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Stability analysis for a thermodynamically consistent model of relativistic fluid dynamics
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In relativistic fluid mechanics, positive entropy production is known to be insufficient for guaranteeing
stability. Much stronger criteria for thermodynamic admissibility have become available in nonequilibrium
thermodynamics. We here perform a linear stability analysis for a model of relativistic hydrodynamics that is
based on the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) framework of
nonequilibrium thermodynamics. Assuming a quadratic entropy function near equilibrium, we find stability for
the entire range of physically meaningful model parameters for relativistic fluid dynamics based on GENERIC.
The search for thermodynamic admissibility moreover reveals a fundamental difference between liquids and
gases in relativistic fluid dynamics.
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I. INTRODUCTION

Relativistic fluid dynamics plays an important role in as-
trophysics and cosmology as, for example, it allows us to
describe the collapse of stars into neutron stars, flows around
black holes, jets with relativistic speeds originating from the
core of active galactic nuclei, the formation of galaxies, or the
expansion of the entire universe. The first use of relativistic
fluid dynamics in the field of high-energy physics appeared in
the 1950s, in the works of Landau [1] and Khalatnikov [2].
In recent years, the topic received renewed attention due to
its potential to describe experiments on quark-gluon plasmas
produced in relativistic heavy ion colliders [3–6].

The first attempts to generalize the laws of fluid mechanics
and thermodynamics to the relativistic context were based
on an extended Fourier law for heat conduction [7,8]. These
formulations suffered from two fundamental flaws, which are
closely related to each other [9,10]: they are unstable [11,12],
and the parabolic nature of the corresponding differential
equation leads to instantaneous propagation of heat, hence
violating causality [13]. To overcome this problem, some
authors added an ad hoc relaxation term to Fourier’s law,
turning the parabolic equation into a hyperbolic one with finite
propagation speed [14,15]. Later studies showed that insta-
bility is the consequence of an ill-posed initial value prob-
lem when using parabolic equations [16] and that parabolic
equations can still be adopted if formulated in a well-posed
manner [17]. Conversely, hyperbolic equations can result in
well-posed problems with finite but superluminal propagation
speed. Hence, considering the physically acceptable range of
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parameters is essential in determining the stability and validity
of a theory [17].

A big step forward in formulating relativistic fluid dynam-
ics resulted from the insight that the entropy should depend on
additional structural variables (related to the momentum and
energy fluxes) and that the heat flux should not be proportional
to the entropy flux. In 1967 Müller demonstrated in the
context of heat flow that such a more complete description of
nonequilibrium states solves the problem of infinite propaga-
tion speeds, and he moreover showed that such a description
emerges naturally from kinetic gas theory [18]. It was then
natural to extend Grad’s moment method for the Boltzmann
equation [19] to the relativistic context [20–23]. The deriva-
tion of moment equations from the relativistic Boltzmann
equation culminated in what is now known as the Israel-
Stewart theory [24,25]. All work along these lines suffers from
the infamous closure problem [26] for the moment hierarchy.

The problem of relativistic fluid dynamics has also been
approached with the tools of nonequilibrium thermodynam-
ics. The basic idea of extended irreversible thermodynamics
(EIT) is to consider the dissipative fluxes (e.g., the heat
flux vector and the viscous pressure tensor) as independent
variables and to formulate convection-relaxation equations for
such fluxes [27]. In the limit of slow phenomena, these equa-
tions reduce to the classical constitutive laws, but they are also
suitable to describe fast phenomena, since they lead to hyper-
bolic equations with finite speeds of propagation for thermal
and viscous perturbations. Such models are compatible with
the kinetic theory of Grad’s 14-moment method [28]; they are
compatible with causality and stable under specific constraints
[10]. The general equation for the nonequilibrium reversible-
irreversible coupling (GENERIC) framework of nonequilib-
rium thermodynamics is more versatile in the choice of vari-
ables than EIT and more restrictive in the structure of the
equations, in particular, by imposing a Hamiltonian structure
on reversible dynamics. A GENERIC model of relativistic
fluid dynamics has been developed in Refs. [29,30], and
gravity has been included in Refs. [31,32]. Further possible
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approaches include Carter’s theory [33], the Ván-Biró model
[17], and a conformal field theory formulation [34].

In the present paper we study the linear stability of the
GENERIC model developed in Refs. [29,30]. We first present
these equations for relativistic fluid dynamics and highlight
their most important features.

II. MODEL

We restrict ourselves to special relativity. For the metric,
we adopt the Minkowski tensor with the convention (ημν ) =
diag(−1, 1, 1, 1). For the indexes of four-vectors and tensors,
we use Greek letters to denote components from 0 to 3
(i.e., time and space components) and Latin letters to denote
components from 1 to 3 (i.e., space components only).

A. Balance equations

We introduce the dimensionless fluid velocity four-vector
uμ in such a way that we obtain the relativistic continuity
equation

∂μ(ρfu
μ) = 0, (1)

where ρ is the mass density and the subscript f denotes
quantities evaluated in the comoving local reference frame
of the fluid. In terms of the components vi of the local fluid
velocity v, we have

u0 = γ, ui = γ
vi

c
(i = 1, 2, 3), (2)

where c is the speed of light and γ = (1 − v2/c2)−1/2 is the
Lorentz factor, chosen in such a way that

uμuμ = −1. (3)

The energy and momentum balances in the relativistic setting
are combined and can be expressed as

∂μT μν = 0, (4)

where Tμν is the energy-momentum tensor. Such a tensor has
to incorporate energy and momentum densities as well as
energy and momentum fluxes.

In defining the local fluid velocity, different choices are
possible: in the Eckart framework, the particle flow vanishes
in the local rest frame of the fluid [7] whereas, in the Landau
framework, the momentum density vanishes in the local rest
frame [8]. As, according to the GENERIC framework (and
also in the generalized bracket approach of Beris and Edwards
[35]), Hamiltonian structure is postulated to be a hallmark of
reversible dynamics, the introduction of the proper velocity
to be used for the reversible convection mechanism is an
important issue in these frameworks. The natural choice is to
implement the continuity equation (1) through the definition
of velocity and to determine the energy-momentum tensor in
Eq. (4) from the requirement that the entropy is conserved
under the reversible dynamics generated by any Hamiltonian,
not just the physical one (see also footnote on p. 168 of
Ref. [36]). The Hamiltonian structure of reversible dynamics
and the conservation of entropy under reversible dynamics
for any choice of the Hamiltonian are the powerful features

of the GENERIC framework in formulating relativistic fluid
dynamics.

B. Relaxation equations

In order to avoid the presence of spatial derivatives in
the formulation of the momentum and energy fluxes, and
in the spirit of the rheological modeling of complex fluids
[36,37], we introduce the structural variables αμν and ωμ (for
a detailed motivation and derivation of all the equations, see
Sec. 5.2 of the monograph [36] or Sec. 2 of the original
paper [29]). The relation of these structural variables to the
physical energy-momentum tensor and entropy flux emerges
after specifying the convection mechanism and the entropy
density in Eqs. (13) and (16) below.

The evolution equation for the four-vector ωμ is given by

uν (∂νωμ − ∂μων ) = − 1

cλ1
η̂μνω

ν, (5)

where η̂μν = ημν + uμuν is the spatial projector and λ1 is
a characteristic relaxation time. The convection term on the
left-hand side is dictated by its Hamiltonian nature. The
relaxation term on the right-hand side is chosen to be linear
for simplicity. The projector η̂μν on the right-hand side needs
to be introduced because the left-hand side vanishes after
contraction with uμ. From now on, we write ω̂μ = η̂μνω

ν for
the four-vector with the desired property

uμω̂μ = 0. (6)

For v = 0, Eq. (5) becomes

∂0ωj = ∂jω0 − 1

cλ1
ωj , (7)

so that ωj relaxes to the temperature gradient, or the driving
force for the heat flux, provided that ω0 is chosen as the
temperature. More precisely, we impose the Lorentz invariant
condition

uμωμ = Tf, (8)

where Tf is the temperature in the local rest frame.
Similarly to the equation for ωμ, also the evolution equa-

tion for the symmetric four-tensor αμν is given by the interplay
of Hamiltonian convection and linear relaxation,

uλ(∂λαμν − ∂μαλν − ∂ναμλ) = − 1

cλ0
ᾱμν − 1

cλ2
α̊μν, (9)

where λ0 and λ2 are the characteristic relaxation times for the
independently relaxing trace-part ᾱμν and trace-free part α̊μν

of αμν . To make both sides of Eq. (9) vanish upon contraction
with uμ or uν , we choose

ᾱμν = 1
3

(
α λ

λ − 1
)
η̂μν, α̊μν = αμν + uμuν − ᾱμν (10)

and

αμλu
λ = uμ. (11)

For these conditions, αμν relaxes to the symmetrized velocity
gradient tensor, or to the driving force for the momentum flux
[see the linearized Eq. (24) below]. Equation (11) implies
that αμν must be dimensionless, and, as a symmetric tensor,
it has only six independent components. The simplicity and
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elegance of the convection terms on the left-hand sides of
Eqs. (5) and (9) should be noted.

C. Entropy balance

The balance and relaxation equations of the preceding
two sections feature a Hamiltonian convection mechanism.
Another important feature of the GENERIC framework is
the requirement that the entropy must be conserved under
reversible dynamics for any choice of the Hamiltonian. In
the rheological modeling of complex fluids, this requirement
provides the stress tensor. In relativistic fluid dynamics, it
provides the energy-momentum tensor. To proceed, we need
to specify the entropy density sf in the local rest frame.

We assume that sf depends on the mass density ρf and in-
ternal energy density εf, as well as on the structural variables,
i.e., it can be expressed as sf(ρf, εf, αμν, ω̂μ). The spatial
projection ω̂μ is used here instead of ωμ because the temporal
part of ωμ includes thermodynamic information and would be
redundant with ρf and εf. The entropy density is independent
of the local fluid velocity. We can now provide a definition of
the temperature Tf in Eq. (8) in terms of sf(ρf, εf, αμν, ω̂μ),

1

Tf
= ∂sf

∂εf
. (12)

Equation (12) is formally similar to the classical definition
of thermodynamic temperature, but it entails some additional
ambiguity. In the equilibrium setting, the derivative of sf

with respect to εf is performed keeping ρf constant. Here, in
general, we additionally have to keep the structural variables
constant. Therefore the definition of the temperature can
depend on the particular choice of the structural variables.

According to the development of thermodynamically ad-
missible equations for relativistic fluid dynamics in Sec. 5.2
of Ref. [36] or Sec. 2 of Ref. [29], the entropy balance can be
written in the form (see the Appendix)

∂μ

(
sfu

μ + Tf
∂sf

∂ω̂μ

)
= − ∂sf

∂αμν

(
1

cλ0
ᾱμν + 1

cλ2
α̊μν

)

− 1

cλ1

∂sf

∂ω̂μ

ω̂μ. (13)

The nonconvective contribution to the entropy-flux four-
vector is given by Tf∂sf/∂ω̂μ, so that we have a clear rela-
tionship between the entropy flux and the spatial part of the
structural variable ωμ. According to Eq. (8), the temporal part
of ωμ is given by the temperature.

A nonnegative entropy production on the right-hand side
of Eq. (13) can be achieved either by requiring ∂sf/∂αμν and
∂sf/∂ω̂μ to be negative multiples of αμν and ω̂μ, respectively,
or by replacing the linear relaxation mechanism by one that
is driven by nonlinear entropy derivatives. Whereas the latter
option is much more general, we here insist on a linear
relaxation term and use the quadratic entropy density

sf(ρf, εf, αμν, ω̂μ)

= s
eq
f (ρf, εf ) − 1

2ρf[Hα (αμνα
μν − 1) + Hωω̂μω̂μ], (14)

leading to the derivatives

∂sf

∂αμν

= −ρf Hααμν,
∂sf

∂ω̂μ

= −ρf Hωω̂μ, (15)

where Hα and Hω must be positive to guarantee nonnegative
entropy production. A quadratic entropy function is not only
consistent with the second-order Israel-Stewart model and the
standard formulation of EIT, but should also be sufficient for
producing the linearized equations for our stability analysis.

D. Energy-momentum tensor

For the entropy function (14), the energy-momentum ten-
sor (A3) becomes (see the Appendix)

T μν = (ρfc
2 + εf )u

μuν + pfη̂
μν

+ ρfTf
[
2Hα

(
αμλαλ

ν − αμν
) + Hωω̂μω̂ν

]
− ρfT

2
f Hω(ω̂μuν + uμω̂ν ), (16)

where

pf = Tf

(
sf − ρf

∂sf

∂ρf
− εf

∂sf

∂εf

)
(17)

is the pressure in the local rest frame. From a physical point
of view, uμT μνuν = ρfc

2 + εf can be interpreted as the total
internal energy density, with the first term on the right-hand
side associated with the mass density and the second term
associated with the thermodynamic state of the system. If the
remaining terms on the right-hand side of Eq. (16) are con-
tracted with either uμ or uν , only the term ρfT

2
f Hω(ω̂μuν +

uμω̂ν ) produces a nonzero result which, according to Eqs. (13)
and (15), is given by the product of temperature and non-
convective entropy flux. This term has exactly the same
structure as the terms associated with the heat and momen-
tum fluxes in Ref. [17]. Finally, the contribution pfη̂

μν +
ρfTf[2Hα (αμλαλ

ν − αμν ) + Hωω̂μω̂ν] is the counterpart of
the stress tensor in Ref. [17]. The term ρfTfHωω̂μω̂ν expresses
a quadratic cross effect, relating heat fluxes and stresses.
Note that only the core contribution pfη̂

μν − 2ρfTfHααμν

contributes to the linearized stress tensor, so that we obtain a
simple interpretation of the structural tensor αμν . As pointed
out before, the dependence of the energy-momentum tensor
on the form of the entropy function is a characteristic fea-
ture of nonequilibrium thermodynamics. The tensor T μν in
Eq. (16) is manifestly symmetric.

E. Model summary

Summarizing, our model consists of 14 equations: the
continuity equation (1), the energy-momentum tensor con-
servation equation (4), and the relaxation equations (5) and
(9) for the structural variables ωμ and αμν , respectively.
Assuming a quadratic entropy in the structural variables, the
energy-momentum tensor is found to be of the form given in
Eq. (16).

To close the model, two equations of state are required,
to relate the variables Tf and pf defined in Eqs. (12) and
(17) to the independent thermodynamic variables εf and ρf.
For the quadratic entropy density (14), Tf and pf are fully
determined by the function s

eq
f (ρf, εf ), so that there are only

three independent second-order derivatives or thermodynamic
material parameters. We use the isobaric thermal expansion
coefficient αp, the adiabatic thermal expansivity αs and the
isothermal speed of sound cT as basic material properties
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(for a convenient summary of the relations between vari-
ous thermodynamic material parameters, see Appendix A of
Ref. [37]). Also the unknown variables are 14 in total: ρf, εf,
uμ, αμν and ωμ (1 + 1 + 3 + 6 + 3 = 14), given the symmetry
of the αμν and the constraints in Eqs. (3), (8), and (11).

III. LINEAR STABILITY ANALYSIS

We now perform a linear stability analysis for the thermo-
dynamically admissible model of relativistic fluid dynamics
presented in the preceding section. Following standard proce-
dures [10–12,17], we express the deviation δq of any variable
q from its equilibrium value in the form δq = δq̃e�t+ikx1

, with
t the time and x1 one of the space directions in the rest frame.

A. Equilibrium rest frame

We consider an equilibrium state corresponding to given
(fixed) values of εf, ρf, Tf, and pf. The values of the velocity
and the structural variables in such an equilibrium state are

u0 = −1, ui = 0, η̂0μ = η̂μ0 = 0, η̂ij = δij ,

α00 = −1, α0i = αi0 = αij = 0, ω0 = Tf, ωi = 0.

(18)

The full list of unknowns of the linearized problem is given by
δρ, δT , δu1, δu2, δu3, δω1, δω2, δω3, δα11, δα12, δ α13, δα22,
δα23, δα33. In view of the constraints (3), (8), and (11), the
following relationships hold:

δu0 = 0, δη̂00 = 0, δη̂i0 = δη̂0i = δui,

δα00 = 0, δα0i = δαi0 = δui, δω0 = δT . (19)

B. Linearized equations

To prepare the stability analysis, we write the linearized
evolution equations of the model as

∂0ρf = −ρf∂iui, (20)

∂0εf = −(
εf + pf − ρfT

3
f Hω

)
∂iui + ρfT

2
f Hω∂iωi, (21)

(
ρfc

2 + εf + pf − ρfT
3

f Hω

)
∂0uj

= −∂jpf + 2ρfTfHα∂kαjk + ρfT
2

f Hω∂0ωj , (22)

∂0ωj = ∂jω0 − 1

cλ1
(ωj + ujω0), (23)

∂0αjk = ∂juk + ∂kuj − 1

cλ2

(
αjk− αll

3
δjk

)
− 1

cλ0

αll

3
δjk.

(24)

Moreover, it is useful for the further development to define the
dimensionless parameters

X = 2TfHα

c2
T

, Y = T 2
f Hω

αpc2
T

, Z = Tfαp, (25)

where cT is the isothermal speed of sound and αp the isobaric
thermal expansivity. From Eqs. (20) and (21), we can derive
an evolution equation for the temperature Tf(ρf, εf ),

∂0Tf = −1 − Y

αs

∂iui + Y

Tfαs

∂iωi, (26)

where we have used the formula ĉv = Tfαpαsc
2
T involving

the specific heat at constant volume, ĉv , and the thermal
expansivity at constant entropy, αs , as well as the formula
(A.22) of Ref. [37] for ∂Tf(ρf, εf )/∂ρf. The equation of motion
Eq. (22) can be rewritten as

∂0uj = Q

(
− 1

ρf
∂jρf − Z

Tf
∂jTf + X∂kαjk + YZ

Tf
∂0ωj

)
,

(27)

where we have used ∂pf(ρf, Tf )/∂Tf = ρfc
2
T αp, which follows

from dρf = −ρfαpdTf + ρfκT dpf and ρfc
2
T κT = 1 [or see

Eq. (A.33) of Ref. [37]], where κT is the isothermal compress-
ibility, and the definition

Q = ρfc
2
T

ρfc2 + εf + pf − YZρfc
2
T

. (28)

Natural ranges of parameters are 0 < X, 0 < Y < 1, 0 < Q,
0 < λj . The constraint on X emerges from the definition of
X in (25), where all the terms are nonnegative. The constraint
0 < Y is obvious from the definition, too. In nonrelativistic
hydrodynamics, the sign of the temperature change associated
with the relative volume change c∂iui is opposite to the sign of
αs [see, for example, Eqs. (7.3) and (A.29) of Ref. [37]]; we
hence assume that the factor 1 − Y in Eq. (26) must always
be positive, that is Y < 1. From the physical point of view,
Q gives an indication on the relativistic character of a fluid.
As the speed of sound cT approaches the speed of light c, the
parameter Q grows. One might be tempted to interpret Q → 0
as the limit of a nonrelativistic fluid, however, Eq. (27) clearly
shows that the nonrelativistic limit is much more subtle. The
timescales λ0 and λ2 can be chosen independently, without
the need to impose any further inequality, as it can be seen by
splitting the tensorial relaxation equation (24) for the αjk into
its trace-free and trace parts:

∂0α̊jk = ∂juk + ∂kuj − 2

3
∂iuiδjk − 1

cλ2
α̊jk, (29)

∂0αii = 2∂iui − 1

cλ0
αii . (30)

C. Block structure

The linearized system can be written in the matrix
form M · δq = 0, where M is a 14×14 matrix with block-
structure (6 + 3 + 3 + 1 + 1) and δq = (δρ, δT , δu1, δω1,

δα11, (δα22 + δα33)/2, δu2, δω2, δα12, δu3, δω3, δα13, δα22 −
δα33, δα23). Without loss of generality, we can choose
ρf = Tf = c = λ1 = 1, which is equivalent to choosing the
units for density, temperature, velocity and time. The matrix
M is

M =

⎡
⎢⎢⎢⎢⎢⎣

N 0 0 0 0
0 R 0 0 0
0 0 R 0 0
0 0 0 f 0
0 0 0 0 f

⎤
⎥⎥⎥⎥⎥⎦

, (31)

with the blocks N = [6×6], R = [3×3], f = [1×1] on the
diagonal, and the zeros indicating blocks of variable size

013105-4



STABILITY ANALYSIS FOR A THERMODYNAMICALLY … PHYSICAL REVIEW E 99, 013105 (2019)

containing only 0 elements. In particular,

f = � + 3F, (32)

R =
⎡
⎣ � −YZ� −XQi

3G � + 3G 0
−i 0 � + 3F

⎤
⎦, (33)

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

� 0 i 0 0 0

0 � 1−Y
A

i − Y
A

i 0 0

Qi QZi � −YZQ� −XQi 0

0 −i 3G � + 3G 0 0

0 0 −2i 0 � + E + 2F 2(E − F )

0 0 0 0 E − F � + 2E + F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

In the above equations, we defined � = �/(ck) as well as the
additional dimensionless parameters

A = αsTf, E = 1

3ckλ0
, F = 1

3ckλ2
, G = 1

3ckλ1
.

(35)

To assess the stability, we look for the roots �n of the
characteristic polynomial detM = 0, with n = 1, . . . , 14, i.e.,
we look for the values �n for which the system has nontrivial
solutions δq̃n. Note that this is not a standard eigenvalue
problem because � occurs also in one of the off-diagonal
matrix elements of R and of N (we hence refer to �n and
�n = ck�n as roots rather than eigenvalues). We assume
k > 0, so that initial perturbations δq̃n will decay in time and
the system will be stable provided that Re(�n) < 0 for all n

(Re(�n) = 0 corresponds to marginal stability of mode n).
Given the block structure of the matrix M the characteristic

polynomial can be factorized as

detM = detN · (detR)2 · f 2 = 0. (36)

We consider the different blocks separately. The solutions of
the characteristic polynomial (36) are found for

f = � + 3F = 0, (37)

detR = 3GQX + �(9FG + QX + 9FGYZ)

+ �2(3F + 3G + 3GYZ) + �3 = 0, (38)

det N = 0. (39)

Equation (37) implies � = −3F , which is always real and
negative, thus corresponding to decaying perturbations. This

solution corresponds to � = −1/λ2, i.e., a constant decay
rate related to the characteristic relaxation rate of α̊μν and
independent of k, the spatial wavelength of the perturbation.
This condition characterizes the independent relaxation of
δα22 − δα33 and δα23.

In the physically acceptable range of parameters, Eq. (38),
which is associated with shear and transverse mass and
heat fluxes (δu2, δω2, δα12 or δu3, δω3, δα13), has only so-
lutions with negative real parts. To proof this, we apply
the Routh-Hurwiz criterion [38] for a third-order polynomial
a0 + a1� + a2�

2 + �3. According to this criterion, such a
polynomial has only solutions with a negative real part if
ai > 0 for all i and a1a2 > a0. The first condition can be
verified from Eq. (38), given the physically acceptable ranges
of the parameters, which must all be real and positive. The
second condition can be rewritten as

a2a1 − a0 = 27FG(F + G + FYZ + 3GYZ + GY 2Z2)

+ 3QX(F + GYZ) > 0, (40)

which is true for real valued, positive F , G, X, Y , Z. In the
limit case Q = 0, one solution of Eq. (38) is the purely real
negative � = −3F associated with the relaxation of α12 or
α13 in the absence of transverse mass or heat flux. Additional
roots of Eq. (38) for Q = 0 are � = −3G(1 + YZ) and � =
0. The latter corresponds to time-independent perturbations of
marginal stability. The mode associated with � = −3G(1 +
YZ) must satisfy the condition δu2 + YZδω2 = 0 (or, δu3 +
YZδω3 = 0); this relaxation mode exists for small positive Q,
but does not exist for Q = 0, because Eq. (27) then implies
δu2 = δu3 = 0.

We now consider Eq. (39). To determine the sign of the
roots, we rearrange Eq. (39) as

X = − (3E + �)(3F + �){(�2 + Q)[A�(3G + �) + Y ] + �Q[�(−1 + Y )2 + 3G(1 + A�2Y )]Z}
2�(2E + F + �)Q[A�(3G + �) + Y ]

, (41)

which can be compactly rewritten as X = −N/D, with N the numerator and D the denominator of the fraction (41). In the
case of � purely real, positive values of � would lead to both N > 0 and D > 0, hence X < 0. Since these are physically
unacceptable values of X, purely real positive roots are not possible and purely real roots � can only be negative. Purely
imaginary values of � correspond to an oscillatory nongrowing solution of the linear system and and imply marginal stability.
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FIG. 1. (a) Real and (b) imaginary part of the roots � as a function of k, for Q = 0.001. Other parameters are A = 1/3, X = 1, Y = 1/2,
Z = 1, λ0 = 1, λ1 = 2/3, and λ2 = 1/6. The dashed lines represent the roots of the characteristic polynomial of the 3×3 block R; the solid
lines represent the roots of the characteristic polynomial of the 6×6 block N . Both � and k are depicted in nondimensional units.

Therefore further investigation is required only for the case of a complex-valued root,

� = R + iI, (42)

with R = Re(�) �= 0 and I = Im(�) �= 0. We substitute Eq. (42) into Eq. (41), and we impose Im(X) = 0, since we know from
Eq. (25) that X has to be a real number. This condition is expressed as Q = Q(R, I,E, F,G, Y,Z) and inserted into Eq. (41),
thus finding

X = − [I 2 + (3E + R)2][I 2 + (3F + R)2]T1

2|�|2{6E2(3F + 2R) + 2(FI 2 + 3F 2R + R|�|2 + 3FR2) + EI 2 + 9(F + R)2]}T2
, (43)

with

T1 = 2AR{A[2I 2R2 + R4 + 3G(2R + 3G)|�|2] + 2R(3G + R)Y } + 2R(AI 2 − Y )2

+ 3GZ|�|2[2AR(3G + 2R) + Y (A|�|2 − 1)2] + Z|�|2[2AR|�|2(1 − Y )2], (44)

T2 = (AI 2 − Y )2 + A{A[2I 2R2 + R4 + 3G|�|2(3G + 2R)] + 2R(3G + R)Y }. (45)

We compactly rewrite Eq. (43) as X = −N ′/D′, where N ′
and D′ are the numerator and the denominator of the fraction,
respectively. From the equations above, one can see that
T1 > 0 and T2 > 0, in the case of R > 0. Thus N ′ > 0,
D′ > 0 and X < 0, which is at variance with the physically
acceptable values, X > 0. Therefore, we have established
R = Re(�) � 0 and completed the proof of the unconditional
stability of the system, within the physically acceptable range
of values of the parameters.

In Figs. 1–3 we show the real and imaginary parts of � as
a function of k for different values of the parameter Q: Q =
0.001, Q = 0.1, and Q = 1. The other parameters are given
by X = 1, Y = 1/2, Z = 1, A = 1/3, λ0 = 1, λ1 = 2/3, and
λ2 = 1/6. The solid lines represent the roots derived from
the 6×6 block N [see Eq. (39)]. The dashed lines represent
the roots derived from the 3×3 block R [see Eq. (38)].
Since there are two identical R blocks in the matrix M, the
multiplicity of each dashed line is two. The colors (online) in
the figures are redundant with the numbering, to facilitate the
readability.

In the case of Q = 0.001, we find several modes that
have been previously identified by other authors [10]: the line

labeled 1 (green online) is characterized by a proportionality
to −k2 near k = 0 and identifies a diffusive mode for k < kc,
where kc is a characteristic wavelength. The line 2 (brown
online), represents relaxation of the heat flux ω1: this can
be seen from the fact that, for k = 0, it takes the value
� = −1/λ1 [see Eq. (23)]. The real parts of 1 and 2 merge for
k > kc, while the complex parts becomes nonzero and conju-
gate, turning both 1 and 2 into two propagating nonhydrody-
namic modes. The roots 3 and 4 (orange online) are complex
conjugate with negative real part, hence they represent two
sound modes. The roots 5 (magenta online) and 6 (yellow
online) have negative real part, reaching an asymptote as k

increases, and vanishing complex part, thus they can be iden-
tified as two nonpropagating relaxation modes. In particular,
at k = 0, root 5 takes the value � = −1/λ0 while root 6 takes
the value � = −1/λ2. Hence we conclude that the mode 5 is
related to the relaxation of αii [see Eq. (30)] and the mode 6 is
related to the relaxation of α̊jk [see Eq. (29)]. From the 3×3
block R, three modes appear, represented by the dashed lines:
for small k, one mode represents relaxation of α12 (or α13) in
the absence of transverse mass or heat fluxes (light-gray, or
red online) the other one represents relaxation of ω2 (or ω3) in
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FIG. 2. (a) Real and (b) imaginary part of the roots � as a function of k, for Q = 0.1. For other parameters and line style code see Fig. 1.

the presence of transverse mass and momentum fluxes (dark-
gray, or blue online); these two modes turn into propagating
modes for k larger than a characteristic value k′

c. The third
mode displays diffusive −k2 behavior at small k and saturates
at large k (black). For Q = 1, the roots 1 and 2 are shifted
down from the origin, while all other modes retain a similar
meaning. In the case of Q = 0.1, an intermediate situation
between the two previous cases appears and the different
modes are combined in a nontrivial way.

IV. SUMMARY AND DISCUSSION

In the present paper we considered the thermodynamically
consistent model for relativistic fluid dynamics developed
within the GENERIC framework [29,30], where the treatment
of nonequilibrium phenomena (momentum and heat trans-
port) is described by means of additional structural variables
to prevent the problem of infinite propagation speeds. We
performed a linear stability analysis of the equilibrium rest
state and we analytically proved that, in the entire range of the
physically meaningful parameters, the model is uncondition-
ally stable.

In nonrelativistic fluid dynamics, the equations for liquids
and gases possess the same Navier-Stokes-Fourier form and

differ only by the characteristic values of the transport co-
efficients. This is a consequence of the fact that the basic
equations express the balance laws for the conserved quanti-
ties mass, momentum and energy in a straightforward form.
In relativistic fluid dynamics, we are faced with additional
relaxation equations for nonconserved structural variables so
that there is no reason to expect universal equations that
encompass both liquids and gases.

For a gas described by the Boltzmann equation, all macro-
scopic properties are strongly related to the velocities of
the particles. For a liquid, the interactions between parti-
cles and the energy stored in the bonds are more relevant
than the velocities themselves. Our equations of relativistic
fluid dynamics include a Poisson-bracket formulation of the
convection mechanism. A Poisson-bracket formulation has
not been found for the 13- or 14-moment equations derived
from the nonrelativistic or relativistic Boltzmann equations.
The problem is that the convection terms for increasingly
higher moments in momentum space are strongly coupled
and hence very complicated so that they become difficult,
if not impossible, to truncate. The situation is very different
if the structural variables describe features related to forces
and differences in position space. This is the reason why
we expect a serious difference between fluid dynamics of

FIG. 3. (a) Real and (b) imaginary part of the roots � as a function of k, for Q = 1. For other parameters and line style code see Fig. 1.
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relativistic liquids and gases. The heuristic derivation of the
GENERIC equations based on the knowledge of complex
fluids in Ref. [37] underlines their liquidlike background,
whereas the Israel-Stewart model and the EIT equations are
based on moment expansions for the Boltzmann equation and
hence are appropriate for gaslike fluids. Note that, in the case
of quark-gluon plasmas, recent experimental findings showed
that a liquidlike description may be more accurate [39]. For
gaslike fluids, a Poisson-bracket formulation of the convection
mechanism has so far been found only in the Boltzmann
equation or the equivalent infinite moment hierarchy.

With the present paper we performed one step forward
in showing that the thermodynamically consistent model de-
veloped within the GENERIC framework [29,30] should be
considered as a valuable option, a worthwhile alternative to
the existing ones, when addressing the study of relativistic
fluids. To gain full confidence, linear stability should also
be investigated in a boosted system [10], which is consid-
erably more complicated and hence beyond the scope of
the present analytical study (more terms in evolution equa-
tions, angle between boost and wave vector of perturbation).
The elegance associated with the Poissonian structure of the
convection terms in the relaxation equations (5) and (9) for
the structural variables is an important argument in favor
of the equations derived within the GENERIC framework.
More physical entropy functions, presumably containing log-
arithmic rather than quadratic contributions, open the door
to more realistic modeling, where the general form (A3) of
the energy-momentum tensor is prescribed by thermodynamic
admissibility.
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APPENDIX: NOTATIONAL CORRESPONDENTS

The original formulation of GENERIC equations for rel-
ativistic fluid dynamics in Sec. 5.2 of the monograph [36]
and Sec. 2 of the paper [29] is based on the inverse function
εf(ρf, sf, αμν, ω̂μ) rather than sf(ρf, εf, αμν, ω̂μ). Moreover, in
the original work, six independent scalar invariants are formed
from αμν and ω̂μ and used as the explicit arguments of εf.
In Ref. [36], all partial derivatives of εf are contained in
Eq. (5.76). The relevant notational correspondents required
for translating the results of Ref. [36] or [29] for the entropy
balance and the energy-momentum tensor into the present
notation are compiled in Table I.

The entropy balance equation (13) can be obtained from
Eqs. (5.49), (5.84), and (5.102) of [36] or from Eqs. (27), (32),

TABLE I. Notational correspondents.

This paper Ref. [36] Ref. [29]

Tf T ∗
f T ∗

f

λj τj τj

αμν cμν cμν

ωμ −cwμ −cwμ

∂sf
∂αμν

− 1
2T ∗

f
φ∗μν − 1

2T ∗
f
φμν

∂sf
∂ω̂μ

1
cT ∗

f
η̂μνσ ∗

νν′wν′ 1
cT ∗

f
(ημν + uμuν )σνν′wν′

and (33) of Ref. [29]. According to Eqs. (5.55) and (5.86) of
Ref. [36] [or, equivalently, Eqs. (21) and (30) of Ref. [29]],
the energy-momentum tensor is given by

T μν = (ρfc
2 + εf + T ∗

f ς )uμuν + pf η̂
μν

+φ∗μλ
(
cλ

ν − ηλ
ν
) + σ ∗μλwλw

ν, (A1)

with ς = uμσ ∗μνwν/c. The symmetry of T μν is proven in
Exercise 104 of Ref. [36] or displayed explicitly in Eq. (34)
of Ref. [29]; the proof makes explicit use of the fact that εf

depends only on scalar invariants. From Table I, we find

σ ∗μλwλ = cT ∗
f

∂sf

∂ω̂μ

− cςuμ, (A2)

so that, in the notation of the present paper, we obtain

T μν = (ρfc
2 + εf )uμuν + pf η̂

μν − 2 Tf
∂sf

∂αμλ

(
αν

λ − ην
λ

)

− Tf
∂sf

∂ω̂μ

ω̂ν + T 2
f

∂sf

∂ω̂μ

uν + ςuμω̂ν. (A3)

In practice, ς can be regarded as a fitting parameter for
making T μν symmetric. For the quadratic entropy density
(14), we have

T 2
f

∂sf

∂ω̂ν

= ςω̂ν, (A4)

so that we find the energy-momentum tensor (16).
A simple heuristic derivation of the GENERIC equations

of relativistic fluid dynamics has been attempted in Sec. 12.6
of the textbook [37]. The key ingredients are a convection
mechanism based on the upper-convected derivatives used in
modeling complex fluids with tensor and vector variables and
the formulation of a proper entropy balance equation. For
quadratic entropy density, which is the recommended choice
for linear relaxation, the GENERIC results (A3), (A4) have
been fully reproduced. For more general entropy densities, the
last term in Eq. (A3) (involving ς ) is not reproduced correctly
by the last term of Eq. (12.86) of Ref. [37]. This problem
occurs when the symmetry of T μν becomes a subtle issue
because ∂sf/∂αμλ and αλ

ν do not commute.
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