇w ) � 1

γ̇c

√
gmax

√(
1

u4
w

d2g

du2
w

)
u

arg
w

(
1 − γ̇w

γ̇c

)− 1
2

(B6)

near γ̇w = γ̇c. Equation (B6) implies that b(γ̇w ) diverges at
γ̇w = γ̇c following the scaling law (B1). Thus, we conclude
that the results of our simulation are consistent with the
previous studies in terms of scaling behavior.
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